粘性流体力学一些概念

粘性流体力学一些概念
粘性流体力学一些概念

无量纲参数

2

02

00Re L V L V L V μρμρ=

= )

(/)(00003

000020T T C L

V L

V T T C V Ec w p w p -

=-=

ρρ

热传递中流体压缩性的影响,也就是推进功与对流热之比。00

0Pr K C p μ= 表示流体的物性的影响,表征温度场和速度场的相似程度。边界层特征厚度dy u u

h

e

e ?-

=0

*

)1(ρρδ

边界层的存在而使自由流流线向外推移的距离。

θ

δ*

=H 能够反映速度剖面的形状,H 值越小,

剖面越饱满。动量积分方程:不可压流二维

f e w e e C u dx du u H dt d ==++2)2(ρτθθ /2 普朗特方程的导出,相似解的概念,布拉休斯解的主要结论

?????????????+??+??-=??+??+????+??+??-=??+??+??=??+

??)(1)(1022222222y v

x v y p y v v

x v u t

v y u x u x p y u v x u u

t u

y v

x u νρνρ 将方程无量纲化:

./,/,/,/*2***L tU t u p p U u u L x x ====ρ ν/Re UL =,Re /1*≈δ

,/,/,,**L L y U u v L y u v δδ=?==?= 分析:当Re 趋于很大时,**y p ??是大量,则**y p ??=0,根据量纲分析,去掉小量化为有量纲形式则可得到普朗特边界层方程: ????

??

???

=????+??-=??+??+??=??+??01022y p y u x p y u v x u u t

u

y

v x u υρ 相似解的概念:对不同x 截面上的速度剖面u(x,y)都可以通过调整速度u 和坐标y 的尺度因子,使他们重合在一起。外部势流速度Ue(x)作为u 的尺度因子,g(x)作为坐标y 的尺度因子。则无量纲坐标)(x g y ,无量纲速度)(x u u

e ,则

对所有不同的x 截面其速度剖面的形状将会相

同。即=

)(])(,[111x u x g y x u e )

(]

)

(,[222x u x g y

x u e 布拉修斯解(零攻角沿平板流动的解)的主要结论: x

x Re 721.1*

=δx x Re 664.0=θ 591.2/*==θδH 壁面切应力为:

x

y w U y u Re 1332.0)(2

0∞

==??=ρμτ 壁面摩擦系数为:x w f u C Re 1664.022

==∞ρτ 平均为:l

l

f Df dx C l C Re 1328.110?

==

湍流的基本概念及主要特征,湍流脉动与分子随机运动之间的差别湍流是随机的,非定常的,三维的有旋流动,随机背后还存在拟序结构。特征:随机脉动耗散性,有涡性(大涡套小涡)。

湍流脉动:不断成长、分裂和消失的湍流微团;漩涡的裂变造成能量的传递;漩涡运动与边界条件有密切关系,漩涡的最小尺度必大于分子的自由程。分子随机运动:是稳定的个体;碰撞时发生能量交换;平均自由程λ与平均速度

和边界条件无关。层流稳定性的基本思想:在临界雷诺数以下时,流动本身使得流体质点在外力的作用下具有一定的稳定性,能抵抗微弱的扰动并使之消失,因而能保持层流;当雷诺数超过临界值后,流动无法保持稳定,只要存在微弱的扰动便会迅速发展,并逐渐过渡到湍流。平板边界层稳定性研究得到的主要结果:1.雷诺数达到临界雷诺数时流动开始不稳定,成为不稳定点,而转捩点则对应与更高的雷诺数。2.导致不稳定扰动最小波长

δ

δλ65.17min ≈=*,可见不稳定波是一种

波长很长的扰动波,约为边界层厚度的6倍。3.

不稳定扰动波传播速度远小于边界层外部势流速度,其最大的扰动波传播速度

4.0/=∞U c r 。当雷诺数相当大时,中性稳定线的上下两股趋于水平轴。判别转捩的试验方法: 升华法(主要依据:湍流的剪切应力大小)热膜法(主要依据:层流和湍流边界层内

气流脉动和换热能力的差别)液晶法(主要依

据:湍流传热和层流传热能力之间的差异)湍流的两种统计理论:1. 湍流平均量的半经验分

析(做法:主要研究各个参数的平均量以及它们之间的相互关系,如平均速度,压力,附面层厚度等。2. 湍流相关函数的统计理论分析(做法;将流体视为连续介质,将各物理量如:流速,压力,温度等脉动值视为连续的随机函数,

并通过各脉动值的相关函数和谱函数来描述湍流结构。)耗散涡、含能涡的尺度耗散涡为小尺

度涡,它的尺度受粘性限制,但必大于分子自由行程。控制小尺度运动的参数包括单位质量的能量消耗量ε和运动粘性系数ν。因此,由

量纲分析,小涡各项尺度为:长度尺度

4/13)(ενη=时间尺度2/1)(εντ=速度尺度4/1)(νε=v 耗散雷诺数

1Re →=νη

v d 可知:小尺度涡体的湍流

脉动是粘性主宰的耗散流动,因此这一尺度的

涡叫耗散涡。含能涡为大尺度涡,在各向同性湍流中,可以认为大尺度涡体由它所包含的湍动总能量k ,以及向小尺度传递的能量ε决定。 长度尺度ε2/3k l =时间尺度εk t =速度尺度k u =积分尺度雷诺数1Re →>>=ν

ul d 可知在含能尺度范围

内,惯性主宰湍流运动,因此含能尺度范围又

称惯性区。均匀湍流:统计上任何湍流的性质与空间位置无关,或者说,任何湍动量的平均

值及它们的空间导数,在坐标做任何位移下不

变。特征:不论哪个区域,湍流的随机特性是相同的,理论上说,这种湍流在无界的流场中

才可能存在。各向同性湍流:任何统计平均量与方向无关,或者说,任何湍动量在各个方向

都一样,不存在任何特殊地位的方向。任何统计平均湍动量与参考坐标轴的位移、旋转和反

射无关。特征:各向同性湍流,必然是均匀湍

流,因为湍流的任何不均匀性都会带来特殊的方向性。在实际中,只存在局部各向同性湍流

和近似各向同性湍流。各向同性下,雷诺应力

由9个量减为3个量。

了解时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡时均动能方程:

