八年级数学实数复习经典

合集下载

八年级奥数实数知识点归纳

八年级奥数实数知识点归纳

八年级奥数实数知识点归纳实数是我们在学习数学过程中会接触到的一种数,它是包括有理数和无理数的一种数集。

下面我们来归纳一下八年级奥数实数知识点。

一、实数的分类实数可以分为有理数和无理数两种。

其中有理数包括整数、正整数、负整数、分数和小数,无理数主要包括π 和√2 等无限不循环小数。

二、实数的运算1.实数加减法实数加减法遵循交换律、结合律和分配律。

例如,a+b=b+a,a+(b+c)=(a+b)+c,a×(b+c)=a×b+a×c。

2.实数乘法实数乘法同样可以遵循交换律、结合律和分配律。

此外,为了便于计算,我们通常会将分数化为最简形式。

3.实数除法在实数除法中,我们除数不能为 0。

如果被除数和除数同时为整数或者分数,我们可以直接进行除法运算。

如果被除数或者除数为无理数,我们可以采用近似的方法进行计算。

三、实数的大小比较实数的大小比较需要根据实数的正负性和绝对值进行分析。

例如,负数的绝对值大于正数的绝对值,而正数的绝对值又大于 0。

四、实数的表示实数可以通过分数和小数两种方式进行表示。

在小数中,我们还可以使用科学计数法来表示大数。

五、实数的应用在学习数学的过程中,实数的应用非常广泛。

例如,在物理学、化学和金融等领域,实数可以用来描述物理量、计算化学反应和进行金融投资分析等。

总结通过上文的介绍和归纳,相信大家对于八年级奥数实数知识点有了更加清晰的认识和了解。

在实际学习过程中,我们需要注重实际应用,同时也需要不断进行练习和巩固,从而更好地掌握实数的概念和运用。

初二实数重要知识点总结

初二实数重要知识点总结

初二实数重要知识点总结一、有理数和无理数实数包括有理数和无理数两种类型。

有理数是可以写成整数比的数,包括正整数、负整数、零和分数四种类型。

无理数是不能写成整数比的数,它们是无限不循环小数。

有理数和无理数的概念在实数中是非常重要的,它们构成了实数的基本组成部分。

有理数和无理数在数轴上分布形成了密集的情况,它们一起构成了实数轴上的所有点。

二、数轴数轴是表示实数的一条直线,它从左到右依次表示了负无穷到正无穷的所有实数。

在数轴上,每个实数对应一点,反之亦然。

数轴的左侧是负数部分,右侧是正数部分,中间是零点。

利用数轴,我们可以直观地表示实数之间的大小关系,进行加减乘除的运算,以及表示绝对值等操作。

数轴在初二的数学学习中非常重要,它是理解实数概念的基础。

三、绝对值绝对值是一个非常重要的概念,它表示一个数到原点的距离。

对于正数来说,它的绝对值就是它自己,对于负数来说,它的绝对值是它的相反数。

绝对值可以用来表示距离、大小比较、解绝对值不等式等很多方面的概念。

在初二数学学习中,绝对值是一个非常重要的知识点,它在数轴上的表示、大小比较、解不等式等方面有着广泛的应用。

四、大小比较在实数中,大小比较是一个非常基本的操作,它包括了比较两个数的大小、比较绝对值、比较大小定理等多个方面的内容。

大小比较在初二数学中占据了非常重要的地位,它与绝对值、数轴等概念有着密切的联系。

大小比较是实数的基本性质之一,它在数学的各个分支中都有着广泛的应用。

在初二数学学习中,掌握好大小比较的概念对于后续学习是非常重要的。

五、相反数相反数是一个非常简单而重要的概念,它表示了一个数与它的相反数相加等于零。

对于正数来说,它的相反数就是负数,对于负数来说,它的相反数就是正数。

相反数在加减法运算中有着重要的作用,它能够帮助我们进行数的加减运算、解方程等多个方面的操作。

在初二数学中,相反数是一个需要重点掌握的知识点,它对于后续学习有着重要的作用。

总结一下,在初二数学学习中,实数是一个非常重要的知识点,它涉及了有理数、无理数、数轴、绝对值、大小比较、相反数等多个概念。

北师大版八年级数学上册第二章实数复习

北师大版八年级数学上册第二章实数复习

第二章:实数知识梳理一.数的开方主要知识点:【1】平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;的平方根是 (4)当x 时,x23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 【算术平方根】:(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根; (2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

