2017北京中考数学+答案解析
2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017各地中考及北京各区一、二模数学试题分类整理——平行四边形、特殊平行四边形的性质与判定

类型2:平四与特殊平四的性质与判定(1)选填 1、(广东中考10)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③;④,其中正确的是( )A .①③B .②③C .①④D .②④ 2、(朝阳一模8)如图,广场中心的菱形花坛ABCD 的周长是40米,∠A =60°,则A ,C 两点之间的距离为( )A .5米B .53米C .10米D .103米3、(通州一模8)如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为( ) A .三角形 B .菱形 C .矩形 D .正方形4、(海淀二模4)如图,ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为( )A .4B .3C .2D .1 5、(平谷一模2)把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,则点A对应的数是( ) A .1B .2C .3D .26、(河南中考9)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ′处,则点C 的对应点C ′的坐标为( )A .(√3,1)B .(2,1)C .(1,√3)D .(2,√3)7、(青岛中考7)如图,平行四边形ABCD 的对角线AC与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( ) A .23 B .23C .721 D .7212ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△A -13210B E CA D8、(德州中考11)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF .给出以下五个结论:①∠AND =∠MPC ;②CP =;③△ABM≌△NGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共圆.其中正确的个数是( )A .2B .3C . 4D .59、(苏州中考10)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F DE ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为( )A .283B .243C .323D .3238-10、(顺义二模15)如图,在正方形ABCD 和正方形AEFG 中,顶点E 在边AD 上,连接DG 交EF 于点H ,若FH =1,EH =2,则DG 的长为 . 11、(西城二模13)如图,正方形ABCD ,AC 为对角线,点E 在AC 上,且AE =AB ,则∠BED 的度数为 °.12、(怀柔一模13)如图,在ABCD 中,ED =2,BC =5,∠ABC的平分线交AD 于点E ,则AB 的长为_______________. 13、(通州一模15)如图,Rt △ABC ≌Rt △DCB ,两斜边交于点O ,如果AC =3,那么OD 的长为_____________.14、(苏州中考18)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB _______________(结果保留根号).2b b a-E DCB AOABCDH GF EDCB A D GC B AFEM NP15、(北京中考20) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证. (以上材料源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.(2)解答题(基础、中等) 16、(顺义一模19)如图,□ABCD 中,BE ⊥CD 于E ,CE =DE .求证:∠A =∠ABD .17、(通州一模19)如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE . 求证:DE =AC .18、(燕山一模19)在△ABC 中, AD =BF ,点D ,E ,F 分别是AC ,BC ,BA 延长线上的点,四边形ADEF 为平行四边形. 求证: AB =ACAB C D EEDBA C FE DAB C19、(杭州中考21)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG 。
2017北京中考数学试卷

选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, -2)B. (-3, 2)C. (3, 2)(正确答案)D. (2, 3)下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = -2x + 1与y轴的交点是:A. (1, 0)B. (0, 1)(正确答案)C. (-1, 0)D. (0, -1)下列四边形中,不一定是平行四边形的是:A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 一组对边平行且相等的梯形(正确答案)若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. -1B. 0C. 1(正确答案)D. 2下列函数中,y随x的增大而减小的是:A. y = 2xB. y = x2 (x > 0)C. y = 1/x (x > 0)D. y = -3x + 1(正确答案)已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的关系不确定下列不等式组中,解集为x > 2的是:A. { x > 1, x > 3 }B. { x > 2, x < 4 }C. { x ≥ 2, x ≠ 3 }D. { x > 1, x ≥ 2 }(正确答案,因为当x同时满足x > 1和x ≥ 2时,解集为x > 2)。
2017年中考真题 数学(安徽卷)(含解析)

D.
考点: 解一元一次不等式及其解集在数轴上的表示方法.
6.直角三角板和直尺如图放置.若 1 20 ,则 2 的度数为( )
A. 60
【答案】C 【解析】
B. 50
C. 40
D. 30
试题分析:由题意得:
a b 4 50 2 40
3=50
故选答案 C
考点:平行线的性质、外角的性质
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成
(1)根据以上数据完成下表:
平均数
中位数
方差
甲
8
8
乙
8
丙
6
8
2.2
3
(2)依据表 中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
【答案】解:(1)
平均数
中位数
方差
甲
2
乙
丙
6
[来源:Z|xx|]
【解析】
试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率.
