结构力学——力法对称性的利用

合集下载

结构力学-力法中对称性的利用

结构力学-力法中对称性的利用

对弯矩X1,一对轴力X2和对剪力X3。X1和X2是正
对称的,X3是反对称的。
X2 X1
X3 X1 X2
EI1
对 称

EI2
EI2
(a)
图8-17
X3 (b)基本结构
绘出基本结构的各单位弯矩力(图解-18),可以看出 M1图和M2图是正对称的,而M3是反对称的。
X1=1
X2=1
X3=1
M1图
M2图
M3图
+ 1P=0 22Y2+ 2P=0
当对称结构承爱一般非对称荷载时,我们还可以将荷
载分解为正,反对称的两组,将它们分别作用于结构上求 解,然后将计算叠加(图8-24)。显然,若取对称的基本 结构计算,则在正对称荷载作用下只有正对称的多余未知 力,反对称荷载作用下只有反对称的多余未知力。
P
q
P/2 q/2 P/2
P/2
+ q/2
q/2 P/2
图8-24
转到下一节
是这样的例子。为了使副系数为零,可以采取未知力分组
的方法。
AP
BP
(a)
X1
X2 X1
(b) 基本体系
(c)
(d)
X2
这就是将原有在对称们置上的两个多个未知力X1和X2分 解为新的两组未知力:一组为两个成正对称的未知力Y1, 另一驵为两个成反对称 的未知力Y2(图8-23a)。新的未 知力与原未知力之间具有如下关系:
可知副系数 13 =31=0, 23 =32 =0 于是方程可以简
化为
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
33 X 3 3P 0

结构力学 (1)

结构力学 (1)
X1 3EI 3 l
基本结构已 为何为 0 无支座位移
5. 内力计算(静定结构)
M M1 X1 M P
内力全部由多余未知力引 起
31
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
M M 1 X 1 (
3EI ) x; 0 x l 3 l
3EI 3EI ) 3 2 l l
对于支座位移
A B

1. 超静定结构支座移动、温度改变使结构产生变形,同时产生内力。
C

C
A
B
C’
FyC
静定结构 无内力和支座反力
超静定结构 有内力和支座反力
23
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
对于温度变化
A
t t
B
C
A
t t
B
C
C’
FyC
静定结构 无内力和支座反力
X2
X3
X1
a 0 11 X 1 12 X 2 13 X 3 1C 0 2 C b 0 21 X 1 22 X 2 23 X 3 0 X X X 0 3C 31 1 32 2 33 3 0
1 P 1C 0 11 X 1 12 X 2 13 X 3 P 基本结构由支座 2P X X X 0 位移引起的 21 1 22 2 23 3 22 CP X X X 0 3P i 方向位移 3 P 31 1 32 2 33 3 3 C
29
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
基本结构(II)

结构力学-力法-对称性应用-去一半计算

结构力学-力法-对称性应用-去一半计算

例8-5 试计算如图示圆环的内力。EI=常数。 P
R
o
取1/4
基本体系
P 解:这是一个三次超静定。有两个对称轴,故取四分之一结构,
则为一次超静定。
M1 =1,
Mp=-PRsin/2
X1=1
P
R
o M1图
R
PR/2
o
Mp图
PR(-2)/2
PR/
P M图
如图示,则系数和自由项为:
11=M12ds/EI=1/EI0/2Rd=R/2EI 1P=M1Mpds/EI=1/EI/2(-PRsin)rd=-PR2/2EI
转到下一节
M图(a)
1
C
K
B
a/4
A
MK图(d)
若取(d)的基本结构则有:
Ky=-1/EI1(a/2a/4)1/23pa/88=-3pa3/1408EI1 综上所述,计算超静定结构的步骤是:
(1) 解算超静定结构,求出最后内力,此为实际状态。 (2) 任选一种基本结构,加上单位力求出虚拟状态的内力。 (3) 按位移计算公式或图乘法计算所求位移。
Ky

1 EI1
1 2
a 2
a 2
5 3 Pa 6 88
1 2EI1
1 2


3 88
Pa
15 Paa 88
a 2
1 2
Pa a 4
a 2
3Pa3 1408EI1
3pa/88
B
C I1
p
15pa/88
2I1
A
于是得:
X1=- 1P/11=PR/
最后弯矩为:M=M1X1+MP=PR/-Prsin=PR(1/-sin/2)

