大数据与大数据技术课件

合集下载

大数据培训课件ppt

大数据培训课件ppt

欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集

大数据概论课件PPT下载(85张)完美版

大数据概论课件PPT下载(85张)完美版
•大数据(big data),又称巨量数据集合,是指无法 在可承受的时间范围内用常规软件工具进行捕捉、管 企业内部数据的采集是对企业内部各种文档、视频、音频、邮件、图片等数据格式之间互不兼容的数据采集。
Map:把统计♠数目的任务分配给每个牌友分别计数。
理和处理的数据集合。 (4)背景数据的可视化
知识计算是从大数据中首先获得有价值的知识,并对其进行进一步深入的计算和分析的过程。 1 大数据可视化简介 互联网(社交、搜索、电商)、移动互联网(微博)、
MapReduce由Map和Reduce两部分用户程 序组成,利用框架在计算机集群上根据需求运行 多个程序实例来处理各个子任务,然后再对结果 进行归并输出。
大数据的相关技术
MapReduce
举例: “统计54张扑克牌中有多少张♠?” 最直观的做法:你自己从54张扑克牌中一张一张地检查并数出13张♠。 而MapReduce的做法及步骤如下: 1.给在座的所有牌友(比如4个人)尽可能的平均分配这54张牌; 2.让每个牌友数自己手中的牌有几张是♠,比如老张是3张,老李是5张,老 王是1张,老蒋是4张,然后每个牌友把♠的数目分别汇报给你; 3.你把所有牌友的♠数目加起来,得到最后的结论:一共13张♠。 这个例子告诉我们,MapReduce的两个主要功能是Map和Reduce。 Map:把统计♠数目的任务分配给每个牌友分别计数。 Reduce:每个牌友不需要把♠牌递给你,而是让他们把各自的♠数目告诉 你。
企业内部的经营交易信息主要包括联机交易数据和联机 分析数据,是结构化的、通过关系数据库进行管理和访 问的静态、历史数据。通过这些数据,我们能了解过去 发生了什么。
海量交互数据:
源于Facebook、Twitter、LinkedIn及其他来源的社交 媒体数据构成。它包括了呼叫详细记录CDR、设备和传 感器信息、GPS和地理定位映射数据、通过管理文件传 输Manage File Transfer协议传送的海量图像文件、We b文本和点击流数据、科学信息、电子邮件等等。可以告 诉我们未来会发生什么。

大数据介绍pptppt课件

大数据介绍pptppt课件

01大数据概述Chapter大数据的定义与特点定义特点1 2 3萌芽期发展期成熟期大数据的发展历程物联网物联网产生的海量数据需要大数据技术进行处理和分析,以实现智能化应用。

金融机构利用大数据分析进行风险评估、信用评级、反欺诈等。

医疗健康大数据在医疗健康领域的应用包括疾病预测、个性化医疗、药物研发等。

商业智能通过大数据分析,帮助企业了解市场趋势、客户需求和行为公共服务效率和质量,如交通拥堵预测、大数据的应用领域02大数据技术基础Chapter分布式计算技术MapReduce01Spark02Flink03Hadoop HDFS一个分布式文件系统,设计用来存储和处理大规模数据集,具有高容错性和高吞吐量。

HBase一个高可扩展性的列存储系统,用于存储非结构化和半结构化的稀疏数据。

Cassandra一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障的数据存储服务。

数据挖掘与机器学习通过统计学、计算机视觉、自然语言处理等技术,从数据中提取有用信息和预测未来趋势。

数据清洗与整合对数据进行预处理,包括数据去重、缺失值处理、异常值检测等,以保证数据质量。

SQL 与NoSQL 数据库(如MySQL 、PostgreSQL )和非关系型数据库(如MongoDB 、Redis )。

数据可视化技术TableauPower BID3.js03大数据平台与工具ChapterHadoop平台介绍Hadoop概述Hadoop核心组件Hadoop应用场景Spark概述01Spark核心组件02Spark应用场景03Flink概述Flink核心特性Flink应用场景常用大数据工具介绍Hive HBase Kafka Sqoop04大数据应用案例Chapter风险管理与合规客户洞察投资决策支持精准医疗流行病预测与防控医疗资源优化智能调度预测性维护供应链优化通过实时分析交通状况、货物信息和配送需求,实现智能调度和路线规划。