为
.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12 22 32 n2 )
.
因此,12 22 32 n2 =
.
【解决问题】
根据以上发现,计算
12
22 1 2
32 2017 3 2017
2
的结果为
.
【答案】 2n +1 【解析】
(2n +1)×n(n +1)
2
1 n(n +1)(2n +1)
北京市东城区2017届中考数学一模试卷(含解析)

2017年北京市东城区中考数学一模试卷、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示:2016年我国就业增长超出预期.全年城镇新增就业 1 314万人,高校毕业生就业创业人数再创新高•将数据 1 314用科学记数法表示应为()A. 1.314 X 103B. 1.314 X 104C. 13.14 X 102D. 0.1314 X 1042 •实数a, b在数轴上的对应点的位置如图所示,则正确的结论是()a占、-3 -2 -1 0 1 2 3A. |a| v |b| B . a>- b C. b> a D. a>- 23. 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()D.4. 某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()9876543210A. 1.2 , 1.3 B . 1.3 , 1.3 C . 1.4 , 1.35 D. 1.4 , 1.35. 如图,AB// CD直线EF分别交AB, CD于M, N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若/ EMB=75,则/ PNM 等于()A. 15°B. 25°C. 30°D. 45°6. 下列哪个几何体,它的主视图、左视图、俯视图都相同()7. 我国传统建筑中,窗框(如图 1 )的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A. 1条B. 2条C. 3条D. 4条&如图,A, B的坐标为(2, 0) , (0, 1),若将线段AB平移至A i B i,则a+b的值为()V◎ 机A. 2B. 3C. 4D. 59.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元.这批电话手表至少有()A. 103 块B . 104 块 C. 105 块 D. 106 块10 .图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点0,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A. A^O^DB. —A^CC. A^E^DD. —A^B二、填空题(本题共18分,每小题3分)11. 分解因式:ab - 2ab+a= _____ .12. 请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是_____ .13. 若关于x的一元二次方程X2+2(k- 1)x+k2- 1=0有两个不相等的实数根,则k的取值范围是 ____ .14. 一个多边形的内角和是外角和的___ 2倍,则这个多边形的边数为.15. 北京市2012 - 2016年常住人口增量统计如图所示. 根据统计图中提供的信息,预估2017年北京市常住人口增量约为万人次,你的预估理由是求作:以AB 为直径的O O.作法:如图2, (1)分别以A , B 为圆心,大于'AB 的长为半径2作弧,两弧相交于点 C, D; (2) 作直线CD 交AB 于点O(3)以O 为圆心,OA 长为半径作圆•则O O 即为所求作的.三、解答题(本题共 72分,第17-26题,每小题5分,第27题7分,第28题7分,第29 题8分) 17.( 5 分)计算:— 2sin60 ° + (%; — n ) (二)1.览+l18. ( 5分)解不等式.1,并写出它的正整数解.19. ( 5 分)先化简,再求值:(1 -「)+ “- ?'',其中 2X 2+4X - 1=0.万人已知:如图1,线段AB.、■K+2 X+220. (5分)如图,在厶ABC中,/ B=55,/ C=3C°,分别以点A和点C为圆心,大于.AC的长为半径画弧,两弧相交于点M N,作直线MN交BC于点D,连接AD求/ BAD的度数.21. (5分)如图,在平面直角坐标系xOy中,直线y=kx+b (0)与双曲线y=相交于点A (m3), B (- 6, n),与x轴交于点C.(1)求直线y=kx+b (k丰0)的解析式;技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)助攻(次)个人总得分(分)数据38271163433注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23. (5分)如图,四边形ABCD为平行四边形,/ BAD的角平分线AF交CD于点E,交BC 的延长线于点F.(1)求证:BF=CD(2)连接BE,若BE! AF,Z BFA=60 , BE=^,求平行四边形ABCD勺周长.24. (5分)阅读下列材料:求点P的坐标(直接写出结果)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态. 共享单车的出现让更多的用户有了更好的代步选择•自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile 监测的M型与0型单车从2016年10月--2017年1月的月度用户使用情况如表所示:■MP(*)AMRBMPBon(%>■占■户人均寅IS(次)PjJ, Hi❷日♦開:MU 点)人均■日用聊m 2016 10M3JU S5M53】94 4?% 5.14537«,42 4.B15472.09%1,777.47 2011.1149.05nss%s.se S.3137S.54S375581SI 4049J05 4.«J.l?10Z1&67.60% 4 0Q23152# 46UM luff%$.40536452,14iTS 5.6$196Q072JB25J11-2712M9&10 3 IS 20173691 7312156ni?