金属间化合物的晶体结构

合集下载

1-3-1 金属的晶体结构

1-3-1 金属的晶体结构

2
一、典型金属的晶体结构
最常见的金属晶体结构有三种:面心立方结 构、体心立方结构和密排六方结构。 本节主要讨论原子的排列方式、晶胞内原子 数、点阵常数、原子半径、原子配位数、致密度 和原子间隙大小。 下面分别加以讨论:
3
1、原子排列方式
1) 球体的紧密堆积
① 单一质点的等大球体最紧密堆积,如纯金属晶体。 ② 几种质点的不等大球体的紧密堆积,如离子晶体。
16
2) 密排六方结构
属于六方紧密堆积,以ABABAB…的方式堆积, 从结构中可分析出六方晶胞。 具有这种结构的金属:Be、Mg、Zn、Cd、 -Ti和-Co。
3) 体心立方结构
属于体心立方紧密堆积,原子是以体心立方空间 点阵的形式排列,可分析出体心立方晶胞。
具有这种结构的金属:V、-Fe、Nb、Mo、 Cr和W。
3、晶胞中的原子数
1) 简单立方结构 (SC / Simple cubic)
1 8 1 8
20
2) 体心立方结构
(bcc / Body-centered cubic)
3) 面心立方结构
(fcc / Face-centered cubic)
1 8 1 2 8
1 1 8 6 4 8 2
第三层堆积的特征: 有两种完全不同的堆积方式。 a. 堆积在单层空隙位置 从垂直图面的方向观察,第三层球的位置正好与 第一层相重复。如果继续堆第四层,其又与第二 层重复,第五层与第三层重复,如此继续下去, 这种紧密堆积方式用ABABAB……的记号表示。
六方紧密堆积hcp (ABAB…)
对应ABAB……紧密堆积方式,其球体
r(Ag)=0.288nm, r(Al)=0.286nm,但都不能形成连续 (无限)固溶体,为什么? 3、(1)叙述形成固溶体的影响因素; (2)形成连续固溶体的充分必要条件是什么?