01020304通过分析学生的学习数据,提供个性化教育资源和教学方法。

《互联网大数据课件》

《互联网大数据课件》

机器学习在大数据中的应用
机器学习是大数据分析的重要工具,可用于预测分析、模式识别和聚类分析 等。
大数据在企业管理中的应用
1
客户关系管理
通过大数据分析客户行为和喜好,提
供应链管理
2
供个性化的服务和推荐。
利用大数据分析供应链数据,提高生
产和分销的效率。
3
业务决策
通过大数据分析企业内外部数据,为 业务决策提供决策支持。
2
将计算任务划分为多个子任务,并行
处理,缩短处理时间。
3
分布式存储
将数据分散存储在多个节点上,提高 数据处理的效率和可靠性。
图像处理
使用图像处理算法对图像数据进行分 析和处理。
大数据存储技术
云存储
使用云平台将大数据存储在远 程的服务器上,提供高效的存 储和数据管理。
分布式文件系统
数据库管理系统
将大数据分散存储在多个节点 上,提供高可用性和可扩展性。
通过数据库来存储和管理大数 据,提供高效的查询和数据处 理能力。
大数据计算技术
批处理
对大析数据流,适 用于实时监控和预警等场景。
图计算
对图结构数据进行复杂计算 和分析,如社交网络分析。
大数据安全性问题
大数据的存储和处理过程中面临着数据隐私、数据泄露和数据安全的风险。保护大数据的安全至关重要。
《互联网大数据课件》
本课件将介绍大数据的定义和应用场景,以及互联网时代中大数据的重要性。 其中包括大数据的来源、分析方法、处理、存储和计算技术,以及安全性问 题。我们还将探讨人工智能、机器学习和大数据在企业管理、金融和医疗领 域的应用。
什么是大数据?
大数据是指海量、高速产生的数据集合,难以使用传统数据库工具进行处理和分析。

大数据培训课件(PPT 27页)

大数据培训课件(PPT 27页)
• 大数据的“大”还体现在企业的数据观突 破了传统的管理视野。
– 举例:商超的促销定价怎么做
处理大数据需要专门的技术方案
传统数据
• 数据库 • OLTP系统 • 中心式架构
大数据
• 数据仓库 • OLAP • 数据挖掘 • 云计算架构 • Hadoop
所以,马云说…
• “我们正从IT(信息技术)时代走向DT(数 据技术)时代”、“IT时代是制造,DT时 代是创造”。
理性面对 厘清思路
• 大数据来了?还是狼来了?大数据的本质 是“基于数据的决策”,摒弃“基于经验 的决策”,传统企业应当从客户端、产品 端、管理端寻找介入机会,切不可陷入技 术端陷阱。
– 举例:谷歌流感趋势预测饱受质疑
设立机构 转换职能
• 企业应当设立信息化部门,甚至设立大数 据开发管理部门,该部门不再是后勤支撑 角色,而是要总领性规划企业的数据战略。 支持通过数据整合颠覆公司低效的流程和 业务,信息化部门的职能从软硬件日常维 护转向助推商业逻辑重构。
我对大数据的理解
• 大数据是指超大规模的数据集合,往往还 具有类型多样、快速流转、和价值密度低 等特点,人们无法通过传统数据技术,以 可接受的代价来驾驭处理它。
两点认识
• 大数据的“大”不只是“数量大”,类型 多样、快速流转和价值密度低才是其有别 于传统“数据”概念的关键所在。
– 举例:NEC用脸部识别技术提升销售
• 2015.7 《国务院关于积极推进“互联网+”行动的指导意见》 • 2015.9 《国务院关于促进大数据发展行动纲要》 • 2015.5《安徽省人民政府办公厅关于促进电子政务协调发
展的实施意见》 • 2015.9 《安徽省委省政府关于加快调结构转方式促升级