结构力学力法

结构力学力法

超静定次数 = 基本未知力的个数 = 多余约束数 = 变成基本结构所需解除的约束数 总次数也可由计算自由度得到。
(3 次)

(1 次)
(6 次)
(4 次)
力法的基本原理
有一个多于约束 的超静定结构, 有四个反力,只 有三个方程。
只要满足
1 1
FAy FP1 FP2 FBy
1
M A FPi a i 1 FBy l
M M1 X1 M 2 X 2 M 3 X 3
支座移动引起的内力与各杆的绝对刚度 EI 有关 吗? 这时结构中的位移以及位移条件的校核公式如何? M k Mds M k Mds k k FRi ci EI EI
h l 11 22 EI 3 EI l 12 6 EI 3 2 2h hl 33 3 EI EI 2 h hl 13 23 2 EI 2 EI
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
ij
图乘来求
(5) 求基本结构的广义荷载位移
iP
注意: 用图乘法求 ij 和 iP 时应注意图乘条件 (6) 解方程求未知力 X i
4 FP X 1 11 X 2 3 FP 88
FP
FPa
FP (×Fpa)
由叠加原理求得
M M1 X1 M2 X 2 M P
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
解法 2: FP 原 结 构

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11

144 EI
,
1 p

1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向

13X 3 23X 3

1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】

第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。

表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。

结构力学——力法

结构力学——力法

几点注意:
① 一个无铰闭合框有三个多余约束,其超静定次数等于三。 ② 结构的超静定次数是确定不变的,但去掉多余约束的方式 是多种多样的。 ③ 在确定超静定次数时,要将内外多余约束全部去掉。
④ 在支座解除一个约束,用一个相应的约束反力来代替,在
结构内部解除约束,用作用力和反作用力一对力来代替。 ⑤ 只能去掉多余约束,不能去掉必要的约束,不能将原结构 变成瞬变体系或可变体系。
A
D
A
D
A
D

X1

二、关于基本方程的建立
先讨论两次超静定结构。
q C
FP A
12 22
q
B
C
FP A
B
X1
X2 FP
C
11 X1 B 21
A
基本体系之一
q C FP A B
1P 2P
q C X1 B X2
FP
C A
B X2
FP A
变形条件
Δ1 0 Δ2 0
基本体系之二
二、关于基本方程的建立
q
A l B l C A B
q
X1 X1
q
C
a)一次超静定结构 解:(1)确定基本未知量数目
b)基本体系
此连续梁外部具有一个多余约束,即n=1 (2)选择力法基本体系 (3)建立力法基本方程
Δ d11 X 1 Δ1P 0
(4)求系数d11和自由项1P 在基本结构(静定的简支梁)上分别作 M 1 图和MP图
q
EI
ql 2 8
9 q l2 128
q
EI
ql 2 2
比较可知,采取超静定结构降低了梁的最大 弯矩,提高了梁的强度。

结构力学——5力法

结构力学——5力法

系数行列式之值>0 主系数 ii 0
0 副系数 ij 0 0
5)最后内力
M M 1 X 1 M 2 X 2 .......... ... M n X n M
返回
P
作业: 第106页 5-1(a)、(b)(c)、 (f)、 (g)、(i)、 (j) 5-2 (a)、(b)(c)
静力特性
非荷载外因的影响
内力与刚度的关系
无关
返回
6. 力法解超静定结构的思路 首先以一个简单的例子,说明力法的思路和基本概 念。讨论如何在计算静定结构的基础上,进一步寻求计 算超静定结构的方法。 1判断超静定次数: n=1 2. 选择基本体系(结构) 3写出变形(位移)条件:
(a)
EI 原体系(原结构)
返回
(1)对称结构作用对 称荷载
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
MP图是正对称的,故△3P=0。 X3=0 。 则
返回
(1)力法方程的物理意义为: 基本结构在全部多余 未知力和荷载共同作用下,基本结构沿多余未知力方向 上的位移,应与原结构相应的位移相等。 (2)系数及其物理意义: 下标相同的系数 i i 称为主系数(主位移),它是单位 单独作用时所引起的沿其自身方向上 多余未知力 的位移,其值恒为正。 系数 i j(i≠j)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移, 其值可能为正、为负或为零。据位移互等定理,有 i j= j i △i P称为常数项(自由项)它是荷载单独作用时所引起 的沿Xi方向的位移。其值可能为正、为负或为零。 返回 上述方程的组成具有规律性,故称为力法典型方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合理利用对称性的关键在于:
保证计算模型的受力特性、变形情况与 原结构完全一致。
2FP