%SJ7$34570.185,71 oft ■里31B.9S12156OS197,4061_»9K493J.49(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25. (5分)如图,四边形ABCD内接于O O,对角线AC为O O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是O O的切线;(2)若DB平分/ ADC AB=a, AD DE=4 1,写出求DE长的思路.26. (5分)在课外活动中,我们要研究一种凹四边形燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.F 面是小洁的探究过程,请补充完整: (2 )通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中 的一条猜想加以证明;(3) 如图2,在燕尾四边形 ABCD 中,AB=AD=6 BC=DC=4 / BCD=120 ,求燕尾四边形 ABCD 的面积(直接写出结果)._ 227. ( 7 分)二次函数 y= (m+2 x - 2 (m+2 x - m+5 其中 m+2> 0. (1 )求该二次函数的对称轴方程; (2) 过动点C ( 0, n )作直线I 丄y 轴. ① 当直线I 与抛物线只有一个公共点时,求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保 持不变,得到一个新的图象.当 n=7时,直线I 与新的图象恰好有三个公共点,求此时 m的值;(3)若对于每一个给定的 x 的值,它所对应的函数值都不小于1,求m 的取值范围.定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图D2).O x28. (7分)在等腰△ ABC中,(1)如图1,若△ ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE连接DE则/ BDE勺度数为________ ;(2)若厶ABC为等边三角形,点D为线段BC上一动点(不与B, C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE只需要连接AE并证明△ ADC^A AEB思路2:要证明CD=BE只需要过点D作DF// AB交AC于F,证明△ ADF^A DEB思路3:要证明CD=BE只需要延长CB至点G,使得BG=CD证明△ ADC^A DEQ请参考以上思路,帮助小玉证明CD=BE (只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC AD=kDE且/ ADEN C,此时小明发现BE, BD, AC三者之间满足一定的数量关系,这个数量关系是_.(直接给出结论无须证明)29. (8分)设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r , 外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足角形的中心关联点.在平面直角坐标系xOy中,等边△ ABC的三个顶点的坐标分别为A( 0,r < d w R的点叫做等边三2) , B(- _, - 1), C (•、;.:,- 1)•(1)已知点 D (2, 2), E ( 一, 1), F (- . ,- 1).在D, E, F 中,是等边厶ABC的中心关联点的是_;(2)如图1,过点A作直线交x轴正半轴于M 使/ AMO=3° .①若线段AM上存在等边△ ABC的中心关联点P (m n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=- 1上一动点,O Q的半径为..当Q从点(-4,- 1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得O Q上所有点都是等边△ ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.2017年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示:2016年我国就业增长超出预期.全年城镇新增就业 1 314万人,高校毕业生就业创业人数再创新高•将数据 1 314用科学记数法表示应为()A. 1.314 X 103B. 1.314 X 104C. 13.14 X 102D. 0.1314 X 104【考点】1I :科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x 10n的形式,其中1W|a| v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将数据1 314用科学记数法表示应为 1.314 X 103,故选:A.【点评】此题考查科学记数法的表示方法•科学记数法的表示形式为a X 10n的形式,其中1w|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.2 •实数a, b在数轴上的对应点的位置如图所示,则正确的结论是()I S 1 ---- 1----- 3 ----- 1-^-1-----3 -2 -1 0 1 2 3A. |a| v |b| B . a>- b C. b> a D. a>- 2【考点】29:实数与数轴.【分析】根据数轴上点的位置,利用相反数,绝对值的性质判断即可.【解答】解:根据数轴上点的位置得:- 3v a v- 2, 1 v b v 2,|a| > |b| , a v - b, b> a, a v- 2,故选C【点评】此题考查了实数与数轴,弄清实数a, b在数轴上的对应点的位置是解本题的关键.3. 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出 1只球,则取出黑球的概率是( )A. _B. —C.D.—2 3 4 6【考点】X4:概率公式.【分析】根据随机事件概率大小的求法, 找准两点:①符合条件的情况数目;②全部情况的 总数.二者的比值就是其发生的概率的大小.【解答】解::•在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区 别,其中白球2只,红球6只,黑球4只, •••共有 2+6+4=12 只,•••将袋中的球搅匀,闭上眼睛随机从袋中取出 1只球,则取出黑球的概率是 .=, 故选:B.