大数据ppt课件

大数据ppt课件

改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见

大数据课件ppt


适用于大规模数据 集处理,具有高效 的数据处理能力和 内存管理。
Flink平台
详细描述
提供丰富的API和工具,如 DataStream API、DataSet API 、Table API等。
总结词:实时流数据处理引擎。
支持基于流的处理和批处理。
适用于实时数据处理和复杂事件 处理场景。
Kafka工具
要点二
发展
大数据的发展经历了三个阶段:第一个阶段是大数据技术 的萌芽期,这个阶段出现了许多大数据技术的基础组件, 如分布式存储和计算系统;第二个阶段是大数据技术的成 熟期,这个阶段出现了许多成熟的大数据产品和解决方案 ;第三个阶段是大数据技术的普及期,这个阶段大数据技 术被广泛应用于各个领域。
大数据的研究与应用
02
大数据处理技术
数据采集与预处理
01
02
03
数据采集
从各种数据源(如数据库 、网络、文件等)获取数 据的过程。
数据清洗
去除重复、无效或错误的 数据,保证数据的质量和 准确性。
数据转换
将数据从一种格式或结构 转换为另一种,以便进行 后续处理。
数据存储与管理
数据存储
使用存储设备(如硬盘、 闪存等)保存数据,以便 长期保存和使用。
数据挖掘与分析
关联规则挖掘
发现数据之间的关联和模式,揭 示潜或属性进行 分组,以便进行分类和识别。
预测分析
利用已有的数据进行预测,对未 来的趋势和结果进行预测和分析

03
大数据平台与工具
Hadoop平台
总结词:分布式存储和计算平台,适合 大规模数据处理。
特点
大数据通常具有四个特点,即4V:体量(Volume)指数据 的大小、速度(Velocity)指数据生成或处理的快慢、多样 性(Variety)指数据的种类、真实性(Veracity)指数据的 准确性和可信度。

大数据的本质课件ppt

特点
大数据通常具有四个特点,即4V:体量(Volume)巨大、 产生速度(Velocity)快、种类(Variety)繁多、价值密度 (Value)低。
大数据的来源与产生
来源
大数据可以来自各种不同的领域和渠道,如互联网、社交媒体、电子商务、物 联网、移动通信等。此外,企业内部的业务数据也是大数据的重要来源之一。
数据质量与可信度问题
数据质量
确保数据的准确性、完整性、一致性和真实性。
数据清洗
通过技术手段和流程,去除重复、错误或不真实 的数据。
数据验证
使用多种数据源和算法,对数据进行交叉验证, 确保数据的可信度。
数据隐私与安全问题
数据加密
使用高级加密技术,确保数据在传输和存储过程中的安全 性。
数据访问控制
实施严格的访问控制策略,限制对敏感数据的访问权限。
的数据支持。
02
实时数据处理
随着物联网、边缘计算的发展,大数据技术将更加注重实时数据处理,
以更好地支持实时分析和决策。
03
数据安全与隐私保护
随着数据泄露和隐私侵犯事件的增加,大数据技术将更加注重数据安全
和隐私保护,确保数据的安全性和可靠性。
大数据在各行业的未来应用
01
02
03
04
金融行业
大数据将在金融行业中得到更 广泛的应用,如风险评估、投 资决策、客户关系管理等。
应用阶段
近年来,大数据技术已经广泛应用于各个领域,如金融、医疗、教育、政府等。通过使用 大数据技术,企业能够更好地理解客户需求、预测市场趋势、优化业务流程,并提高效率 和决策质量。
CHAPTER 02
大数据的核心概念
数据挖掘
数据挖掘的定义