流体微团内平均动能变化率;外力的作功;平均压

力梯度所作的功; 雷诺应力所作功的扩散;雷诺应力所作的变形功;时均流粘性应力所作功

的扩散;时均流动粘性的耗散,即粘性应力的

变形功。

湍动能方程:

流体

微团湍流能的随流导数,当地变化率,迁移变

化率;湍流脉动能量生成项;脉动运动的耗散

项(一般用ε表示);脉动压力、雷诺应力和脉动粘性应力对脉动能量的输运,即流体的脉动

压力能和脉动动能、粘性力功在湍流流场内的

扩散。能量平衡关系:平均动能的增益=外力

做功-平均压力梯度所作功+粘性应力做功的

扩散项-粘性的耗散+湍流应力做功的扩散-

雷诺应力所作的变形功

DNS—直接数值模拟:从流动控制方程出发,对湍流运动进行数值模拟,这种最精细的数值模拟称为直接数值模拟。RANS—雷诺平均数值模拟:从雷诺平均方程出发,对湍流运动进行数值模拟,这一层次的数值模拟称之为雷诺平均数值模拟。可以预测湍流的统计量,较为实用,目前使用较多。LES—大涡模拟:介于NDS 和RANS之间,其思想为:大尺度脉动(或大尺度湍流漩涡)用数值模拟方法计算,而小尺度脉动对大尺度运动的作用使用模型假设。各自特点:在湍流模型上:1不需要任何湍流模型。2需要对所有尺度的脉动建立模型。3对小尺度的脉动建立模型。所需计算资源上:1网格尺度最小,所需计算机的内存最大,计算时间最长。2网格尺度允许较大,因此要求计算机内存小,计算时间短。3介于前两者之间。信息量:1给出所有的湍流脉动,可以导出所有平均量。2只能给出统计平均量。3可以给出大于惯性子区尺度的脉动信息,获得所有平均量。目前主要应用:1研究低雷诺数简单湍流的物理机制。检验各种湍流模式。获得一些目前无法测量的量。2传统工程计算。3飞行器上气动载荷谱。气动噪声。检验各种湍流模式。

湍流模型建立的10个基本法则:[1].以平均量

方程和脉动量方程为出发点;[2].在二阶封闭

模式的范围内,所有湍流高阶特征量都只是平

均流动量的局部函数;[3].所有被模拟的项在

模拟后的形式必须与原项有相同的量级;[4].

被模拟后的形式必须与原项有相同的数学特

性;[5].各个湍流特征量的湍流扩散速度均假

设与该量的梯度成正比;[6].高雷诺数特性;

[7].湍流的各种尺度或者用(ε,k)表示(由大尺度涡决定的性质)或者用(ν

ε,)表示(由小涡决定的性质);[8].可实现性原则;(模拟后的输运方程组不应当产生物理上不可能的值);[9].关于参照系的不变性原则;[10].渐进性原则(当湍流退化为简单的均匀湍流情况时,由封闭模式导出的结果应当和理论、试验,或者直接数值模拟的结果一致。往往用来确定封闭模式中的系数)。

湍流模型的分类:按雷诺应力的处理方法分类:

1,涡粘模式a、零方程模式b、一方程模式c、两方程模式2,雷诺应力模式a、微分方程型b、代数方程型。按封闭方程所涉及的参量分类:1,平均速度场模式2,平均湍流场模式a、一阶封闭模式b、两阶封闭模式。

涡粘模型的基本假设:对应层流中的切应力与流速梯度关系的公式:

μ

τ=

1

克引用一个湍流涡粘度

t

μ,

dy

u

d

v

u

t

t

μ

ρ

τ=

-

='',

二维

x

u

x

u

u

u

i

j

j

i

t

j

i

ν

'

'

?

?

?

?

+

?

?

=

-

科尔莫果洛夫-

涡粘性系数

t

υ

尺度成正比:l

u

t

t

υ

υ'→

能量方程:l

u

t

t

υ

υ'→

k

l.k-w模型

流漩涡的特征频率

ω

ω

ν

k

k

k

l

u

t

=

2/1

2/1

'

率:

ε

ν

2

'

k

l

k

l

u

t

?

μ

C,则

ε

ν

μ

2

k

C

t

=,

μ

C

的要求――壁面函数法:

+

y在30~60,

+

y值应紧靠下边界,即30

层内有几个网格单元。

近壁面模型法:

5),其+

y应为1的量级,

区域内(+

y<200)至少包括

ASM(雷诺应力代数模型)

要模化;2.

进行预测;3,计算量比RSM

基本假设:'

'

j

i

u

u与k

常数.

