结构力学——力法对称性的利用
结构力学:第七章《力法》

为此,求出基本结构的
和NP值 N1
0 22 1
-1/2
对称
2
列表计算(见书137页)后得
EA11=(3+ ) a EA△1P=-Pa
2P 2
NP 0
3 P0
1
+P/2
P 4
对称返29回2
代入典型方程,解得
3
22
X1=1
4
=0.172P
0 22 1
对称
N1
-1/2
2
各杆内力按式
X1 1 M1图
M 2图
M3图 P Pab L
作基本结构各 和MP图
1 X2 1 由于 3=0,故
13= 31= 23= 32= △3P=0
X3 1 则典型方程第三式为
MP图
代代入入典典型型方3方3X程程3(=解消0得去公因子)得
33≠0(因X3的解唯一)
Pab2
L2 M图
MAC= a
4P 11
+
a(
3P 88
)
Pa 2
内力的计算便是静定问题。
返26回
2 、力法的计算步骤
(1)确定原结构的超静定次数。 (2)选择静定的基本结构(去掉多余联系, 以多余未知力代替)。 (3)写出力法典型方程。 (4)作基本结构的各单位内力图和荷载内力 图,据此计算典型方程中的系数和自由项。 (5)解算典型方程,求出各多余未知力。 (6)按叠加法作内力图。
结论
象上述这样解除超静定结构的多余联系而得 到静定的基本结构,以多余未知力作为基本未知 量,根据基本结构应与原结构变形相同而建立的 位移条件,首先求出多余未知力,然后再由平衡 条件计算其余反力、内力的方法,称为力法。
结构力学-力法中对称性的利用

对弯矩X1,一对轴力X2和对剪力X3。X1和X2是正
对称的,X3是反对称的。
X2 X1
X3 X1 X2
EI1
对 称
轴
EI2
EI2
(a)
图8-17
X3 (b)基本结构
绘出基本结构的各单位弯矩力(图解-18),可以看出 M1图和M2图是正对称的,而M3是反对称的。
X1=1
X2=1
X3=1
M1图
M2图
M3图
+ 1P=0 22Y2+ 2P=0
当对称结构承爱一般非对称荷载时,我们还可以将荷
载分解为正,反对称的两组,将它们分别作用于结构上求 解,然后将计算叠加(图8-24)。显然,若取对称的基本 结构计算,则在正对称荷载作用下只有正对称的多余未知 力,反对称荷载作用下只有反对称的多余未知力。
P
q
P/2 q/2 P/2
P/2
+ q/2
q/2 P/2
图8-24
转到下一节
是这样的例子。为了使副系数为零,可以采取未知力分组
的方法。
AP
BP
(a)
X1
X2 X1
(b) 基本体系
(c)
(d)
X2
这就是将原有在对称们置上的两个多个未知力X1和X2分 解为新的两组未知力:一组为两个成正对称的未知力Y1, 另一驵为两个成反对称 的未知力Y2(图8-23a)。新的未 知力与原未知力之间具有如下关系:
可知副系数 13 =31=0, 23 =32 =0 于是方程可以简
化为
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
33 X 3 3P 0
结构力学 (1)

基本结构已 为何为 0 无支座位移
5. 内力计算(静定结构)
M M1 X1 M P
内力全部由多余未知力引 起
31
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
M M 1 X 1 (
3EI ) x; 0 x l 3 l
3EI 3EI ) 3 2 l l
对于支座位移
A B
1. 超静定结构支座移动、温度改变使结构产生变形,同时产生内力。
C
C
A
B
C’
FyC
静定结构 无内力和支座反力
超静定结构 有内力和支座反力
23
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
对于温度变化
A
t t
B
C
A
t t
B
C
C’
FyC
静定结构 无内力和支座反力
X2
X3
X1
a 0 11 X 1 12 X 2 13 X 3 1C 0 2 C b 0 21 X 1 22 X 2 23 X 3 0 X X X 0 3C 31 1 32 2 33 3 0
1 P 1C 0 11 X 1 12 X 2 13 X 3 P 基本结构由支座 2P X X X 0 位移引起的 21 1 22 2 23 3 22 CP X X X 0 3P i 方向位移 3 P 31 1 32 2 33 3 3 C
29
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
基本结构(II)
结构力学-力法-对称性应用-去一半计算

