高考数学专题复习专题6数列第38练数列的前n项和练习理

合集下载

(名师导学)2020版高考数学总复习第六章数列第34讲等差数列及其前n项和练习理(含解析)新人教A版

(名师导学)2020版高考数学总复习第六章数列第34讲等差数列及其前n项和练习理(含解析)新人教A版

第34讲 等差数列及其前n 项和夯实基础 【p 73】【学习目标】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等. 2.掌握等差数列的判断方法. 3.掌握等差数列求和的方法. 【基础检测】1.数列{a n }是等差数列,a 1=1,a 4=8,则a 5=( )A .16B .-16C .32D .313【解析】因为a 4=8,所以a 1+3d =8, 又因为a 1=1,所以d =73,可得a 5=a 1+4d =313.【答案】D2.已知等差数列{a n }中,若a 4=15,则它的前7项和为( )A .120B .115C .110D .105【解析】由题得S 7=72(a 1+a 7)=72·2a 4=7a 4=7×15=105.【答案】D3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n【解析】由2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.【答案】A4.记S n 为等差数列{}a n 的前n 项和,若S 9=45,a 3+a 8=12,则a 7等于( ) A .10 B .9 C .8 D .7【解析】S 9=9a 5=45a 5=5,而a 3+a 8=12a 5+a 6=12,a 6=7. ∵2a 6=a 5+a 7,∴a 7=9. 【答案】B5.设等差数列{a n }的前n 项和为S n ,若a 1=-11, a 3+a 7=-6,则当S n 取得最小值时,n 等于( )A .6B .7C .8D .9【解析】由题设⎩⎪⎨⎪⎧a 1=-112a 1+8d =-6d =2,则S n =n 2+(-11-1)n =n 2-12n ,所以当n =6时,S n =n 2-12n 最小.【答案】A 【知识要点】 1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d__表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d (n∈N *). 3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a k +(n -k)d(n ,k ∈N *).(2)若{a n }为等差数列,且m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (3)若{a n }是等差数列,公差为d ,则a n ,a n +m ,a n +2m ,…(n ,m ∈N *)是公差为__md __的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d(n∈N *).6.等差数列的前n 项和公式与函数的关系 S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n(n∈N *).数列{a n }是等差数列S n =An 2+Bn (A 、B 为常数,n ∈N *). 7.等差数列的前n 项和的最值在等差数列{a n }中,若a 1>0,d<0,则S n 存在最__大__值;若a 1<0,d>0,则S n 存在最__小__值.典例剖析 【p 73】考点1 等差数列基本量的计算例1(1)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .2【解析】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.由此得:⎩⎪⎨⎪⎧5a 1+20d =155a 1+25d =30d =3.【答案】C(2)已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 【解析】a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k∈N *,故k =3.【答案】3【点评】在求解等差数列的基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加简捷. 考点2 等差数列的性质及应用例2(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198 D .297【解析】因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.【答案】B(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. 【解析】法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D.所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.【答案】20【点评】一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *),只有当序号之和相等、项数相同时才成立.考点3 等差数列的判定与证明例3令 b n =2n ⎝ ⎛⎭⎪⎫n -12n +c ,数列{b n }为等差数列,则非零常数c 的值为________.【解析】∵b n =2n ⎝ ⎛⎭⎪⎫n -12n +c,c ≠0,数列{b n }为等差数列,∴b n =2n.得到c =-12.【答案】-12例4已知数列{a n }满足a 1=1,a n +1=2a n a n +2(n∈N ),b n =1a n .(1)证明:数列{b n }为等差数列. (2)求数列{a n }的通项公式.【解析】(1)∵a 1≠0,且有a n +1=2a n a n +2,所以有a n ≠0(n ∈N *),则有b n +1=1a n +1=a n +22a n=1 a n +12=b n+12,即b n+1-b n=12(n∈N*)且b1=1a1=1,所以{b n}是首项为1,公差为12的等差数列.(2)由(1)知b n=b1+(n-1)×12=1+n-12=n+12,即1a n=n+12,所以a n=2n+1.【点评】等差数列的判定与证明方法-1(n≥2,n∈N*)为同一常数{a n}{a n}是等差数列正整数n都成立{a n}是等差数任意的正整数n 都成立{a n }是考点4 等差数列前n 项和的最值问题例5已知{a n }是各项为正数的等差数列,S n 为其前n 项和,且4S n =(a n +1)2. (1)求a 1,a 2的值及{a n }的通项公式; (2)求数列⎝ ⎛⎭⎪⎫S n -72a n 的最小值. 【解析】(1)因为4S n =(a n +1)2,所以,当n =1时,4a 1=(a 1+1)2,解得a 1=1,所以,当n =2时,4(1+a 2)=(a 2+1)2,解得a 2=-1或a 2=3, 因为{a n }是各项为正数的等差数列,所以a 2=3, 所以{a n }的公差d =a 2-a 1=2,所以{a n }的通项公式a n =a 1+(n -1)d =2n -1. (2)因为4S n =(a n +1)2,所以S n =(2n -1+1)24=n 2,所以S n -72a n =n 2-72(2n -1)=n 2-7n +72=⎝ ⎛⎭⎪⎫n -722-354.所以,当n =3或n =4时,S n -72a n 取得最小值-172.方法总结 【p 74】1.等差数列的判定方法有定义法、中项公式法、通项公式法、前n 项和公式法,注意等差数列的证明只能用定义法.2.方程思想和基本量思想:在解有关等差数列问题时可以考虑化归为首项与公差等基本量,通过建立方程组获得解.3.