流边界层的数量级估计方法

ν

ν

ν/

,

/*

*y

y

U

u=

=+

+

1.粘性底层中速度u随y作线性变化,故又称线

性底层(+

+=y

u);2.过渡层是由粘性底层

向完全湍流层的过渡,分子粘性切应力与湍流

切应力同样重要(+

++

-

≈y

u ln

5

05

.3);

3.对数律层的流动呈完全湍流状态,分子粘性

应力可以忽略

5.5

,

40

.0

,

ln

1

=

=

+

=+

+B

k

B

y

k

u;

4.尾迹律层:仍然是完全湍流,但是湍流强度

明显减弱,速度梯度很小,分子粘性影响减弱;

5.粘性顶层:从边界湍流层到外部非湍流层的

过渡,湍流脉动引起外部非湍流卷入边界层而

发生掺混,使湍流强度不断削弱,速度受到外

部非湍流的影响。

湍动特性:固体壁面处由于壁面对脉动的限制,

湍流度为零;各个方向的湍流度均在近靠壁面

附近达到最大值;随着向壁面的靠近,在内层

湍流度

U

u/2'和

U

w/2'加大,而

U

v/2'会减小的;粘性底层中粘性切应力

所占的比重很大,而湍流度均较小;在边界层

截面的大部分区域,k

v

u2

/''

-近似为常数。

能量平衡:边界层内层和外层具有不同的湍流

结构,彼此发生强烈的能量交换和相互作用。

在外层,它不断的从上游获取平均运动动能,

通过湍流切应力做功将这部分能量从外层传递

给内层并转化为湍流动能(即湍流生成项)。同

时,平均运动被湍流切应力作用而减速,损失

它的一部分动能。在内层,生成的大部分湍流

动能直接被湍流耗散变成热而散损,剩下的部

分又通过湍流扩散重新传输回外层,在那里被

耗散。

流动分离的必要条件,分离前后的速度剖面特

征,湍流分离的特点,流动分离的必要条件:存

在粘性和逆压力梯度是流动发生分离的必要条

件,两者缺一不可。分离前后的速度剖面特征:

分离点上游:0

,

0>

?

?

=

y

u

y时;湍流分离过

程的特点:湍流边界层得分离往往不是发生于

一个固定点,而是一个非定常得脉动过程。

湍流分离区内的湍动特性:

1.雷诺正应力起着重要作用;

2.湍流扩散作用增强;

3.分离区内层的回流区内,湍流能量生成和耗

散都很低.

?

?

?

?

?

??

?

?

?

?

?

?

?

<

<

?

?

?

?

?

?

?

<

<

<

<

+

+

)

4.0(

)