【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件 A 的概率P (A )='.n4.某健步走运动的爱好者用手机软件记录了某个月( 30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图•在每天所走的步数这组数据中,众数和中位A. 1.2 , 1.3 B • 1.3 , 1.3 C • 1.4 , 1.35 D. 1.4 , 1.3 【考点】W5众数;W4中位数.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中数分别是( )09876O间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【解答】解::•这组数据中1.4出现的次数最多,•••在每天所走的步数这组数据中,众数是 1.4 ;该班同学年龄的中位数是:(1.3+1.3 )- 2=1.3•在每天所走的步数这组数据中,众数和中位数分别是 1.4、1.3 .故选:D.【点评】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.5. 如图,AB// CD直线EF分别交AB, CD于M, N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若/ EMB=75,则/ PNM 等于()A. 15°B. 25°C. 30°D. 45°【考点】JA:平行线的性质.【分析】根据平行线的性质得到/ DNM M BME=75,由等腰直角三角形的性质得到/PND=45,即可得到结论.【解答】解:I AB//CD•••/ DNM N BME=75 ,•••/ PND=45 ,•••/ PNM M DNM-Z DNP=30 ,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.6. 下列哪个几何体,它的主视图、左视图、俯视图都相同()其对称轴有2条.A.【考点】U1:简单几何体的三视图. 【分析】根据几何体的三视图,可得答案.【解答】 解:A 主视图、左视图都是矩形,俯视图是三角形,故 A 不符合题意;B 主视图、左视图、俯视图都是圆,故B 符合题意;C 主视图、左视图是三角形,俯视图是圆,故 C 不符合题意;D 主视图俯视图都是矩形,左视图是正方形,故 D 不符合题意;故选:B.【点评】 本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.7•我国传统建筑中,窗框(如图 1 )的图案玲珑剔透、千变万化,窗框一部分如图 一个轴对称图形,其对称轴有()2,它是A. 1条B. 2条C. 3条D. 4条 【考点】P3:轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案. 【解答】解:如图所示:B .C .D.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.&如图,A, B的坐标为(2, 0) , (0, 1),若将线段AB平移至AB,则a+b的值为()V◎ 机3A. 2B. 3C. 4D. 5【考点】Q3:坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同•平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价, 以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元•这批电话手表至少有()A. 103 块B. 104 块C. 105 块D. 106 块【考点】C9: 一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550 X 60+ (x - 60)X 500 > 55000解得,x> 10419这批电话手表至少有 105块, 故选C.【点评】 本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10.图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD 组成,正方形ABCD 两条对角线交于点 O,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进 的时间为x ,与主摄像机的距离为 y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是( )于刚开始的值,故选项 B 不符号要求;于于刚开始的值,故选项 C 不符号要求;于刚开始的值,故选项 D 不符号要求;A. L O^D B . E T A T C C. A T E T D D. iA ^B【考点】E7:动点问题的函数图象.【分析】根据各个选项中的路线进行分析, 看哪条路线符号图 2的函数图象即可解答本题.【解答】解:由题意可得,当经过的路线是 A T C ID 时,从A T O,y 随x 的增大先减小后增大且图象对称,从 》D, y随x 的增大先减小后增大且函数图象对称, 故选项 A 符号要求;当经过的路线是 E T A T C 时,从E T A, 随x 的增大先减小后增大, 但后来增大的最大值小当经过的路线是 A T E T D 时,从A T E , 随x 的增大先减小后增大, 但后来增大的最大值大当经过的路线是 E T A TB 时,从E TA , y 随x 的增大先减小后增大, 但后来增大的最大值小故选A.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意, 对明确各个选项中路线应的函数图象,利用数形结合的思想解答. 二、填空题(本题共18分,每小题3分)11. 分解因式:ab2- 2ab+a= a (b - 1) 2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2- 2ab+a,2=a ( b - 2b+1),2=a ( b- 1).【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.12. 请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是y=x2+1 .【考点】H3:二次函数的性质.