第12课 实数章末复习 课件 2024-2025学年数学北师版八年级上册

第12课  实数章末复习   课件 2024-2025学年数学北师版八年级上册
C . (3-
)2=11-6
B.

C

D . 6÷
)
=-5

×

=3
【提示】选项 A 中 + 无法合并,此选项不合题意;选项 B 中

=5,此选项不合题意;选项 C 中(3-
合题意;选项 D 中6÷

×

)2=11-6 ,此选项符
=9,此选项不合题意.故选 C .
(1) 与8;
(2)

与1.

解:(1)因为65>64,所以 > =8.
(2)因为5<9,所以 <3.
所以 -1<2.所以

<1.

3. 【北师八上 P32习题 T5】一个正方体木块的体积为1 000 cm3, 现要
把它锯成8块同样大小的正方体小木块,小木块的棱长是多少?
的值.
解:因为 a=2+ ,b=2- ,
所以a2b+ab2=ab(a+b)=(2+ )(2- )·(2+ +2- )=(4-
5)×4=-1×4=-4.
17. (广州中考)已知实数a,b在数轴上对应的点的位置如图所示,
试化简 + +



-

.
解:由数轴上点的位置可知,a>b,0<a<1,b<-1.
所以a-b>0,b-1<0,a-1<0.
所以原式=|a|+|b|+|a-b|+|b-1|-|a-1|=a-b+a-b+1-b-(1
-a)=3a-3b.
忽视二次根式在分母上有意义的隐含条件
1. 使得式子