4.0

2.0(

2.0

30

30

5

5

*

δ

δ

δ

δ

δ

y

y

y

v

v

y

y

粘性顶层

尾迹律层

外层

对数律层(

过渡层(

粘性底层(

内层

粘性流体力学一些概念

无量纲参数 2 02 00Re L V L V L V μρμρ= = ) (/)(00003 000020T T C L V L V T T C V Ec w p w p - =-= ρρ 热传递中流体压缩性的影响,也就是推进功与对流热之比。00 0Pr K C p μ= 表示流体的物性的影响,表征温度场和速度场的相似程度。边界层特征厚度dy u u h e e ?- =0 * )1(ρρδ 边界层的存在而使自由流流线向外推移的距离。 θ δ* =H 能够反映速度剖面的形状,H 值越小, 剖面越饱满。动量积分方程:不可压流二维 f e w e e C u dx du u H dt d ==++2)2(ρτθθ /2 普朗特方程的导出,相似解的概念,布拉休斯解的主要结论 ?????????????+??+??-=??+??+????+??+??-=??+??+??=??+ ??)(1)(1022222222y v x v y p y v v x v u t v y u x u x p y u v x u u t u y v x u νρνρ 将方程无量纲化: ./,/,/,/*2***L tU t u p p U u u L x x ====ρ ν/Re UL =,Re /1*≈δ ,/,/,,**L L y U u v L y u v δδ=?==?= 分析:当Re 趋于很大时,**y p ??是大量,则**y p ??=0,根据量纲分析,去掉小量化为有量纲形式则可得到普朗特边界层方程: ???? ?? ??? =????+??-=??+??+??=??+??01022y p y u x p y u v x u u t u y v x u υρ 相似解的概念:对不同x 截面上的速度剖面u(x,y)都可以通过调整速度u 和坐标y 的尺度因子,使他们重合在一起。外部势流速度Ue(x)作为u 的尺度因子,g(x)作为坐标y 的尺度因子。则无量纲坐标)(x g y ,无量纲速度)(x u u e ,则 对所有不同的x 截面其速度剖面的形状将会相 同。即= )(])(,[111x u x g y x u e ) (] ) (,[222x u x g y x u e 布拉修斯解(零攻角沿平板流动的解)的主要结论: x x Re 721.1* =δx x Re 664.0=θ 591.2/*==θδH 壁面切应力为: x y w U y u Re 1332.0)(2 0∞ ==??=ρμτ 壁面摩擦系数为:x w f u C Re 1664.022 ==∞ρτ 平均为:l l f Df dx C l C Re 1328.110? == 湍流的基本概念及主要特征,湍流脉动与分子随机运动之间的差别湍流是随机的,非定常的,三维的有旋流动,随机背后还存在拟序结构。特征:随机脉动耗散性,有涡性(大涡套小涡)。 湍流脉动:不断成长、分裂和消失的湍流微团;漩涡的裂变造成能量的传递;漩涡运动与边界条件有密切关系,漩涡的最小尺度必大于分子的自由程。分子随机运动:是稳定的个体;碰撞时发生能量交换;平均自由程λ与平均速度 和边界条件无关。层流稳定性的基本思想:在临界雷诺数以下时,流动本身使得流体质点在外力的作用下具有一定的稳定性,能抵抗微弱的扰动并使之消失,因而能保持层流;当雷诺数超过临界值后,流动无法保持稳定,只要存在微弱的扰动便会迅速发展,并逐渐过渡到湍流。平板边界层稳定性研究得到的主要结果:1.雷诺数达到临界雷诺数时流动开始不稳定,成为不稳定点,而转捩点则对应与更高的雷诺数。2.导致不稳定扰动最小波长 δ δλ65.17min ≈=*,可见不稳定波是一种 波长很长的扰动波,约为边界层厚度的6倍。3. 不稳定扰动波传播速度远小于边界层外部势流速度,其最大的扰动波传播速度 4.0/=∞U c r 。当雷诺数相当大时,中性稳定线的上下两股趋于水平轴。判别转捩的试验方法: 升华法(主要依据:湍流的剪切应力大小)热膜法(主要依据:层流和湍流边界层内 气流脉动和换热能力的差别)液晶法(主要依 据:湍流传热和层流传热能力之间的差异)湍流的两种统计理论:1. 湍流平均量的半经验分 析(做法:主要研究各个参数的平均量以及它们之间的相互关系,如平均速度,压力,附面层厚度等。2. 湍流相关函数的统计理论分析(做法;将流体视为连续介质,将各物理量如:流速,压力,温度等脉动值视为连续的随机函数, 并通过各脉动值的相关函数和谱函数来描述湍流结构。)耗散涡、含能涡的尺度耗散涡为小尺 度涡,它的尺度受粘性限制,但必大于分子自由行程。控制小尺度运动的参数包括单位质量的能量消耗量ε和运动粘性系数ν。因此,由 量纲分析,小涡各项尺度为:长度尺度 4/13)(ενη=时间尺度2/1)(εντ=速度尺度4/1)(νε=v 耗散雷诺数 1Re →=νη v d 可知:小尺度涡体的湍流 脉动是粘性主宰的耗散流动,因此这一尺度的 涡叫耗散涡。含能涡为大尺度涡,在各向同性湍流中,可以认为大尺度涡体由它所包含的湍动总能量k ,以及向小尺度传递的能量ε决定。 长度尺度ε2/3k l =时间尺度εk t =速度尺度k u =积分尺度雷诺数1Re →>>=ν ul d 可知在含能尺度范围 内,惯性主宰湍流运动,因此含能尺度范围又 称惯性区。均匀湍流:统计上任何湍流的性质与空间位置无关,或者说,任何湍动量的平均 值及它们的空间导数,在坐标做任何位移下不 变。特征:不论哪个区域,湍流的随机特性是相同的,理论上说,这种湍流在无界的流场中 才可能存在。各向同性湍流:任何统计平均量与方向无关,或者说,任何湍动量在各个方向 都一样,不存在任何特殊地位的方向。任何统计平均湍动量与参考坐标轴的位移、旋转和反 射无关。特征:各向同性湍流,必然是均匀湍 流,因为湍流的任何不均匀性都会带来特殊的方向性。在实际中,只存在局部各向同性湍流 和近似各向同性湍流。各向同性下,雷诺应力 由9个量减为3个量。 了解时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡时均动能方程: 流体微团内平均动能变化率;外力的作功;平均压 力梯度所作的功; 雷诺应力所作功的扩散;雷诺应力所作的变形功;时均流粘性应力所作功 的扩散;时均流动粘性的耗散,即粘性应力的 变形功。 湍动能方程:

流体力学 大作业

一.选择题 1.牛顿内摩擦定律适用于()。 A.任何流体B.牛顿流体C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上B.在微观上C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间B.质量C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力C.正压力、重力D.正压力、切向力、重力 6.下述哪些力属于质量力( ) A.惯性力B.粘性力C.弹性力D.表面张力E.重力 7.某点存在真空时,()() A.该点的绝对压强为正值B.该点的相对压强为正值c.该点的绝对压强为负值D.该点的相对压强为负值 8.流体静压强的()。 A.方向与受压面有关B.大小与受压面积有关B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A.B.C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器内液面压强小于大气压强,其任一点的测压管液面()。A.高于容器内液面B.低于容器内液面C.等于容器内液面 12.流体运动的连续性方程是根据()原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13. 流线和迹线重合的条件为()。

A.恒定流 B.非恒定流 C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流 C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:()、() A.总水头线总是沿程下降的。 B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A. 温度 B. 管径 C. 流速 D. 管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。 A. 层流 B. 层流向紊流过渡 C.紊流 18.等直径圆管中紊流的过流断面流速分布是()A呈抛物线分布B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布 19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍B.1/3倍C. 1/4倍D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B. 二次方 C. 三次方 D. 四次方 21..圆管的水力半径是( ) A. d/2 B. d/3 C. d/4 D. d/5. 22谢才公式中谢才系数的单位是()A. 无量纲B. C. D. . 23. 判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。 A. 0.5, 0.5 B. 0.95, 0.81 C. 0.81, 081 D. 1.0, 1.0 25.对于a, b, c三种水面线,下列哪些说法是错误()() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。B.所有b型曲线都是壅水曲线,即,水深沿程增大。C.所有a、c型曲线都是降水曲线,即,水深沿程减小。C.所有b型曲线都是降水曲线,即,水深沿程减