用函数思想理解等差数列的通项公式和前n 项和公式,从而解最值问题.走进高考 【p 74】1.(2018·全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12【解析】法一:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4, ∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1, ∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.法二:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3S 3=S 3-a 3+S 3+a 4,∴S 3=a 4-a 3,∴3a 1+3×22d =d ,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.【答案】B2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.考点集训 【p 214】A 组题1.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20 D .19【解析】a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37.【答案】A2.记S n 为等差数列{}a n 的前n 项和,若a 7=1,a 1-S 4=9,则数列{}S n 中的最小项为( )A .S 1B .S 5,S 6C .S 4D .S 7【解析】令等差数列{}a n 的公差为d ,则⎩⎪⎨⎪⎧a 1+6d =1,a 1-4a 1-6d =9,解得a 1=-5,d =1,有a n =n -6,S n =n (n -11)2,则当n =5或6时,S n 最小.【答案】B3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23 D .24【解析】3a n +1=3a n -2a n +1=a n -23{a n }是等差数列,则a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23.【答案】C4.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) A. d <0 B. a 7=0 C. S 9>S 5D. S 6与S 7均为S n 的最大值【解析】由S 5<S 6得a 6=S 6-S 5>0,又S 6=S 7,所以a 7=0. 由S 7>S 8,得a 8<0,而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>02(a 7+a 8)>0.由题设a 7=0,a 8<0,显然C 选项是错误的. 【答案】C5.设S n 为等差数列{a n }的前n 项和,若S 8=4a 3,a 7=-2,则a 9=________. 【解析】根据等差数列的定义和性质可得,S 8=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6. 【答案】-66.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________. 【解析】因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m-S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5.【答案】57.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.【解析】(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 8.已知等差数列{a n }前三项的和为-9,前三项的积为-15.(1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .【解析】(1)设公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d ,∴(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2,∴a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤3,2n -7,n ≥4, ①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2; ②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3,n 2-6n +18,n ≥4. B 组题1.已知正项数列{a n }中,a 1=1, a 2=2, 2a 2n +1=a 2n +2+a 2n ,则a 6等于( )A .16B .8C .4D .2 2【解析】由2a 2n +1=a 2n +2+a 2n 知,数列{a 2n }是等差数列,前两项为1,4,所以公差d =3,故a 26=1+5×3=16,所以a 6=4,故选C.【答案】C2.若等差数列{a n }的前n 项和S n 满足S 4≤4,S 6≥12,则a 4的最小值为( )A .2 B.72C .3 D.52【解析】S 4=2(a 1+a 4)≤42a 4-3d ≤2,① S 6=3(a 1+a 6)≥122a 4-d ≥4,即d -2a 4≤-43d -6a 4≤-12,②①②两式相加得:a 4≥52. 【答案】D3.设数列{a n }满足a 1=2,a 2=6,且a n +2-2a n +1+a n =2,用[x ]表示不超过x 的最大整数,如[0.6]=0,[1.2]=1,则⎣⎢⎡⎦⎥⎤m a 1+m a 2+…+m a m 的值用m (m 为整数)表示为__________. 【解析】由题设可得(a n +2-a n +1)-(a n +1-a n )=2,令b n =a n +1-a n ,则由等差数列的定义可知数列{}b n 是首项为b 1=a 2-a 1=4,公差为d =2的等差数列,即a n +1-a n =4+2(n -1)=2n +2,由此可得a 2-a 1=2×1+2,a 3-a 2=2×2+2,…,a n -a n -1=2(n -1)+2,将以上(n -1)个等式两边相加可得a n -a 1=2×(1+n -1)2(n -1)+2n -2=n (n -1)+2n -2,即a n =n (n +1),所以m a 1+m a 2+…+m a m =m -m 2+m 2-m 3+…+m m -1-m m =m -1,故⎣⎢⎡⎦⎥⎤m a 1+m a 2+…+ma m=m -1.【答案】m -14.设数列{a n }的前n 项和为S n ,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列;(2)求{a n }的前n 项和S n .【解析】(1)由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3,得4a n +1=a 2n +1-a 2n +2a n +1-2a n , 即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1,又a 1,a 2,a 3,a 4,a 5成等比数列, 而a 5>0,所以a 1>0,从而a 1=3, 所以a n +1+a n =0(n ≤5),q =-1,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5, 所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.。