有意义的x的取值范围是(

A . x≥4

八年级数学上册实数,实数知识点总结,典型题型归纳,同步练习题

八年级数学上册实数,实数知识点总结,典型题型归纳,同步练习题

第三课时:实数1.无理数1.1.无限不循环小数叫做无理数.如:2,π,0.1225486…等.1.2.判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).1.3.常见的无理数:①含有开不尽方的数的方根的一类数,如3,35,1+2等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).2.实数的概念和分类2.1.概念:有理数与无理数统称为实数.2.2.实数按定义分类:2.3.按正负分类:3.实数与数轴3.1.实数与数轴上的点的对应关系:实数与数轴上的点是一一对应的.即每个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.3.2.在数轴上的两个点,右边的点表示的实数总比左边的点表示的实数大.4.相反数与绝对值4.1.相反数:数a 的相反数是-a .4.2.绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即0||=000,,,a a a a a a ⎧>⎪=⎨⎪-<⎩.5.实数的运算实数运算的顺序是先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.❖ 典型题型:无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可. 2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3π227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为0;2273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .❖ 典型题型:实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类. 【例2】在5π152123140412316,,,,,.,,,----中,其中 是整数, 是无理数, 是有理数.【答案】0,41-;π55121231404132216,,,;,,.,,----【例3】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|,π2-.负数集合{…};分数集合{…}; 非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5|,π2-…}; 分数集合{122-,3.2…};非负整数集合{4,0,-(-5)…}; 无理数集合{0.01001001…,π2-…}.❖ 典型题型:实数与数轴 两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小. 【例4】如图,数轴上点P 表示的数可能是A 7B .7C .–3.2D .10【答案】B【解析】7 2.6510 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为7B .【例5】和数轴上的点成一一对应关系的数是A.自然数B.有理数C.无理数D.实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D.【例6】已知实数m、n在数轴上对应点的位置如图所示,则下列判断错误的是A.m<0 B.n>0 C.n>m D.n<m【答案】D【解析】由数轴上的点,得m<0<n,所以m<0,n>0,n>m都正确,即选项A,B,C判断正确,选项D 判断错误.故选D.【例7】已知数轴上A、B两点表示的数分别为–3和5,则A、B间的距离为__________.【答案】5+3【解析】A、B两点表示的数分别为–3和5,则A、B间的距离为5–(–3)=5+3,故答案为:5+3.【例8】如图,点A、B、C在数轴上,O为原点,且BO:OC:CA=2:1:5.(1)如果点C表示的数是x,请直接写出点A、B表示的数;(2)如果点A表示的数比点C表示的数两倍还大4,求线段AB的长.【解析】(1)∵BO:OC:CA=2:1:5,点C表示的数是x,∴点A、B表示的数分别为:6x,–2x;(2)设点C表示的数是y,则点A表示的数为6y,由题意得,6y=2y+4,解得:y=1,∴点C表示的数是1,点A表示的数是6,点B表示的数是–2,∴AB=8.❖ 典型题型:相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例9】2的相反数是A .-2B .2C .D【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A .【例10】3-π的绝对值是A .3-πB .π-3C .3D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例11】A .相反数B .倒数C .绝对值D .算术平方根【答案】A【解析】A .❖ 典型题型:实数的运算1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例12】计算下列各式:(1)221.【解析】(1-(2)原式21+1=.基础练习1.在下列实数中,属于无理数的是A .0B C .3D .132.在13.140.231.131331333133331(3π-,,,,……每两个1之间依次多一个3)中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是A .B 3-.C -.D π-.5 A .3B .3-1C 3. 1D 3-.6.下列说法中,正确的个数有①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④5不是分数. A .0个 B .1个C .2个D .3个7.下列各组数中互为相反数的一组是A.-|-2|与38-B.-4与-2(4)-C.-32与|32-| D.-2与28.如图,数轴上点P表示的数可能是A6B.7-C. 3.4-D.11 932-的相反数是__________,绝对值是__________.10.计算:325262+-=__________.115__________.12313=__________7(17=__________.13.把下列各数填入相应的集合内:15416,233270.15,-7.5,-π,0,23..①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④负实数集合:{…}.14.已知:x是|-3|的相反数,y是-2的绝对值,求2x2-y2的值.15.已知a7b7的小数部分,|c7,求a-b+c的值.能力拓展16.已知5+5与5–5的小数部分分别是a、b,则(a+b)(a–b)=__________.17.6–5的整数部分是a,小数部分是b.(1)a=__________,b=__________.(2)求3a–b的值.18.如图,点A表示的数为–2,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+22–2)的值.真题实战19.(2018•鄂尔多斯)在227,–20184,π这四个数中,无理数是A.227B.–2018 C4D.π20.(2018•辽阳)在实数–2,3,0,–53中,最大的数是A.–2 B.3 C.0 D.–5 321.(201816A.14B.1±4C.12D.1±222.(2018•锦州)下列实数为无理数的是A.–5 B.72C.0 D.π23.(2018•南通)如图,数轴上的点A,B,O,C,D分别表示数–2,–1,0,1,2,则表示数2–5的点P应落在A.线段AB上B.线段BO上C.线段OC上D.线段CD上24.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上25.(2018•常州)已知a为整数,且35a<<,则a等于A.1 B.2 C.3 D.426.(2018•攀枝花)如图,实数–3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是A.点M B.点N C.点P D.点Q27.(2018•贺州)在–1、122这四个数中,最小的数是A.–1 B.1 C2D.228.(2018•宁夏)计算:|–12|14A.1 B.12C.0 D.–129.(2018•攀枝花)下列实数中,无理数是A.0 B.–2 C3D.1 730.(20184–|–3|的结果是A.–1 B.–5 C.1 D.5 31.(2018•福建)已知m43m的估算正确的A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6 32.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是A.|b|<2<|a| B.1–2a>1–2bC.–a<b<2 D.a<–2<–b33.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.|a|>4 B.c–b>0 C.ac>0 D.a+c>0 34.(2018•南京)下列无理数中,与4最接近的是A.11B.13C.17D.19 35.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是A.|a|>|b| B.|ac|=ac C.b<d D.c+d>036.(2018•益阳)计算:|–5|327+(–2)2+4÷(–23).37.(2018•大庆)求值:(–1)2018+|12|38.38.(2018•台州)计算:|–2|4+(–1)×(–3)贾老师数学同步辅导班精讲精练教材——初二上册参考答案1.B ;2.C ;3.B ;4.D ;5.A ;6.C ;7. C ;8. B ;9.22;--10.11.1213.有理数集合:{4,23,0.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; 负实数集合:{-7.5,π-…}.14.14.15.4或4-.16. 517.(1)a =3,b =32)18.(1)22+-;(2)319.D ;20.B ;21.C ;22.D ;23.B ;24.B ;25.B ;26.B ;27.A ;28.C ;29.C ;30.B ; 31.B ;32.C ;33.B ;34.C ;35.B ;36.0.372.38.3.。