【分析】二次函数的解析式是y=ax2+bx+c (a、b、c为常数,a丰0),根据开口向上得出a 为正数,根据与y轴的交点坐标为(0, 1)得出c=1,写出一个符合的二次函数即可.【解答】解:答案不唯一,如:y=x2+1,故答案为:y=x2+1.【点评】本题考查了二次函数的性质,能熟记二次函数的性质内容是解此题的关键.13. 若关于x的一元二次方程x2+2 (k- 1) x+k2- 1=0有两个不相等的实数根,则k的取值范围是k v 1 .【考点】AA根的判别式.【分析】根据判别式的意义得到厶=4 ( k- 1) 2-4 (k2- 1 )> 0,然后解不等式即可.【解答】解:根据题意得厶=4 (k - 1) 2-4 ( k2- 1 )> 0,解得k v 1.故答案为k v 1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0 (0)的根与△ =b2- 4ac有如下关系:当△> 0时,方程有两个不相等的实数根;当厶=0时,方程有两个相等的实数根; 当△< 0时,方程无实数根.则内角和是720度, 720 - 180+2=6,•••这个多边形是六边形. 故答案为:6.【点评】 本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.15.北京市2012 - 2016年常住人口增量统计如图所示. 根据统计图中提供的信息, 预估2017年北京市常住人口增量约为 0〜2.4万人次,你的预估理由是北京每年人口平均增长的人数呈减小的趋势.万人【分析】根据北京市2012 - 2016年常住人口增量条形统计图,判断北京每年人口平均增长 的人数的变化趋势,据此得出结论.【解答】 解:根据北京市2012 - 2016年常住人口增量条形统计图,可得北京每年人口平均 增长的人数呈减小的趋势,故2017年北京市常住人口增量约为 0〜2.4万人次, 故答案0〜2.4,北京每年人口平均增长的人数呈减小的趋势.(答案不唯一)【点评】本题主要考查了用样本估计总体以及条形统计图的应用,解题时注意:从条形图可【考点】 L3:多边形内角与外角.【分析】 禾U 用多边形的外角和以及多边形的内角和定理即可解决问题. 【解答】解:T 多边形的外角和是 360度,多边形的内角和是外角和的2倍,614. 一个多边形的内角和是外角和的 2倍,则这个多边形的边数为以很容易看出数据的大小,便于比较.16•下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的O 0.作法:如图2,(1)分别以A, B为圆心,大于,AB的长为半径作弧,两弧相交于点C, D;(2)作直线CD交AB于点0(3)以0为圆心,0A长为半径作圆.则O 0即为所求作的.请回答:该作图的依据是垂直平分线的判定和圆的定义【考点】N3:作图一复杂作图;M5:圆周角定理.【分析】利用基本作图可判定CD垂直平分AB,即点0为AB的中点,然后可作出以已知线段AB为直径的圆.【解答】解:由作法得CD垂直平分AB即点0为AB的中点,所以O 0即为所求作. 故答案为垂直平分线的判定和圆的定义.【点评】本题考查了作图-基本作图:熟练掌握基本作图 (作一条线段等于已知线段;作个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17. 计算:心:-2sin60 ° + ( 7- n ) °-(.:)「1.【考点】2C:实数的运算;6E :零指数幕;6F :负整数指数幕;T5:特殊角的三角函数值. 【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式- 2sin60 ° +('-n ) ° -()1的值是多少即可.' 2【解答】解:- 2sin60 ° + ( I - n) °-^ ) -1 2=-_.i ■=-【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,在实数范围内仍然适用.18.解不等式. >—一-1,并写出它的正整数解.23【考点】C7: —元一次不等式的整数解; C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为 1可得.【解答】 解:去分母得:3 (x+1)> 2 (2x+2)- 6, 去括号得:3x+3 > 4x+4 - 6, 移项得:3x - 4x > 4 - 6 - 3, 合并同类项得:-x >- 5, 系数化为1得:x v 5.故不等式的正整数解有 1, 2, 3, 4这4个.【点评】本题主要考查解一元一次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.1 - )+ '-'",其中 2x 2+4x -仁°.X x+2 x+2【考点】6D:分式的化简求值.运算时,和有理数运算一样有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 另外,有理数的运算律 19.先化简,【分析】原式括号中两项通分并利用同分母分式的减法法则计算, 分后两项通分并利用同分母分式的减法法则计算得到最简结果,再利用除法法则变形, 约把已知等式变形后代入计算即可求出值. 【解答】解:原式J」A —亠 「,x x-2x+2 x x+2 x(x+2)2■/ 2x +4x - 1=0.2i••• x +2x=x (x+2)=, 2则原式=8.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.如图,在△ ABC — B=55,/ C=30,分别以点A 和点C 为圆心,大于[AC 的长为半径画弧,两弧相交于点 M N,作直线 MN 交BC 于点D,连接AD,求/ BAD 的度数.【考点】N2:作图一基本作图;KG:线段垂直平分线的性质. 【分析】 先根据线段垂直平分线的性质得出/C=Z DAC 再由三角形内角和定理求出/BAC的度数,根据/ BAD=/ BAC-/ CAD 即可得出结论.【解答】 解:•••由题意可得: MN 是AC 的垂直平分线. • AD=DC •••/ C=/ DAC •// C=30 , •••/ DAC=30 .V/ B=55°,•••/ BAC=95 .• / BAD 玄 BAC- / CAD=65 .【点评】 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.xOy 中,直线y=kx+b (k 丰0)与双曲线y="相交于点 A (m,3), B (- 6, n ),与x 轴交于点C.21.