2021年高考数学专题复习:数列(含答案解析)

2021年高考数学专题复习:数列(含答案解析)
已知等差数列{an}的前n项和为Sn,满足a3=6,____.
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.

(完整版)高考数学专题《数列》超经典

(完整版)高考数学专题《数列》超经典

高考复习序列-----高中数学数列一、数列的通项公式与前n 项的和的关系①11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(注:该公式对任意数列都适用)②1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) ③12n n S a a a =+++L (注:该公式对任意数列都适用) ④s n+1−s n−1=a n+1+a n (注:该公式对任意数列都适用) 二、等差与等比数列的基本知识 1、等差数列⑴ 通项公式与公差:定义式:d a a n n =--1一般式:()q pn a d n a a n n +=⇔-+=11 推广形式: ()n m a a n m d =+-ma a d mn --=⇔;⑵ 前n 项和与通项n a 的关系:前n 项和公式:1()n n n a a s +=1(1)n n na d -=+211()2d n a d n =+-.前n 项和公式的一般式:应用:若已知()n n n f +=22,即可判断为某个等差数列n 的前n 项和,并可求出首项及公差的值。

n a 与n S 的关系:1(2)n n n a S S n -=-≥(注:该公式对任意数列都适用)例:等差数列12-=n S n ,=--1n n a a (直接利用通项公式作差求解) ⑶ 常用性质:①若m+n=p+q ,则有 m n p q a a a a +=+ ;特别地:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差数列;②等差数列的“间隔相等的连续等长片断和序列”(如123,a a a ++456,a a a ++789a a a ++,⋅⋅⋅)仍是等差数列;③{}n a 为公差为d 等差数列,n S 为其前.n .项和..,则232,,m m m m m S S S S S --,43m m S S -,...也成等差数列, A 、 构成的新数列公差为D=m 2d ,即m 2d=(S 2m -S m )- S m ;B 、 对于任意已知S m ,S n ,等差数列{}n a ⎭⎬⎫⎩⎨⎧n S n 也构成一个公差为2d 等差数列。