大数据培训课件pptx

数据呈现
将处理后的数据以易于理解的方式呈 现给用户,如仪表板、报告等。
Part
03
大数据工具与平台
Hadoop生态系统
Hadoop分布式文件系统(HDFS)
提供高可靠性的数据存储,支持大规模数据集。
MapReduce编程模型
用于处理和生成大数据集,通过映射和规约操作实现。
Hive数据仓库工具
提供数据汇总、查询和分析功能。
大数据的来源与类型
总结词
大数据的来源和类型
详细描述
大数据的来源主要包括互联网、物联网、社交媒体、企业数据库等。根据不同的 分类标准,大数据可以分为结构化数据、非结构化数据、时序数据、地理空间数 据等类型。
大数据的应用场景
总结词
大数据的应用场景
详细描述
大数据在各个领域都有广泛的应用,如商业智能、金融风控、医疗健康、智慧城市、科研等。通过大 数据分析,可以挖掘出海量数据中的有价值信息,为决策提供科学依据,提高企业的竞争力和创新能 力。
01
大数据可以帮助企业实时监测设备运行状态,预测设备维护需
求。
智能物流与供应链管理
02
大数据可以提高物流和供应链管理的智能化程度,优化资源配
置。
智能家居与智慧城市
03
大数据可以为智能家居和智慧城市建设提供数据支持和分析服
务。
大数据面临的挑战与解决方案
1 2
数据安全与隐私保护
加强数据安全和隐私保护技术的研究和应用,如 加密技术、匿名化处理等。
在数据丢失或损坏时,通过备份数据快速恢复数据,确保业务的连续性。
隐私保护法律法规与标准
法律法规
了解和遵守相关法律法规,如《个人信息保 护法》等,确保大数据处理合法合规。

大数据导论PPT全套完整教学课件


智慧城市建设中的大数据应用
交通拥堵治理
通过大数据分析城市交通流量、路况 等信息,为交通拥堵治理提供科学依
据。
公共安全监控
运用大数据技术对城市安全监控数据 进行实时分析,提高公共安全保障能
力。
城市规划与管理
利用大数据技术对城市规划、建设、 管理等方面进行全面分析,提高城市
管理的科学性和精细化水平。
社会信用体系建设中的大数据应用
ABCD
物联网技术体系
感知层、网络层、应用层
物联网在大数据中的应用案例
智能交通、智能家居、智能医疗等
边缘计算与雾计算在大数据中的作用
边缘计算概述
边缘计算的定义、特点、应用场景
雾计算概述
雾计算的定义、特点、与云计算的区别和联系
边缘计算与雾计算在大数据中的作用
降低数据传输延迟、提高数据处理效率、增强数据安全性
政府信息公开与透明化建设
政府数据开放共享
通过大数据平台实现政府各部门间数据共享,提高政府决策效率和 透明度。
政策效果评估
利用大数据分析技术对政策实施效果进行实时监测和评估,为政策 调整提供依据。
舆情分析与应对
运用大数据技术对社会舆论进行实时监测和分析,帮助政府及时了 解民意,提高应对突发事件的反应速度。
信用信息征集与整合
通过大数据平台实现各类信用信息的征集、 整合和共享,为信用评价提供全面、准确
的数据支持。
信用评价与监管
运用大数据技术对各类主体进行信用评价, 并根据评价结果实施分类监管,提高监管 效率。
信用联合奖惩
利用大数据技术对失信行为进行实时监测 和联合惩戒,对守信行为给予激励和奖励,
营造诚信社会氛围。
数据挖掘算法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据管理员
数据Ev科an学家
数据与业务的结合
咨询团队
大数据开发团队
业务人员 技术平台支持
PPT学习交流
20
大数据技术应用
PPT学习交流
21
Internet of Customers and Internet of Things
IoT
Trillions of computer-enabled devices which are
on disk)
PPT学习交流
One Click
15
同时处理实时与批次
实时,流数据
推荐引擎 Spark Streaming/Kafka
转换
清洗
流式处理 治理
数据库,文件,批次数据
批次处理
Spark
转换
清洗
治理
PPT学习交流
数据流 输出 HDFS 文件
16
基于用户数据理解地模型预测
•图形化数据准备挖掘 •运用Spark Mlib 等进行计算 •结果回写入Impala或者HIVE
• 部署简便 • 提高开发效率 • 降低实施风险 • 基于内存的计算 性能优异
• 全部基于唯一Hadoop集群内,统一存储统一计 算
• 减少数据传输迁移的同步问题
• 维护便捷:一套集群,维护简单 • 扩展性:无限扩展 线性提升
• 便捷的开发及报表展PP现T学习工交流具
19
大数据团队组织建设
内部团队与专业伙伴紧密合作
part of the IoT
Invisible devices and Wearable devices
Trillions of networked nodes
100kBit/sec
Low bandwidth last-mile
connection
Mostly addressed by local schemes
High-bandwidth access
深圳
新加坡
雅加达
业务1 业务2
提供基于大数据技术的预测性分析及商务智能解决方案
• 300+ 技术服务人员 • 端到端的大数据平台 • 数据集成、数据挖掘与预测性分析、高级分析 • 企业级大数据仓库、企业绩效管理、商务智能
提供全球顶尖的大数据软件产品
• 大数据平台、数据集成与准备工具、开源开发技术 • 自助式分析工具、数据可视化工具
Machine-centric
Sensing-focus
Laptops / tablets / smartphones
6+billion people 1.5 billion use net
US: 4.3 devices per adult
Billions of networked
devices
Cable: 10Mbs+ Fiber: 50-100Mbs
PPT学习交流
17
非结构化数据为存储的新型SQL
• 基于落地HDFS的文件或HBASE进行SQL建表解析 • 提供工业MPP级别查询性能 • 线性可扩展 • 标准JDBC SQL界面,直连BO,Tableau ,Qlikview,
MSTR等报表工具
PPT学习交流
18
技术方案:特点小结
• 基于开源系统的成熟商用插件方案
NET
JDBC
S Q L ODBC
前端应用 报表
、( 、 。
下游系统
、 )