l12相 高温

l12相 高温

l12相高温
标题:L12相的高温特性与应用
L12相,又称面心立方(FCC)结构,是一种重要的金属间化合物相结构,常见于高温合金中。

由于其独特的晶体结构和优异的高温性能,L12相在高温环境下具有广泛的应用前景。

在高温条件下,L12相表现出极高的热稳定性和抗氧化性。

这主要得益于其紧密的原子排列和强大的原子间结合力。

在高温下,L12相能够保持较高的硬度和强度,同时具有较好的抗蠕变性能,这使得它在高温环境中具有出色的承载能力。

此外,L12相还具有良好的热导率和电导率。

这使得在高温下,它能够有效地传递热量和电流,从而确保设备的稳定运行。

同时,L12相还具有较低的热膨胀系数,这意味着在高温下,它的尺寸变化较小,有利于保持设备的精度和稳定性。

在实际应用中,L12相常用于制造高温合金,如航空发动机的涡轮叶片和燃烧室等部件。

这些部件需要在极高的温度下长时间运行,而L12相的高温稳定性和抗氧化性使其成为理想的材料选择。

此外,L12相还用于制造高温电阻材料、热电偶材料等,以满足高温环境下的测量和控制需求。

总之,L12相凭借其独特的高温特性和广泛的应用领域,在高温合金和其他高温材料领域发挥着重要作用。

随着科技的不断进步和高温环境的日益严酷,L12相的应用前
景将更加广阔。

金属间化合物的特点

金属间化合物的特点

金属间化合物的特点
金属间化合物的特点
1. 高熔点和强韧性
•金属间化合物通常具有较高的熔点,因为其中的金属元素具有较强的金属键结合力。

•由于金属间化合物结构中有金属-金属键的存在,使其具有优异的机械性能和强韧性。

2. 良好的电导性能
•金属间化合物中金属原子之间通过共价键和金属键的结合,形成电子云,使其具有良好的电导性能。

•这种电导性能使金属间化合物在电子学和导电材料领域具有重要应用。

3. 多样的晶体结构
•金属间化合物晶体结构多样,可以存在各种不同的晶体结构类型,如立方型、六方型、四方型等。

•这些不同的晶体结构赋予了金属间化合物独特的物理和化学性质。

4. 显著的金属元素特性
•金属间化合物中的金属元素展现出其特有的性质,如电子输运、磁性、光学性质等。

•这些特性可以广泛应用于电池材料、催化剂、磁性材料等领域。

5. 高度的化学反应活性
•金属间化合物常常表现出较高的化学反应活性,可以与其他物质发生络合反应、氧化反应等。

•这种活性使得金属间化合物在催化、电化学以及材料制备等方面具有重要应用前景。

总结:金属间化合物在物理、化学以及材料学等众多领域中具有独特的特点和潜在应用。

其高熔点和强韧性、良好的电导性能、多样的晶体结构、显著的金属元素特性以及高度的化学反应活性,使其成为研究和应用的热点领域之一。

六方钙钛矿结构

六方钙钛矿结构

六方钙钛矿结构
六方钙钛矿结构是一种特殊的晶体结构,由钙、钛和其他元素及其官能团在结构上形成的共生关系。

这种结构由六方对称性堆积晶体点状结构组成,其真实结构是由金属间化合物覆盖在晶体表面形成的六方空分子的结构。

钙原子位于晶体表面上方,钛原子位于晶体表面下方,氧原子填充六方体晶体表面中间。

六方钙钛矿结构具有良好的机械性能和电学性能,在几乎所有材料工程领域都有应用。

与多晶硅和其它传统单晶材料相比,由钙钛矿结构构成的晶体表面非常光滑,可以有效地减少高强度的晶体晶粒缺陷,从而改善材料的力学性能和抗热性能。

此外,钙钛矿结构还具有较高的原子密度,可以抑制空间等位原子的迁移,从而使材料的韧性增强并导致抗裂破能力的提高。

六方钙钛矿结构也具有良好的耐腐蚀性和气环境耐受性,因此在高温、高压及危险环境中,可以使材料具有较长的使用寿命和稳定性。

此外,它还具有良好的电学性能和热电性能,可以使电子加热晶体表面和产生脉冲延迟用于无线电电力系统。

不过,六方钙钛矿结构也存在一些缺点,例如材料的裂变容易性,因为他们的结构中有非常细小的有序转换区,相对容易被外界的外力扰乱,从而表现
出裂变的倾向。

但这个缺陷在工程实践中可以通过控制晶体晶粒结构装置和尺寸来解决。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询材料学专家。

金属间化合物的定义

金属间化合物的定义

金属间化合物是指由两个或两个以上的金属元素构成的化合物,它们的原子之间通过共享电子对而形成了化学键。

这些化合物通常具有不同于其组成金属的物理和化学性质。

金属间化合物可以根据它们的晶体结构进行分类,其中一些常见的类型包括:
1. 正常价化合物:这类化合物的形成是由于金属原子之间的电子转
移,以达到稳定的电子结构。

例如,在FeCl2 中,铁原子失去两个电子,而氯原子获得两个电子,形成了具有离子键的化合物。

2. 电子化合物:这类化合物的形成是由于金属原子之间的共享电子
对,以形成稳定的电子结构。

例如,在Al2Cu 中,铝原子和铜原子共享电子对,形成了具有共价键的化合物。

3. 间隙化合物:这类化合物是由较小的金属原子填入较大金属原子
的晶格间隙中形成的。

例如,在Fe3C 中,碳原子填入了铁原子的晶格间隙中,形成了具有复杂结构的化合物。

金属间化合物在材料科学中具有重要的应用,例如在合金设计、催化剂、电子材料和磁性材料等领域。

它们的特殊性质可以通过改变组成元素、晶体结构和制备方法等来调控,以满足不同的应用需求。

思考题及参考答案

思考题及参考答案

思考题及参考答案(从善海整理)第一章金属的晶体结构与结晶1.解释下列名词:点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。