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。

2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。

3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。

4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。

等差数列的前n项和练习-含答案

等差数列的前n项和练习-含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26.3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知条件得:⎩⎪⎨⎪⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎪⎨⎪⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎪⎨⎪⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n ,所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎪⎨⎪⎧122a +12b =84,202a +20b =460,整理得⎩⎪⎨⎪⎧12a +b =7,20a +b =23.解之得a =2,b =-17,所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列,所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B 【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C【解析】 由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( )A .等差数列B .非等差数列C .常数列D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9【答案】 A【解析】 ⎩⎪⎨⎪⎧a 1=-11,a 4+a 6=-6,∴⎩⎪⎨⎪⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n .=(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a n -4=146,∴5(a 1+a n )=180,a 1+a n =36,S n =n (a 1+a n )2=n ×362=234.∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7C .6D .5【答案】 D 【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S nT n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21.S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎪⎨⎪⎧a 1+5d =12a 1+d =4,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44.(2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022,解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36,∴S n =(a 1+a n )n 2=36+40-4n 2·n =-2n 2+38n=-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +,∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180.方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n ,点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180.方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,有⎩⎪⎨⎪⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎪⎨⎪⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大. ∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180.【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

(浙江版)高考数学一轮复习 专题6.2 等差数列及其前n项和(讲)-浙江版高三全册数学试题

(浙江版)高考数学一轮复习 专题6.2 等差数列及其前n项和(讲)-浙江版高三全册数学试题

第02节 等差数列及其前n 项和【考纲解读】【知识清单】一.等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.6.注意区分等差数列定义中同一个常数与常数的区别. 对点练习:【2017届某某省某某市二模】在等差数列中,若,则_______.【答案】二、等差数列的前n 项和等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 对点练习:【2018届某某省“七彩阳光”联盟高三上期初联考】已知等差数列{}n a 的前n 项和为n S ,若14k S -=,9k S =,则k a =__________,1a 的最大值为__________.【答案】 54.【解析】15k k k a S S -=-=,因为()1592k k a S +==,又k 的最小值为2,可知1a 的最大值为4.三、等差数列的相关性质 1.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+,特殊地,2m p q =+时,则2m p q a a a =+,m a 是p q a a 、的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S --成等差数列. (6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①-S S nd =奇偶; ②1n n S a S a +=奇偶;(Ⅱ)若项数为奇数,设共有21n -项,则①S S -偶奇n a a ==中(中间项);②1S nS n =-奇偶. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a 与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 6.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值. 对点练习:1.在等差数列{}n a 中,已知3810a a +=,则753a a += ( ) A .10 B .18 C .20 D .28 【答案】C2.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B【解析】由95S S =,得()67897820a a a a a a +++=+=,由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.