2018《粘性流体力学》复习提纲

粘流复习大纲 1 卡门涡街、阻力危机和马格努斯效应等基本概念 2 流线、迹线、时间线和烟线的概念和物理含义(坐标系的影响) 3 涡量输运方程各项的物理意义,涡动力学亥姆霍兹三定理的内容、涵义及成立的条件,涡量以及流动‘有旋’或‘无旋’的定义,能判断简单流动是否有旋 4 推导N-S方程时所用到的Stokes三假设的内容 5 一些无量纲参数的定义和物理意义(Re, Ec, Pr),及其与速度边界层和温度边界层特性之间的内在关联,壁面恢复温度的概念 6 库特剪切流、突然起动平板流解的主要结论,库特剪切流的速度分布、温度分布,能够运用能量方程来分析库特剪切流的能量平衡 7 边界层的各种特征厚度及形状因子,边界层动量积分方程和计算,基于控制体积分方法分析边界层的流动 8 普朗特边界层理论,边界层微分方程的导出及主要结论,相似解的概念,布拉休斯解的主要结论 9 湍流的基本概念及主要特征(四个),湍流脉动与分子随机运动之间的差别 10 层流稳定性的基本思想,瑞利定理和费约托夫定理,中性稳定线,平板边界层稳定性研究得到的主要结果 11 猝发现象,能叙述边界层转捩的主要过程(典型流动现象) 12 影响转捩过程的主要因素以及控制边界层转捩的主要方法、判别转捩的试验方法 13 湍流的两种统计理论,能谱分析方法的主要结论,半经验理论中流场参数平均的三种方法 14 耗散涡、含能涡的尺度、特征与主要作用,及其特征尺度的描述参数 15 均匀剪切湍流、均匀湍流、各向同性湍流和局部平衡湍流的概念、特征和典型示例 16 不可压下的时均连续方程、动量方程,以及由此而来的方程组封闭性问题,雷诺应力的概念和物理意义 17时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡 18 目前,湍流的数值模拟的3个层次及各自的特点 19 湍流模型建立的基本法则和各项模化的一般方法 20 湍流模型的分类,涡粘模型的基本假设(布希内斯克的涡粘假定),普朗特混合长度理论,科尔莫果洛夫-普朗特理论,能量方程模型、k-e模型、k-w模型的湍流粘性系数的求法 21 湍流模型近壁区处理的几种方法及对计算网格的要求 22 ASM模型的优点和得出的基本假设 23湍流边界层的宏观结构和速度分布特性 湍流边界层内的湍动特性及能量平衡(包括时均动能和湍动能)

流体力学标准化作业答案

流体力学标准化作业(三) ——流体动力学 本次作业知识点总结 1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。 2.流体流动的加速度、质点导数 流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即 流体质点的加速度等于速度对时间的变化率,即 投影式为 或 ()du u a u u dt t ?==+??? 在欧拉法中质点的加速度du dt 由两部分组成, u t ??为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。()u u ??为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。 欧拉法描述流体运动,质点的物理量不论矢量还是标 量,对时间的变化率称为该物理量的质点导数或随体导数。例如不可压缩流体,密度的随体导数 3.流体流动的分类 (1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线 流线微分方程 迹线微分方程 (2)流管、流束与总流 (3)过流断面、流量及断面平均流速

体积流量 3(/)A Q udA m s =? 质量流量 (/)m A Q udA kg s ρ=? 断面平均流速 A udA Q v A A ==? (4)渐变流与急变流 5. 连续性方程 (1)不可压缩流体连续性微分方程 (2)元流的连续性方程 (3)总流的连续性方程 6. 运动微分方程 (1)理想流体的运动微分方程(欧拉运动微分方程) 矢量表示式 (2)粘性流体运动微分方程(N-S 方程) 矢量表示式 21()u f p u u u t νρ?+?+?=+??? 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程 (2)理想流体总流的伯努利方程 8.实际流体的伯努利方程 (1)实际流体元流的伯努利方程 (2)实际流体总流的伯努利方程 10.恒定总流的动量方程 投影分量形式

流体力学 第三章 答案

第三章 流体动力学及其应用 一、填空题 1.研究流体运动的两种方法分别是(拉格朗日法)和(欧拉法) 2.拉格朗日法以运动着的(质点)为研究对象 3.欧拉法以充满流体的空间中各个固定的(空间点)为研究对象 4.理想流体:既没有(粘性)又不可(压缩)的流体,将其称为理想流体 5.运动流体空间任一点的运动参数都不随(时间)的改变而改变的运动流体叫稳定流; 6.运动流体空间任一点的运动要素的全部或部份随时间的变化而变化的运动流体叫(不稳定流) 7.在运动流体中,表示流体质点瞬时(方向)的曲线称为流线 8.流体质点在某段时间内运动的轨迹称为(迹线) 9.流线既不能(相交)也不能突然(转折) 10.在运动流体中,(垂直)流线的横截面称为过流断面,一般用符号A 表示。 11.流量有两种表示方法分别是(体积流量)和(质量流量) 12.一般情况下,以单位时间流过过流断面的(体积)计量的流量称为体积流量(或简称流量),用符号V 表示,单位m 3 /s : 。 13.以单位时间流过过流断面的(质量)计量的流量称为质量流量 14.连续性方程的公式为(v 1A 1=v 2A 2) 15.根据连续性方程,(流速)与(过流断面)面积成反比 16.实际流体总流的伯努利方程为(212222211122-+++=++L h g v g p z g v g p z ρρ) 17.实际流体总流的伯努利方程式反映了实际流体在运动过程中(机械能)守恒和各种能量之间(相互转化)的定量关系。 18.在流体力学中,将液柱高度称为(水头)。这样,流体过流断面上的三种能量z 、g p ρ和 g v 22 ,分别称为(位置水头)、(压力水头)和(速度水头)。 19.液流一般具有三种能量:z 、g p ρ和g v 22,分别表示单位重力流体所具有的(位能)、(压 能)和(动能) 20.运动流体总机械能的大小决定了流体的运动方向,流体总是从总能量(较大)的过流断