例8-5 试计算如图示圆环的内力。EI=常数。 P
R
o
取1/4
基本体系
P 解:这是一个三次超静定。有两个对称轴,故取四分之一结构,
则为一次超静定。
M1 =1,
Mp=-PRsin/2
X1=1
P
R
o M1图
R
PR/2
o
Mp图
PR(-2)/2
PR/
P M图
如图示,则系数和自由项为:
11=M12ds/EI=1/EI0/2Rd=R/2EI 1P=M1Mpds/EI=1/EI/2(-PRsin)rd=-PR2/2EI
转到下一节
M图(a)
1
C
K
B
a/4
A
MK图(d)
若取(d)的基本结构则有:
Ky=-1/EI1(a/2a/4)1/23pa/88=-3pa3/1408EI1 综上所述,计算超静定结构的步骤是:
(1) 解算超静定结构,求出最后内力,此为实际状态。 (2) 任选一种基本结构,加上单位力求出虚拟状态的内力。 (3) 按位移计算公式或图乘法计算所求位移。
Ky
1 EI1
1 2
a 2
a 2
5 3 Pa 6 88
1 2EI1
1 2
3 88
Pa
15 Paa 88
a 2
1 2
Pa a 4
a 2
3Pa3 1408EI1
3pa/88
B
C I1
p
15pa/88
2I1
A
于是得:
X1=- 1P/11=PR/
最后弯矩为:M=M1X1+MP=PR/-Prsin=PR(1/-sin/2)
结构力学复习要点

近几年交大结力真题分析~ (个人总结)一:平面体系的几何组成分析,经常及桁架一起出题,顺便求其内力二:已知受力,绘制弯矩剪力图三:静定结构位移计算,一般加有弹簧或者移动支座四:力法,一般都是对称的图形,让你利用对称性五:位移法,还是对称,一般都有条黑线(EI无限大),难点就在于刚体只能平动和转动,而转动的时候会引起转角……还得靠你自己去练习,掌握了一点都不难。
六:影响线,不多说了,送分题七:直接画出某超静定结构的内力图,表面上是画图,其实是多次利用力矩分配法,对刚结点的弯矩多次分配,画出简图,看似容易的题,其实是得分率最低的题,因此,大家必须多练习,熟练掌握力矩分配法!好多欲考丄建的研友都纠结及结构力学该如何复习,下而我将自己的经历写下来,希望对土建人有所帮助,尤其是跨考土建的同学。
一、谈谈跨考土建。
我是跨考上建,而且跨度较大,之前只学过材料力学。
我想考的专业要求是结构力学, 对于这个没接触过的学科頁•的有些发烘,但是我觉得这不是问题,各位应该有同样的感觉吧—本科课程都是一周就可以突击考试,上课也不听,所以自学完全可以达到预期效果,只是付岀要多一些。
二、结构力学的学习接触一门从未有印象的学科,克服心理上的障碍最重要,当时把指立书目(李廉規版)结构力学认真学了一遍,发现什么都不会,例题勉强看的僮,课后习题干脆都不会,我也想过是否继续,为了心仪的专业,就豁岀去了。
第一遍学校课本用了2个月,期间困难很大,到本校的土木学院找老师帮忙,结构力学老师居然退休了。
我靠,整个学校没有结构力学老师,我日!没办法,硬头皮自学。
6月份时发生了一个转折点,那就是选到了一遍优秀的练习册。
我当时想买一本练习册, 看中了当当上一本很厚的练习册(于玲玲版),买回来后直接研究它,课本的课后题不会就不做了。
就这样边研究练习册边在书上查找概念就行消化,最痛苦的两个月结束了,我把练习册做了一遍,好多问题没有明白,一本好的练习册可以肖省你的时间,为你归纳好了概念等,如力法,它将各种题型分布展开,里而都是各大名校的真题,做到淸华、同济、哈工大的真题确实有难度。
第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11
144 EI
,
1 p
1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向
13X 3 23X 3
1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0
结构力学第五章力法