外部应用
API Java, C/++, Python
PPT学习交流
14
用工具取代代码作坊
MapReduce Performance
(runs on disk)
Spark Performance
20X (runFsains-mteermory &
PPT学习交流
12
大数据平台计算框架
Y
SQL
A R
N
传统数仓功能PPT学习交流
非结构化流式挖掘分析
13
软件架构 (举例)
DATA PLATFORM(HDFS)
数据安全以及认证(Portal集成) 管理控制台 (CloudEra、Talend、KNIME)
灵活数据准备
SQL in Hadoop 数据挖掘与预测
5
主要客户
汽车制造 · 电子产品及家电 · 快消零售 · 医药与生命科学 · 航空与物流 · 高科技制造业 ·金融及其他
PPT学习交流
6
大数据软件产品
H aHd oaodpo o p


Text here


流计算
机器学习
为心
核 心 的 大的大数据产 数品
Vortex
据系
产列

SQL on Hadoop
量变到质变
大数据与大数据技术
PPT学习交流
2016.10
1
议程
• 公司简介 • 大数据与大数据技术 • 大数据技术应用
• 大数据案例分享
• 问题讨论
PPT学习交流
2
• 公司概况&发展历史
公• 主司要客简户介&大数据产品
PPT学习交流
3
公司概况
专注于分析预测与行业应用的的大数据公司
北京 青岛
上海
数据集成与准备

开源开发技术




Statistica
数据挖掘

PPT学习交流
7
HEAD竞LIN争E优势
拥有多元化的数据科学家团 队和十余年的数据分析经验。 经十余年自主开发的IP打造 数据行业领先的技术优势。
数据
创新
追踪吸收和引进行业内最先 进的技术,产品和应用经验。 世界顶尖数据技术公司在中 国地区的首选合作伙伴。
业务3
大数据SaaS应用和DaaS服务
• 基于云平台的软件即服务大数据应用 • 为企业提供发展历史
大数据技术 大数据应用 分析预测 数据挖掘 数据即服务
14年来,
我们与数俱进
高级分析 数据可视化 看板管理 商务智能2.0
数据 集市
2002
数据仓库 绩效管理
PPT学习交流
在一大批竞争行业(汽车、 制药、快消、家电、物流等) 内拥有深厚的客户基础和众 多行业成功案例。
经验
融合
追求行业业务能力和技术能力的 融合以及企业系统架构与解决业 务问题间的平衡,具有扎实的项 目实施能力。
PPT学习交流
8
大数据与大数据技术
PPT学习交流
9
Hadoop技术的发展
物联网应用需要将Hadoop变为一个高性能的分析平台 需要Hadoop不光能存储数据,更要能够处理计算数据
PPT学习交流
10
基于大数据技术的数据分 析处理
SQL 分析
时间、用户、地理位置、 事件 等标签
数据准备
辅助技术:
Kafka, HBase, Cassandra, Accumulo
挖掘预测 图形化数据分析
智能搜索
Hadoop 核心层
PPT学习交流
11
大数据技术的顾虑
• 技术更迭过快 • 开源产品成熟度 • 开发效率 • 与现有架构的关系 • 运维与安全
相关文档
最新文档