流体力学-大作业

一.选择题 1.牛顿摩擦定律适用于()。 A.任何流体B.牛顿流体C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上B.在微观上C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间B.质量C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力 C.正压力、重力 D.正压力、切向力、重力 6.下述哪些力属于质量力 ( ) A.惯性力B.粘性力C.弹性力D.表面力 E.重力 7.某点存在真空时,()() A.该点的绝对压强为正值B.该点的相对压强为正值 c.该点的绝对压强为负值D.该点的相对压强为负值 8.流体静压强的()。 A.方向与受压面有关 B.大小与受压面积有关 B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A.B.C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器液面压强小于大气压强,其任一点的测压管液面()。A.高于容器液面B.低于容器液面C.等于容器液面 12.流体运动的连续性方程是根据()原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13. 流线和迹线重合的条件为()。

A.恒定流 B.非恒定流 C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流 C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:()、() A.总水头线总是沿程下降的。 B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A. 温度 B. 管径 C. 流速 D. 管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。 A. 层流 B. 层流向紊流过渡 C.紊流 18.等直径圆管中紊流的过流断面流速分布是() A呈抛物线分布 B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布 19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍 B.1/3倍 C. 1/4倍 D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B. 二次方 C. 三次方 D. 四次方 21..圆管的水力半径是 ( ) A. d/2 B. d/3 C. d/4 D. d/5. 22才公式中才系数的单位是() A. 无量纲 B. C. D. . 23. 判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。 A. 0.5, 0.5 B. 0.95, 0.81 C. 0.81, 081 D. 1.0, 1.0 25.对于a, b, c三种水面线,下列哪些说法是错误()() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。 B.所有b型曲线都是壅水曲线,即,水深沿程增大。 C.所有a、c型曲线都是降水曲线,即,水深沿程减小。 C.所有b型曲线都是降水曲线,即,水深沿程减

CFD 基 础(流体力学)解析

第1章 CFD 基 础 计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、 热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。 本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。对于均质流体,设其体积为V ,质量为m ,则其密度为 m V ρ= (1-1) 对于非均质流体,密度随点而异。若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度

流体力学基础

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

流体力学大作业

流体力学-大作业

————————————————————————————————作者: ————————————————————————————————日期:

一.选择题 1.牛顿内摩擦定律适用于()。 A.任何流体B.牛顿流体 C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性 D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上 B.在微观上 C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间 B.质量 C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力C.正压力、重力D.正压力、切向力、重力 6. 下述哪些力属于质量力() A.惯性力B.粘性力 C.弹性力D.表面张力E.重力 7.某点存在真空时,( )() A.该点的绝对压强为正值 B.该点的相对压强为正值c.该点的绝对压强为负值 D.该点的相对压强为负值 8.流体静压强的( )。 A.方向与受压面有关B.大小与受压面积有关B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A. B. C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器内液面压强小于大气压强,其任一点的测压管液面( )。 A.高于容器内液面B.低于容器内液面 C.等于容器内液面 12.流体运动的连续性方程是根据( )原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13.流线和迹线重合的条件为()。

A.恒定流B.非恒定流C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:( )、( ) A.总水头线总是沿程下降的。B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A.温度B.管径C. 流速D.管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为( )。 A. 层流 B. 层流向紊流过渡C.紊流 18.等直径圆管中紊流的过流断面流速分布是()A呈抛物线分布B.呈对数线分布 C.呈椭圆曲线分布D.呈双曲线分布19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍 B.1/3倍C.1/4倍D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B.二次方 C. 三次方D. 四次方 21..圆管的水力半径是() A. d/2B.d/3 C. d/4D. d/5. 22谢才公式中谢才系数的单位是()A.无量纲B.C.D.. 23.判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24..对于管道无压流,当充满度分别为( )时,其流量和速度分别达到最大。A.0.5,0.5B.0.95,0.81 C.0.81, 081 D. 1.0,1.0 25.对于a, b,c三种水面线,下列哪些说法是错误( )() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。B.所有