+
只要结构是对称的,对称性
FP
FP
的利用就成为可能!
正对称荷载作用下:
X3 X3
X2
X2
FP
FP
FP
X1 X1
FP
Δ1P 0
X1 0
X1 1 X3 1
X2 1
FP
对称结构在正 对称荷载作用 下,反对称未 知量为零。其 FP 结构的内力和 变形是对称的 。
反对称荷载作用下:
X3 X3
a a aa
FP 2
FP 4
EI 2EI EI
EI
EI
FP 8
3
3
3
3
6 56
56 4
+ = 56
56
56
4
4
4
8
56
56
56
56
56
FP
EI
EI EI EI
a EI
2EI 2EI 2EI EI
a
a aa
3
6
6
3
3
56
56
56
56
56
4
8
8
8
4
56
56
56
56
56
M图(FPa)
例:用力法计算图示结构。EI=常数。
q
【解】
1 基本体系
2a
a
a
qa2 8
M图
半边结构
X1=1
M

1
qa2/2
M

P
2 力法方程
11 X1 1P 0
3 求系数和自由项,解方程
11
a3 3EI
1P
qa4 8EI
X1
3qa 8
4 M M1X1 MP
例:用力法计算图示结构。
FP
EI
EI EI EI
a EI
2EI 2EI 2EI EI
A
A
反对称
反对称
2. 对称性利用之选择对称基本结构
X3 X3
X2
X2
2FP
2FP
X1 X1
选取对称基本结构的正对称基本未知量和反对称 基本未知量
11 X1 12 X 2 13 X 3 1P 0 21 X1 22 X 2 23 X 3 2P 0 31 X1 32 X 2 33 X 3 3P 0
第五章 力称性的概念
(1)对称结构:几何尺寸、支承情况、刚度分布对称的结构。
几何对称 支承对称 刚度对称
(2)荷载的对称性
正对称荷载:作用在对称结构对称轴两侧,大小相等,方向和 作用点对称的荷载。
反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点 对称,方向反对称的荷载。
X2
X2
Δ2P 0 Δ3P 0
FP
FP
FP
X1 X1
FP
X2 0 X3 0
X1 1 X3 1
X2 1
FP
对称结构在反 对称荷载作用 下,对称未知 量为零。其结 FP 构的内力和变 形是反对称的 。
三. 取半个结构计算
要使半结构能等效代替原结构的受力 和变形状态。关键在于被截开处应按原结构 上的位移条件及相应的静力条件设置相应合 适的支撑。
q
q
ql
q l
1/4结构
X1 基本体系
1
M

1
ql2/8
ql2/8
M

P
【解】 1 基本体系
2 力法方程
11X1 1P 0
3 求系数,解方程
11 l EI
1P ql 3 12EI
X1 ql 2 12
4 M M1X1 MP
q
q
ql
q l
ql2/12
ql2/12
ql2/12 M图
ql2/12
X1 1
M1
X2 1
M2
X3 1
M3
12 21 0
13 31 0
11 X1 Δ1P 0 22 X 2 23 X 3 Δ2P 0 32 X 2 33 X 3 Δ3P 0
基本方程分为两组:
一组只含反对称未知量 一组只含正对称未知量
3. 对称性利用之荷载分组
FP
FP
P
P
对称荷载
P
P
反对称荷载
(3)对称结构在正对称、反对称荷载作用下的内力和变形
q
P
P
基本受力特点: 正对称荷载作用下,结构的内力和变形都是正对称的; 反对称荷载作用下,结构的内力和变形都是反对称的。
(4)特殊截面 —— 对称轴通过的截面
A
内力
位移
A
正对称
FQ FN M
M、FN称为正对称内力 FQ称为反对称内力
1.奇数跨对称刚架
① 正对称荷载作用下的半刚架
q
q
C
C
q
q
C C
②反对称荷载作用下的半刚架
P
C
P
P
C
P
C
P
P
C
2.偶数跨对称刚架
① 正对称荷载作用下的半刚架
P
P
C
P
C
P
P
C
P
P
C
C
② 反对称荷载作用下的半刚架
FP
FP
FP
FP
FP
A EI
EI EI
EI
22
2
例:用力法计算图示结构。EI=常数。
相关文档
最新文档