八年级第二章实数知识点

八年级第二章实数知识点

八年级第二章实数知识点第一节正数和负数实数分为正数、负数和零。

当数比一定的基准数“大”或“小”时,它就成为正数或负数。

当两个正数相加时,和仍为正数;当两个负数相加时,和也为负数;当正数和负数相加时,当它们的绝对值相等时,和为0,即一个正数和与它相等的负数相加等于0。

正数、负数之间也可以进行减法和乘法运算,当一个数乘以正数时,积还是正数;当一个数乘以负数时,积为负数。

第二节绝对值绝对值是指一个实数到0的距离,即 $|a|$ 的等于 $a$ 或 $-a$ 中,距离0更近的那个数。

绝对值的计算公式如下:$|a|$ =$ \begin{cases}a , a\geq0\\ -a , a<0\end{cases}$第三节有理数和无理数所有小数,可以表示成有限小数或无限循环小数的数都是有理数,例如 $\frac{1}{2}$、 $0.75$和$-0.3$等。

无法表示成有限小数或无限循环小数的数称为无理数。

常见的无理数有 $\sqrt{2}$、$\pi$和$e$等,无理数可以用无限不循环小数表示。

第四节数轴和坐标数轴是一个直线,用于表示实数。

数轴的一个固定点称为原点$O$。

数轴上任取一个有向线段$AB$,称$A$为起点,$B$为终点。

坐标就是表示实数的一种方法。

在数轴上,从原点$O$到点$A$的有向线段上任取一个点$P$,则实数$a$表示点$P$到原点的距离。

若$a>0$,则点$P$在$O$的右侧;若$a<0$,则点$P$在$O$的左侧。

若$a=0$,则点$P$在原点O上。

第五节容斥原理容斥原理是一种常用的计数方法。

当要计算多个集合的并集时,容斥原理可以用来避免重复计算。

容斥原理的表述如下:设$A_1 , A_2, \cdots ,A_n$为$n$个集合,以及它们的并集为$S$,则有:$$ |A_1 \cup A_2 \cup \cdots \cup A_n| =\sum\limits_{i=1}^{n}{|A_i|} -\sum\limits_{1 \leq i<j \leq n}{| A_i\cap A_j|} + \sum\limits_{1 \leq i<j<k \leq n}{|A_i \cap A_j \cap A_k|} - \cdots+(-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n| $$例如,三个集合$A,B,C$的并集$A\cup B \cup C$的元素个数为:$$ |A \cup B \cup C | = |A| + |B| + |C| - | A \cap B | - | A \cap C | - | B \cap C| + |A \cap B \cap C| $$以上就是八年级第二章实数知识点的内容,通过学习这些知识点,我们可以更好地理解和应用数学知识。