如图,在平面直角坐标系(1)求直线y=kx+b (k丰0)的解析式;【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根3据三角形的面积公式结合S MC巴S A BOC即可得出|x+4|=2,解之即可得出结论.舀【解答】解:(1 )•••点A (m3), B (- 6, n)在双曲线y=上上,x/• m=2, n=- 1,••• A (2, 3), B (- 6,- 1).将(2, 3), B (- 6,- 1)带入y=kx+b ,得:」T ,\ -l=-6k+b解得^ 2.,b=2•••直线的解析式为y=,.x+2.(2)当y==x+2=0 时,x= - 4,•••点 C (- 4, 0).设点P的坐标为(x, 0),3•S^AC= . S^BOC, A (2, 3), B (- 6,- 1),1 3 1•. X 3|x -( - 4) |= X X |0 -( - 4) | X | - 1|,即|x+4|=2 , 解得:X1 = - 6, X2=- 2.标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线 AB 的解析式;(2)根据三角形的面积公式以及 S A AC = S A BOC 找出 |x+4|=2 .22. 列方程或方程组解应用题:在某场CBA 比赛中,某位运动员的技术统计如表所示: 技术上场时 间(分 钟)出手投篮(次) 投中(次)罚球得分(分) 篮板(个) 助攻(次)个人 总得分 (分) 数据38271163433(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个. 【考点】9A:二元一次方程组的应用. 【分析】设本场比赛中该运动员投中两分球x 个,三分球y 个,根据投中次数结合总分,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.根据题意得:解得:*答:设本场比赛中该运动员投中两分球 6个,三分球5个.一次(反比例)函数图象上点的坐【解答】解:设本场比赛中该运动员投中两分球x 个,三分球y 个,【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的•••点P 的坐标为(-6, 0 )或(-2, 0)关键.23. 如图,四边形ABCD为平行四边形,/ BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD(2)连接BE,若BE! AF,/ BFA=60 , BE=^,求平行四边形ABCD的周长.【考点】L5:平行四边形的性质;KM等边三角形的判定与性质;T7:解直角三角形.【分析】(1)根据平行四边形的性质得出AB=CD AD// BC求出/ FAD=/ AFB,根据角平分线定义得出/ FAD=/ FAB求出/ AFB=/ FAB,即可得出答案;(2)求出△ ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB / ABE=60 ,在Rt△ BEF 中,/ BFA=60 , BE=N/g,解直角三角形求出EF=2 , BF=4, AB=BF=4 BC=AD=2 即可得出答案.【解答】(1)证明:•••四边形ABCD为平行四边形,••• AB=CD AD// BC,•••/ FAD=/ AFB,又••• AF平分/ BAD,•/ FAD=/ FAB.•/ AFB=/ FAB.•AB=BF,•BF=CD(2)解:•••由(1)知:AB=BF又•••/ BFA=60 ,• △ ABF为等边三角形,• AF=BF=AB / ABE=60 ,•/ BE丄AF,•••点E是AF的中点.•/在Rt△ BEF中,/ BFA=60 , BE=2讥,•EF=2, BF=4,•AB=BF=4•••四边形BACD是平行四边形,•AB=CD AD=BC AB// CD,•/ DCF玄ABC=60 =Z F,•CE=EF•△ ECF是等边三角形,•CE=EF=CF=2•BC=4- 2=2,•平行四边形ABCD的周长为2+2+4+4=12.【点评】本题考查了平行四边形的性质和判定,平行线的性质,解直角三角形,等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.24•阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态. 共享单车的出现让更多的用户有了更好的代步选择•自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile 监测的M型与0型单车从2016年10月--2017年1月的月度用户使用情况如表所示:。
中考数学一轮复习《三角形及其性质》练习题(含答案)

中考数学一轮复习《三角形及其性质》练习题(含答案)课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C【解析】∵点E为BC边的中点,CD⊥AB,DE=32,∴BE=CE=DE=32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF ,∴CD ∥AF ,∴CD AF =EDEA .当D 与A 重合时,CD 与AF 重合,取得最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA =30°,如解图,将△ABD绕点A逆时针旋转120°得到△ACD′,∴∠D′CA=∠B =30°,AD=AD′,∴∠D′CE=60°,∵∠DAE=60°,∠DAD′=120°,∴∠EAD′=60°,∴△EAD′≌∠EAD(SAS),∴ED′=ED,∴ED′+BD+EC=6,∴EC=6-DE3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16. 2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM =B ′M ,BN =B ′N ,B ′M ∥BA ,∴MC BC =B ′MAB ,即MC B ′M =BC AB =2,∴MC B ′M=2,即MC +BM BM =2+11,即BCBM =2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析6