流体力学路线图

流体力学基础理论的学习历来被初学者视为畏途,每到学习结束要进入期末考试的时候,老师和学生一样心中难免忐忑,在流体力学这门课上挂科已经成为某种常态。即使是学习多年的老手也会在具体问题面前感到基础尚不完备,还不够扎实。这个问题的起源当然与流体运动规律本身的复杂性有关,这个复杂性导致流体力学与大家印象中的“学科”概念有一定的出入。比如我们在学习高等数学时,很容易发现,数学是一门“咬文嚼字”的学科,里面充满严格定义的概念,不论学习线性代数还是微积分,都是从一些基本公理出发,循着一条严格的逻辑路线,架构起整门课程。因为数学有这样逻辑严密的特点,所以虽然学起来也不容易,但大家一致认为数学是美的,而且不论谁写的数学书,比如微积分的书,内容都只有程度深浅的差异,而绝没有内容上的巨大差异。 流体力学则有所不同,流体的流动本身是一种连续不断的变形过程,经典的流体力学理论以连续介质假设为基础,将整个流体看作连续介质,同时将其运动看作连续运动。但是由于流体是复杂的,实际上至今还没有完全掌握其全貌,因此流体力学在建立了基本控制方程后,就开始转而从一些特殊的流动出发,采用根据流动特点进行简化的方式,先建立物理模型,再得到数学模型,进而得到我们在书中经常看到的很多“理论”,比如不可压无旋流、旋涡动力学、水波动力学、气体动力学等等,甚至理论中还包括理论,比如不可压无旋流中还有自由流线理论,等等。形成一个类似于俄罗斯套娃的学科结构,这种结构容易给人一种支离破碎的印象。特别是在各个理论之间联系比较薄弱的时候,更容易给人这种印象。似乎一门课中又包含了很多门“小课”,每门“小课”使用的数学工具也完全不同,甚至很多同行还进一步把自己分成是学气的(比如空气动力学),或者是学水的(比如学船舶的)等等。 就象旅行者要有一张地图才能更高效率地到达目的地一样,如果能有一张流体力学的地图,或者叫路线图(roadmap),应该对初学者有很大帮助。这张图就是这门学科的脉络,其中应包含流体力学的主要理论内容,扩展一步的话,还应该包括数学基础(先修课)和主要分支学科。先在这里做个记号,有时间的时候慢慢地先从流体力学基础理论入手,给出一个粗略的路线图,然后再逐渐给出分支学科的路线图,比如空气动力学、计算流体力学的路线图。希望能抛砖引玉,激发出同行们的兴趣,加入绘制路线图的工作。在想象中,这个路线图应该有学科的主要内容,同时应该有相关的参考书。这样初学者就可以按图索骥,沿着一

流体力学基础讲解

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

流体力学知识讲解

第一章1.连续介质模型:把流体视为由无数连续分布的流体微团组成的连续介质,流体的密度、压强、速度、温度等物理量一般在空间和时间上都是连续分布的,都应该是空间坐标和时间的单值连续可微函数。 2.作用在流体上的力:表面力,质量力 3.表面力:流体分离体以外的物体作用在分离体上的表面力。 在分离体表面的点b取一微小面积δA,作用在它上面的表面力为δF。一般情况下可将δF分解为沿外法线方向n的δF n和沿切线方向t的δF t。以δA除δF,并令δA→0而取极限,可得作用在点b的表面应力: P n=lim δA→0δF δA =dF dA 4.质量力(体积力):某种力场作用在流体全部质点(全部体积)上的质量力(体积力)。 5.流体的压缩性和膨胀性:流体在一定温度下,压强增高,体积缩小;在一定压强下,温度升高,体积膨胀,这是所有流体的共同属性。 6.牛顿粘性应力公式:τ=μdV x dy ,表明各流层间的切向应力和流体微团的角变形速度成正比,比例系数为流体的动力粘度。 7.流体粘性的形成因素:一是流体分子间的引力在流体微团相对运动时形成的粘性,二是流体分子的热运动在不同流速流层间的动量交换所形成的粘性。 形成气体粘性主要因素是分子的热运动。 形成液体粘性的主要因素是分子间的引力。 8.浸润现象:当液体和固体壁面接触时,若内聚力小于附着力,液体将在固体壁面上伸展开来,湿润固体壁面。 9.毛细现象:当液体和固体壁面接触时,若内聚力大于附着力时,液体将缩成一团,不湿润固体壁面。 第二章 10.流体静压强的两个特性: 一、流体静压强的作用方向沿作用面的内法线方向。

二、静止流体中任一点流体静压强的大小与作用面在空间的方位无关,是点的坐标的连续可微函数。 11.欧拉平衡微分方程物理意义:f-1 ρ ?p=0,在静止流体内的任一点上,作用在单位质量流体上的质量力与静压强的合力相平衡。 12.压强差公式:dp=ρ(f x dx+f y dy+f z dz),该式表明,流体静压强的增量取决于单位质量力和坐标增量。 13.等压面:在流场中压强相等的点组成的面。 14.等压面的微分方程:f·d r=0该式表明,在静止流体中,作用于任一点的质量力垂直于经过该点的等压面。 15.在重力场中等势面和等压面都是水平面。质量力不仅垂直于它们,而且始终指向势函数减小,即压强增加的方向。 正压流场:等压面与等密度面平行的流场。 正压流体:简称正压流场的流体为正压流体,不可压缩的流体是正压流体。 16.流体静力学基本方程的物理意义:z1+p1 ρg =z2+p2 ρg 第一项z是单位重量流体的位势能。 第二项p ρg 是单位重量流体的压强势能。 物理意义:在重力作用下,静止的不可压缩流体中单位重量流体的总势能保持不变。 几何意义:在重力作用下,静止的不可压缩流体的静水头线和计示静水头线均为水平线。 17.压强的计量: 绝对压强:以完全真空为基准计量的压强。p = p a+ρgh 计示压强:以当地大气压为基准计量的压强。p e = p?p a=ρgh 当流体的绝对压强低于大气压强,计示压强为负。负计示压强称为真空 p v=-p e=p a-p 18. F p=ρgx c sinαA=ρgh c A即液体作用在平面上的总压力等于以该平面为底、平面形心的淹深为高的柱体的液体重量,并垂直指向平面。(书P47) 19.压力中心位置:若通过形心的坐标系中有任何一轴是平面的对称轴,则I cxy=0,