八年级上册数学-第二章-知识点复习总结

八年级上册数学-第二章-知识点复习总结

第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

人教版八年级数学《实数》

人教版八年级数学《实数》

3、相反数是本身的数是 0 ;绝对值是本身的数是 非负数 ;倒数是本身的数是 ±1 。
5、a、b互为相反数,c与d互为倒数则a+1+b+cd= 2 。 6、实数a,b,c,d在数轴上的对应点如图1-1所示,则 它们从小到大的顺序是 c<d<b<a 。
c d 0 b a
图1-1-1 其中:
a b
三、想一想
a是一个实数,它的相反数为 a; 绝对值为 | a | .如果 a 0 , 那么它的
倒数为
a .
1
1、-5的绝对值是 A.5 B. 1/5 C.-1/5
( A ) D.-5 (2003北京市中考试题)
2、下列各数中,负数是 ( B ) A.-(-3) B. - 3 C.(-3)2 D.-(-3)3 (2003山东省中考试题)
8、π的整数部分为3,则它 的小数部分是 π-3 ;
9、 5 的整数部分是 2 , 则它的小数部分是 5 2 ;
10、比较大小:
(1) 3 2 (2) 13 (3) 5 2 6 (4) 2 3
3 2
3 2
二、选择题:
1、(-3)2的算术平方根是( ) (A)无意义 (B)±3 (D) 3 (C)-3
无理数集合:{ π,-,tan30°,2.1010010001…
7
}。
2、下列说法中,错误的个数是
( C)
①无理数都是无限小数;②无理数都是开方开不尽的数; ③带根号的都是无理数;④无限小数都是无理数。 A.1个; B.2个; C.3个; D.4个。
3、数轴上的点与( D )一一对应。 A.整数; B.有理数; C.无理数; D.实数。
2
b a o x 解:由图知:b<a<0,∴a-b>0,a+b<0. ∴|a-b|+ ( a b) 2 =(a-b)+|a+b| =a-b+[-(a+b)] =a-b-a-b =-2b.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二(上)数学知识点 姓名
第四章——实数
1、a 的平方根是 ,(其中a )
2、平方根的性质:
正数有 个平方根,它们 0有有 个平方根,是
负数 ( 的平方根是它本身)
3、a 的算术平方根是 ,(其中a )
( 的算术平方根是它本身)
4、公式:()
=2
a