答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。

如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。

如晶界和亚晶界。

亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。

亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。

滑移部分与未滑移部分的交界线即为位错线。

如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂。

2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。

机械工程材料课后习题答案_(王忠)

机械工程材料课后习题答案_(王忠)

思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。

答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。

如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。

如晶界和亚晶界。

亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。

亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。

滑移部分与未滑移部分的交界线即为位错线。

如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂。

2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。

1.8 金属间化合物

1.8 金属间化合物

刘志勇 14949732@
9
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
3.原子尺寸因素化合物
• 当两种元素形成金属间化合物时,如果它们之间的原子半 径差别很大时,便形成原子尺寸因素化合物 1.填隙型(填隙化合物) 在过渡族金属与H、B、C、N等原子半径甚小的非金属元素 之间形成,rX、rM:非金属(X)与金属(M)的原子半径 1)简单填隙相:rX/rM<0.59 2)复杂填隙相:rX/rM>0.59 2.拓扑密排相(TCP相)
正常价化合物
• 正常价化合物的结构类型有NaCl型、CaF2型、立方 ZnS型(闪锌矿结构)、六方ZnS型(硫锌矿结构)
几种正常价化合物的晶胞 (a)NaCl型;(b)CaF2型;(c)闪锌矿结构;(d)硫锌矿结构
5/5/2014
刘志勇 14949732@
4
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
5/5/2014
刘志勇 14949732@
7
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2.电子化合物
电子化合物中电子浓度与晶体结构的关系 电子浓度=21/14 电 子 浓 度 =21/13 体心立方结 复 杂 立 方 结 密 排 六 方 复 杂 六 方 结 构(β 相) 构 ( β -Mn 结 构 ( ξ 构 结构, μ 相) 相) (γ 黄铜结 构) CuZn Cu5Zn8 Cu3Ga(中、 Cu3Ga (低 Cu9Ga4 高温) 温) Cu5Sn Cu31Sn8 Cu5Si Cu5Si Cu5Ge Cu31Si8 Ag3Al ( 高 Ag3Al ( 低 Ag3Al (中 温) 温) 温) AgZn AgZn Ag5Zn8 AgCd AgCd Ag5Cd8 AuZn Au5Zn8 FeAl Ni5Zn21 电 子 浓 度 =21/12 密 排 六 方 结构 (ε 相) CuZn3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12、Cu3Ti型结构
化学式: A3B ;
—A —B
12、 Cu3Ti型结构 —A —B
—A —Bຫໍສະໝຸດ 8、L21型结构 化学式: A2BC; 结 构:L21型—体心正方晶系;
—A —B —C
9、C11b型结构
化学式: AB2; 结 构:C11b型—体心正方晶系;
—A —B
10、hcp型结构
10、hcp型结构
11、DO19型结 构
化学式: A3B ;
—A —B
11、DO19型结 构 —A —B
1、面心立方结构
[001]
a
[100]
a
a
[010]
2、L12型结构
化学式:A3B; 结 构:L12型—面心正方晶系;
—A —B
[001]
c
[100]
a
a
[010]
3、L10型结构
化学式:AB; 结 构:L10型—面心正方晶系; 特点:[001]方向上是由仅含 A原子组成的原子面与仅含B原子的原子面交替重叠 堆垛而成,所以[100]、[010]方向上的点阵常数与[001]方向的不一样,把[001]视 为c轴,其他两轴为a轴;
—A —B
[001]
c
[100]
a
a
[010]
4、DO22型结构
化学式:A3B; 结 构:DO22型—面心正方晶系;
—A —B
5、体心立方结 构
6、B2型结构
化学式:AB; 结 构:B2型—体心正方晶系;
—A —B
7、DO3型结构
化学式: A3B ; 结 构:DO3型—体心正方晶系;
相关文档
最新文档