12kN/m
EI
2
2 M1 基本体系
24
2EI
2EI
4m
MP
6 216
6
d11 =
D1 P =
1 6 6 2 6 1 1 2 2 2 2 224 2 = 2 EI 2 3 EI 2 EI 2 3 3EI
M
1 6 216 3 6 2 EI 3 4 1 2 24 3 2 984 1 = 4 EI EI 2 EI 3
(A)
由上述,力法计算步骤可归纳如下: 1)确定超静定次数,选取力法基本体系; 2)按照位移条件,列出力法典型方程; 3)画单位弯矩图、荷载弯矩图,用(A)式求系数和自由项; 4)解方程,求多余未知力; 5)叠加最后弯矩图。 M = M i X i M P
q=23kN/m
q=23kN/m
6m
=
撤除约束时需要注意的几个问题: (1)同一结构可用不同的方式撤除多余约束但其超静定次数相同。
(2)撤除一个支座约束用一个多余未知力代替, 撤除一个内部约束用一对作用力和反作用力代替。 (3)内外多余约束都要撤除。
(4)不要把原结构撤成几何可变或几何瞬变体系
4 5 1 2 外部一次,内部六次 撤除支杆1后体系成为瞬变 不能作为多余约束的是杆 1、2、 5 共七次超静定 1 3
力法基本体系的合理选择
1 1 2 1 1 1 21 aa qa2 21= 2a = d a = qa3 d12P = d 21 = D1d 11力法基本体系有多种选择,但必须是几何不变体系。同时应 == = ,22 D 2 P = 0 EI 3 3 624 EI EI EI2 28 32 3EI EI 尽量使较多的副系数、自由项为零或便于计算。所选基本体系应 含较多的基本部分,使Mi,MP尽可能分布局部。 qa 2 用力法解图示连续梁, 2kN/m ↓↓↓↓↓↓↓↓ 15 各跨EI=常数,跨度为a. 2kN/m ↓↓↓↓↓↓↓↓ 2kN/m 2a X1 qa 2 X2 d 11 = = d 22 ↓↓↓↓↓↓↓↓ 3EI 60 a d 12 = d 21 = X1=1 M1 6 EI qa3 D1P = , D2P = 0 1 24 EI X2=1 M 2
结构力学重点大全