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B. 考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20 【答案】D 【解析】试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20. 故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21C .215-D .随H 点位置的变化而变化【答案】B 【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a , 设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y , ∵∠EMG=90°, ∴∠DME+∠CMG=90°. ∵∠DME+∠DEM=90°, ∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MGDM DE EM==,即22CG x MG a x y a y ==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay∴CM+MG+CG=2444ax x aya y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .八边形 【答案】C 【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n-2)·180°=720°,解得n=6,故是六边形. 故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形 【答案】D 【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形. 若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误; 若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误; 若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则ta n B D E ∠的值是 ( )A B .14 C .13D【答案】A. 【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DFEB EF BF==,因点E 是边BC 的中点且AD=BC,所以AD AF DFEB EF BF===2,设EF=x ,可得AF=2x ,在Rt △ABE 中,由射影定理可得 ,再由AD AF DFEB EF BF ===2可得,在Rt △DEF 中,tan BDE ∠=4EF DF ==,故选A. 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A ...8【答案】A. 【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,2PK ∴=DH =1PP CD ∴=高为82S ∴==L K H故答案选A.考点:平行四边形的面积,三角函数.10.(2017江苏苏州第7题)如图,在正五边形CDAB E中,连接BE,则∠ABE的度数为A.30 B.36 C.54 D.72【答案】B.【解析】试题分析:∠ABE=3601=3652︒⨯︒故答案选B.考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.4【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题) 二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【解析】试题分析:连结AC,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG的边长分别为3和1,根据勾股定理可求得,AC=3,即可得AE=2,因P 为AE 的中点,可得,再由正方形的性质可得GM=EM=2,FG 垂直于AC ,在Rt △PGM 中,PM=2 ,由勾股定理即可求得2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB 等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③ 【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODFBDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴=<∴∠>∠,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似. 则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,22FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯=解得:1162AN OB=,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确133OD OB == ,故④错误.综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70° 【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70° 考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24 【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA=OC ,OB=OD=12BD=5,CD=AB=4,由sin ∠BDC=35,证出AC⊥CD ,OC=3,AC=2OC=6,得出▱ABCD 的面积=CD•AC=24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD=32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH=EH ,设AH=x ,则DH=EH=8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x=3,即可得AH=3,EH=5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EHBE BF EF==,即3452BF EF ==,解得BF=83 ,EF=103 ,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA+PE 的最小值是 .9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】5. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由1122BCGSBC CG BG CM =⋅=⋅,即可求得CM=125,在Rt △BCM 中,根据勾股定理求得95==,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=95,所以CN=MN-CM=3-125=35,在Rt △ECN 中,根据勾股定理求得===.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】5. 【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB,已知菱形的周长为cm 24,根据菱形的性质可得AB=6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE=33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和 三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 , ∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 .考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.【答案】(1)证明见解析.(2【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解. 本题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ,1);(2)1;(3)33(,22-或3(,22. 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A 的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB=2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B ,∴根据题意,由折叠的性质可得△A ’OP ≌△AOP.∴OA ’由OB B A ⊥',得∠A ’BO=90°.在Rt △A ’OB 中,'A B =∴点A ,1).(2) 在Rt △AOB 中,∴2AB ==∵当P 为AB 中点, ∴AP=BP=1,OP=12AB=1. ∴OP=OB=BP,∴△BOP 是等边三角形 ∴∠BOP=∠BPO=60°, ∴∠OPA=180°-∠BPO=120°. 由(1)知,△A ’OP ≌△AOP , ∴∠OPA’=∠OPA =120°,P ’A=PA=1, 又OB=PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B=OP=1.(3)33(22或3(,22. 4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由 ,从而可得 .试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =,185=,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF ,∴∠ADP=∠CDF ,∵∠BCD=90°,OE=OD ,∴OC=12 ED ,在矩形PEFD 中,PF=DE ,∴OC=12PF ,∵OP=OF=12PF ,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC +∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD ,∴△ADP ∽△CDF ,∴34C F C DA P A D==, ,∴CF=4 .5.(2017广东广州第24题)如图13,矩形ABCD的对角线AC,BD相交于点O,COD∆关于CD的对称图形为CED∆.(1)求证:四边形OCED是菱形;(2)连接AE,若6cmAB=,BC=.①求sin EAD∠的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1/cm s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【答案】(1)详见解析;(2)①2sin3EAD∠=②32AP=和Q走完全程所需时间为32s【解析】(2)①连接OE ,直线OE分别交AB于点F ,交DC于点G COD∆关于CD的对称图形为CED∆,OE DC DC AB∴⊥,OF AB EF AD∴⊥在矩形ABCD中,G为DC的中点,且O为AC的中点OG∴为CAD∆的中位线OG GE∴==同理可得:F为AB的中点,3OF AF==92AE∴===32sin sin932EAD AEFEAD AEF∠=∠∴∠=∠==②过点P作PM AB⊥交AB于点MQ∴由O运动到P所需的时间为3s由①可得,23AM AP=∴点O以1.5/cm s的速度从P到A所需的时间等于以1/cm s从M运动到A即:11OP PAOP MAt t t OP MA=+=+=+Q∴由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到1P ,即1PO AB时,所用时间最短.3t OP MA∴=+=在11Rt APM∆中,设112,3AM x AP x==222221111(3)=(2)AP AM PM x x=+∴解得:12x=32AP∴=32AP∴=和Q走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置 6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。