《流体力学》徐正坦主编课后答案第三章

第三章习题简答 3-1 已知流体流动的速度分布为2 2y x u x -= ,xy u y 2-=,求通过1,1==y x 的 一条流线。 解:由流线微分方程 y x u dy u dx =得dy u dx u x y =则有 dy y x xydx )(22 2 -=-两边积分可得C y y x yx +-=-3 3 2 2 即062 3=+-C y x y 将x=1,y=1代入上式,可得C=5,则 流线方程为0562 3 =+-y x y 3-3 已知流体的速度分布为 ?? ? ==-=-=tx x u ty y u y x 00εωεω( ω>0,0ε>0) 试求流线方程,并画流线图。 解:由流线微分方程 y x u dy u dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22 流线方程为C y x =+2 2 3-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少? 题3-5图 解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得 2 82 32 22 12 83214 4 4 4 4 d v d v d v d v D v Q Q Q Q Q π π π π π ? +???+? +? +? =? +???+++=

s m d vD v v d v v v v d D v /4.80) 98.01(001.002.002.05.1)98.01()98.01(98 .01) 98.01(4)(44822 8221812 83212 2 =-???=--?=∴--?=+???+++?=?π π π 则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s 3-6 油从铅直圆管向下流出。管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。 题3-6图 解:取1-1和2-2断面,并以2-2断面为基准面 列1-1、2-2断面的伯努利方程 2 22 12212 2 2211/6.54.15.18.922202s m v gH v p p g v g p g v g p H =+??=+==++=++ΘΘρρ 由连续方程2 222 114 4 d v d v π π ? =? 得cm d v v d 5106 .54 .121212=?== 3-8 利用毕托管原理测量输水管的流量如图示。已知输水管直径d=200mm ,测得水银差压计读书p h =60mm ,若此时断面平均流速max 84.0u v =,这里m ax u 为毕托管前管轴上未受扰动水流的流速。问输水管中的流量Q 为多大? 题3-8图 解:由题意可得

粘性流体力学试题

上海理工大学 研究生试题 2011 / 2012 学年第 2 学期 课程名称:粘性流体力学 教师签章:年月日教研室主任审查意见: 签章:年月日1.编号栏由研究生部填写。

上海理工大学研究生课程试题* 2011 /2012 学年第 2 学期 考试课程 粘性流体力学 学 号 姓 名 ____ 得 分 一. 问答题(每题10分,共50分) 1. 速度环量与涡量有何关系,并简述产生涡量的主要因素。 2. 流体微团的运动由那几部份构成,请简述之。 3. Couette 流动、Poiseuille 流动及Hagen-Poiseuille 流动的物理模型分别是什么? 4. 速度边界层内流动的主要特征是什么?当几何条件相同时,湍流和层流相比,哪种边界层流动更易产生分离,为什么? 5. 简述湍流模型理论。 二. 计算题(共50分) 1. 已知自由涡流场速度分布为(其中c 为常数): 求证:微团所受的粘性力为零。(10分) 2. 已知),,(L K f t ρμ=,试用量纲分析法求t μ的表达式。(式中t μ为湍流粘度、ρ为密度、K 为单位质量湍动能、L 为特征长度。)(10分) 3. 求证:(式中:V 为微元体体积,u 为流体速度)(15分) 4. 由不可压缩NS 方程: 推导Reynolds 时均NS 方程: (15分) *注:考题全部写在框内,不要超出边界。内容一律用黑色墨水书写或计算机打印,以便复印。 0w y x v y x =+=+-=2 222x y u c c ()u V V ??=Dt d D d 1???? ?????????? ????=??+??j i j i j j i i x x x x u t u p u u νρ+()() j i ij j i i u x x t ''-+????-=u p d u d ρτρρ11+

粘性流体力学大作业

1 / 17 微型机翼设计报告 一、题目及要求 某小型无人机重40kg ,设计飞行速度100m/s ,飞行高度2000m 。使用Foil.html 等课件作工具,设计其机翼。 (1)应使该机翼在2度攻角时可产生足够升力保持飞机匀速平飞; (2)且尽量使附面层(尤其是上翼面)的压力梯度(或速度分布)不产生分离、或分离区尽量小; (3)分析估算摩擦阻力,应尽量减小摩阻。 二、设计过程 1、使用Foil.html 等课件,设计其机翼。 (1) 在完成公制单位等辅助设置后,选择指定的飞行速度,高度。 (2) 在保持2度攻角情况下,设计机翼弯度、厚度, (3) 设计机翼弦长、翼展, (4) 利用输出功能分析机翼性能及上下表面速度、压力等分布。 2、结合机翼的表面压力(或速度)沿程分布,做2种以上方案进行对比分析,设计一个分离区尽量小的方案。 3、利用Foil 得到的机翼数据,分析估算摩擦阻力,应尽量减小摩阻。 (1) 利用Foil 得到的机翼数据,建立数据文件; (2) 编写附面层Karman 积分计算的程序,读入你所设计机翼的数据,进行上下表面 动量损失厚度的计算; dx dU U H C dx d e e f ?+-=θθ)2(2 (3) 附面层Karman 积分计算采用以下湍流计算方法: 其中无量纲参数λ和l 满足:

2 / 17 采用Thwaites 方法: 则当地摩阻为: 根据F-S 方程解和实验数据,可认为l 和H 都仅是λ的单变量函数,故得: 将用λ表示的H 和当地摩阻带入上式得: 解常微分方程的Runge-Kutta 多步法: 1122111111(,,) (,,) (,,)n n n n n n x R Cf H x R Cf H x R Cf H θθθθθθθθθ=+??=+??=+??g g g g g g 步步步步步步步步m 步m 步m-步m-步m- 4步Runge-Kutta 法步长示意图

相关文档
最新文档