5.求 ij iP 实质上是计算静定结构的位移,对梁和刚架可采用“图乘法”计算。
图乘法计算公式
EyI0
基线同侧图乘为正,反之为负。
2
主系数 ii
Mi ds EI
M i 图自乘,恒为正。
副系数 ij
Mi Mj ds EI
自由项 iP
Mi MP ds EI
M i 图与 M j 图图乘,有正、负、零的可能。
2.5
X1=1
C
45 M0
3m 2.5m 2.5m 3m
3m 2.5m 简化的半结构
基本结构
M1 图
MP 图
解: 1.利用对称结构在反对称荷载作用下取左半跨结构进行计算,
取基本结构,列力法方程
11 X1 1P0
2. 绘 M1 MP 图,求系数和自由项,
A
1 1E 1(2 .I 5 3 2 .5 3 2 .5 2 3 .5 2 .5 ) 1 E .4 1I 6
•⑷ 在超静定结构计算中,一部份杆件考虑弯曲变形,另一部份杆件考虑轴向变形, 则此结构为 ( D )。
A. 梁 B. 桁架 C.横梁刚度为无限大的排架 D. 组合结构
组合结构举例: 6
14 53 2
杆1、杆2、杆3、杆4、杆5 均为只有轴力的二力杆,仅 考虑轴向变形。
杆6为梁式杆件,应主 要考虑弯曲变形。
20.45
B
D
24.55
24.55 20.45
1pE 1(I2.5 3 4 5 3)1E 1 .5 I2
3.求X1
x1
1P
11
9.82
C
M 图(kN.m)
4.绘 M 图。 MM1x1MP M B D 2 .5 9 .8 2 2 .5 4 k5 N M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反对称荷载作用下:
X3 X3 X2 FP FP FP X1 X1 X2 FP
Δ2 P 0 X2 0
Δ3P 0
X3 0
X2 1 X1 1
X3 1
FP
FP
对称结构在反 对称荷载作用 下,对称未知 量为零。其结 构的内力和变 形是反对称的。
三. 取半个结构计算
要使半结构能等效代替原结构的受力 和变形状态。关键在于被截开处应按原结 构上的位移条件及相应的静力条件设置相 应合适的支撑。
q
【解】 1 基本体系
2a
2 力法方程
半边结构
11 X 1 1P 0
3 求系数和自由项,解方程 a3 qa 4 11 1P 3EI 8EI
3qa X1 8
a
a
X1=1
qa2 8
M 1图
qa2/2
M图
M P图
4 M M1 X 1 M P
例:用力法计算图示结构。
1/4结构 ql2/8
M P图
4 M M1 X 1 M P
q
ql2/12 ql
ql2/12
q
q
ql2/12 l M图
ql2/12
合理利用对称性的关键在于:
保证计算模型的受力特性、变形情况与 原结构完全一致。
第五章 力 法
5.8 对称性的利用
1. 结构对称性的概念
(1)对称结构:几何尺寸、支承情况、刚度分布对称的结构。
几何对称 支承对称 刚度对称
(2)荷载的对称性
正对称荷载:作用在对称结构对称轴两侧,大小相等,方向和 作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点 对称,方向反对称的荷载。
A
内力
A
位移
A
正对称
反对称
反对称
2. 对称性利用之选择对称基本结构
X2 2FP 2FP
X3 X3 X2
X1 X1
选取对称基本结构的正对称基本未知量和反对称 基本未知量
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 3P 31 1 32 2 33 3
FP
FP 2
EI
FP 4
a
EI EI
EI
EI
EI
2 EI
2 EI
2 EI EI
2 EI
EI
EI
EI
a
a
a
a
6 56
FP 8
3 56
4 56 4 56
3 56
+
3 56
4 56 4 56
3 56
=
8 56
FP
a
EI EI
EI
EI
EI
2 EI
2 EI
2 EI EI
a
3 56
a
6 56
a
6 56
a
3 56
3. 对称性利用之荷载分组
FP FP
2FP
=
FP
+
FP
只要结构是对称的, 对称性的利用就成为 可能!
正对称荷载作用下:
X3 X3 X2 FP FP FP X1 X1 X2
Δ1P 0
FP
X1 0
X2 1 X1 1
X3 1
FP
FP
对称结构在正 对称荷载作用 下,反对称未 知量为零。其 结构的内力和 变形是对称的。
P P
P
P
对称荷载
反对称荷载
(3)对称结构在正对称、反对称荷载作用下的内力和变形
q P P
基本受力特点: 正对称荷载作用下,结构的内力和变形都是正对称的; 反对称荷载作用下,结构的内力和变形都是反对称的。
(4)特殊截面 —— 对称轴通过的截面
A
FQ M
FN
M、FN称为正对称内力
FQ称为反对称内力
3 56
4 56
8 56
8 56
8 56
4 56
M图(FPa)
例:用力法计算图示结构。EI=常数。
q X1 基本体系 q ql
1
【解】 1 基本体系 2 力法方程
11 X 1 1P 0
q
l
M 1图
3 求系数,解方程
11 l EI
ql2/8
1 P ql 3 12 EI
X 1 ql 2 12
1.奇数跨对称刚架
① 正对称荷载作用下的半刚架
q
C
q
C
q
C
q
C
②反对称荷载作用下的半刚架
P
C
P
P
C
P
C
P
P
C
2.偶数跨对称刚架
① 正对称荷载作用下的半刚架
P
C
P
P
C
P
C
P
P
C
P
C
② 反对称荷载作用下的半刚架
FP
FP
FP
FP
FP
A EI
EI 2
EI 2
EI 2
例:用力法计算图示结构。EI=常数。
X3 1
X2 1 X1 1
M1
1 X 1 Δ1P 0 22 X 2 23 X 3 Δ2 P 0 X X Δ 0 33 3 3P 32 2
13 31 0
基本方程分为两组: 一组只含反对称未知量 一组只含正对称未知量