(其中a ) =2a ,(其中a ) 5、a 的立方根是 ,(其中a )
( 的立方根是它本身) 6、公式:
()
=3
3
a ,
(其中a ) =33a ,(其中a )
例1:(1)169的平方根是_____,196的算术平方根是_____,125的立方根是_____; (2)144的平方根是_____,364的平方根是_____,64的立方根是____.
例2:化简: 0.64=____,-
12181=_____,310227
=____,()23-=____,()3
37-=____ 例3:如果一个正数的平方根是a +3与2a -15,求这个正数.
例4:已知2a -1的平方根是±3,3a +b -1的立平方根是3,求a +2b 的平方根.
例5:(1)若1x y +-()2
3y ++=0,则x -y =_____
(2)已知32232y x x =-+-+, 则x =_____,y =_____
例6:求下列各式中的x .
(1) 4x 2-3=22 (2) (4x -1)2=289 (3) 3
1903
x += (4) 3(2)7290x -+= 例7:(1) 2254- (2)33627- (3)9125- (4)0
231(2)83⎛⎫
---+ ⎪⎝⎭
例8:已知数a 在数轴上对应的位置如图所示,化简
()
2
33211a a a -+++.
C
A
B
7、 和 统称为实数.实数与 一一对应. 无理数的三种形式:(1) (2) (3) 例1:把下列各数填入相应的集合内,4
32,-39,3.1415,10,0.6,0,3125-, 3
π,49
16
,0.01001000100001……,7.303003 (1)有理数集合:{ …}(2)无理数集合:{ …} (3)正实数集合:{ …}(4)负实数集合:{ …} 例2:在数轴上找出表示
5的点.
例3:
(1)指出下列各数在哪两个相邻整数之间
① <27< ;② <3+27< ;③ <27-2< ;④ <7-27< ; (2)27的整数部分是 ,小数部分是 . (3)满足32<<-x 的整数是 (4)绝对值小于7的整数是
例4:(1)31
27
-
的倒数是_______,相反数是_______,绝对值是_______. (2)2-5的相反数是____,绝对值是______.21的相反数是_ ___,绝对值是_____.
(3)5-30 ,3-6
, =-π3 ,3
.
例5:比较下列各组数的大小:
(1)23 32 (2)82
56 (3)37 2
例6:如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )
A .2-1
B .1-2
C .2-2
D .2-2 例7:计算:
(1)()1201311612-⎛⎫
-+- ⎪⎝⎭
;(2);(3)-1
11-2+3-2+-3
0201338(3)(1)|23|π--+-+-
8、近似数
例1: 小明的体重约为51.51 kg ,若精确到10 kg ,其结果为______;
若精确到1 kg ,其结果为______; 若精确到0.1 kg ,其结果为______. 例2:近似数1.8×105精确到
例3:近似数3.0的准确数a 的取值范围是__ __ __.
相关练习选做:
1、已知下列各数:13,π,0J ,一4,(一3)2,一3-,3.14—π,其中有平方根的数的个数是 ( ) A .2个 B .3个 C .4个 D .5个
2、如果
4=,那么(a —67)3的值为 ( )
A .64
B .一27
C .一343
D .343 3、下列说法中不正确的是( ).
A.10的平方根是±10
B.-2是4的一个平方根
C.94的平方根是3
2 D.0.01的算术平方根是0.1
43
x 的取值范围是 ( )
A .x ≥
12 B .x ≤1 C .12≤x ≤1 D .x ≥1
2
或x ≤1 5、如果21a -和5a -是一个数m 的平方根,则.__________,==m a
6、已知a 是小于22a a -=-,那么a 的所有可能的取值是______.
7、已知a ,5b ,求(a+b)2008的值. 8、设m 是5的整数部分,n 是5的小数部分,试求2m -n 的值.
9、已知实数x,y ()2
2350x y --=,求x 一8y 的立方根. 10、3x -9的平方根是0,则x= ;5+2y 的立方根是-3,则y= . 11、当0<a <1时,化简1-a -2
a = . 12、写出一个3到4之间的无理数_________.
13、比较下列实数的大小:
14、已知6-a +10)8(2
-+-c b =0,则以a 、b 、c 为三边的三角形形状是 .
15、按要求取近似数:
(1)68.5(精确到10) ; (2)0.43万(精确到千位) ; (3)0.05097(精确到万分位) ; (4)367 000 000 (精确到千万位) .
16、若a 、b 为实数,且37142+-+-=b b a ,求2)(b a -。

17、求x 的值:2
(1)16490x -=; 2
(2)(1)25x -=;3
(3)(2)8x =-; 3
(4)(3)27x --=
18、下图的正方形网格,每个正方形顶点叫格点,
请在图中画一个面积为10的正方形.
19、地球七大洲的总面积约是1494800002km ,如对这个数据精确到百万可表示为_________ 20、中华人民共和国2004年国民经济和社会发展统计公报》发布的数据,2004年我国因洪涝和干旱造成的直接经济损失达97500000000元,用科学记数法表示这一数据为____________元(精确到亿)。

21、在实数-π,
1
3
,|-2
0.808008中,无理数个数为( ) (A )2 (B )3 (C )4 (D )5
22
1
3
,π,0.57.0.585 885 888 588 885…(相邻两个5
之间的8的个数逐次增加1)中,无理数的个数是 ( ) A .2 B .3 C .4 D .5。

相关文档
最新文档