【考点深度剖析】等差数列的性质、通项公式和前n 项和公式构成等差数列的重要内容,在历届高考中必考,既有独立考查的情况,也有与等比数列等其它知识内容综合考查的情况.选择题、填空题、解答题多种题型加以考查.【重点难点突破】考点1 等差数列的定义、通项公式、基本运算【1-1】【2017全国卷1(理)】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,68S =,则{}n a 的公 差为( ). A .1B .2C .4D .8【答案】C【1-2】【2017全国卷2(理))】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 【答案】21nn + 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+=, 414610S a d =+=,求得11a =,1d =,则n a n =,()12n n n S +=,()()112222122311nk kS n n n n ==++++⨯⨯-+∑11111112122311n n n n ⎛⎫=-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.【1-3】【2017届某某市耀华中学二模】已知等差数列{}n a 的前项和为n S ,且2142S =,若记2119132aa a nb --=,则数列{}n b ( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列又不是等比数列 【答案】C【领悟技法】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列; (4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔{}n a 是等差数列; (5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 【触类旁通】【变式一】【2018届某某省某某市西北师X 大学附属中学高三一调】在《X 丘建算经》有一道题:“今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布几何?” ( ) A.尺 B. 尺 C.尺 D.尺【答案】C【变式二】【2018届某某省某某市高三调研性检测】数列{}n a 满足1111,021n n n a a a a ++=+=-.(Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)若数列{}n b 满足1122,1n nn n b a b b a +==+,求{}n b 的前n 项和n S . 【答案】(Ⅰ)证明见解析 (Ⅱ)()12326n n S n +=-⋅+【解析】试题分析:(1)先依据题设条件将11021n n n a a a +++=-变形为1112n na a +-=,进而借助等差数列的定义证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)借助(1)的结论可求得()112121n n n a =+-=-,进而依据112n n n n b a b a ++=⋅求得1222n nn n a b -=⨯= 从而求得()212n n b n =-⋅,然后与运用错位相减法求得()12326n n S n +=-⋅+:解:(Ⅰ)若10n a +=,则0n a =,这与11a =矛盾, ∴10n a +≠,由已知得1120n n n n a a a a ++-+=,∴1112n na a +-=, 故数列{}n a 是以111a =为首项,2为公差的等差数列. (Ⅱ)由(Ⅰ)可知,()1112121n n a =+-=-, 由112n n n n b ab a ++=⋅可知112n n n n a b a b ++=.又112a b = ∴1222n nn n a b -=⨯= ∴()212n n b n =-⋅,∴()123123252212n n S n =⋅+⋅+⋅++-⋅, 则()23412123252212n n S n +=⋅+⋅+⋅++-⋅,∴()()231122222222123226n n n n S n n ++-=+⋅+⋅++⋅--⋅=-⋅-,∴()12326n n S n +=-⋅+考点2 等差数列的性质【2-1】【某某省武邑中学2018届高三上学期第二次调研数学(理)】数列{}n a 满足112n n n a a a -+=+()2n ≥,且1359a a a ++=, 24612a a a ++=,则345a a a ++=( ) A. 9 B. 10 C. 11 D. 12 【答案】D【2-2】【某某省某某一中2018届高三第二次月考】在数列{}n a 中, 28a =, 52a =,且122n n n a a a ++-=(*n N ∈),则1210a a a +++的值是( )A. -10B. 10C. 50D. 70【答案】C【解析】由122n n n a a a ++-=得122n n n a a a ++=+,即数列{}n a 是等差数列,由2582a a ==,,可得1102a d ==-,,,所以212n a n =-+,,当1n 6≤≤时, 0n a ≥,当7n ≥时, 0n a <,所以1210610250a a a S S +++=-=,选C .【2-3】 【2017届某某某某市第三中学高三三模】已知函数()f x 在()1,-+∞上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则{}n a 的前100项的和为( )A. 200-B. 100-C. 0D. 50- 【答案】B【领悟技法】1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 【触类旁通】【变式一】【2017届某某省某某市高三下第二次联考】设等差数列{}n a 的前n 项和为n S ,已知()355134a a -+=, ()388132a a -+=,则下列选项正确的是( )A. 1212S =, 58a a >B. 1224S =, 58a a >C. 1212S =, 58a a <D. 1224S =, 58a a < 【答案】A【解析】由()355134a a -+=, ()388132a a -+=可得:()()33558813(1)1,13(1)1a a a a -+-=-+-=-,构造函数3()f x x x =+,显然函数是奇函数且为增函数,所以5858(1)11(1)11f a f a a a -=>-=-⇒->-, 58a a >,又58(1)(1)0f a f a -+-=所以58(1)(1)a a -=--所以582a a +=,故112125812()6()122a a S a a +==+=【变式二】【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}{},n n a b 满足1211,2,1a a b ===-,且对任意的正整数m,n,p,q ,当m n p q +=+时,都有m n p q a b a b -=-,则()2018112018i i i a b =∑-的值是__________. 【答案】2019【解析】由题意可得2112a b a b -=-, 22b =-, 3122,a b a b -=-得33a =,又11n n n n a b a b ++-=-,11110n n n n a b a b a b +++=+==+=,即,2n n n n n a b a b a =--=,原式可化为当m+n=p+q 时m n p q a a a a +=+,即{}n a 为等差列, n a n =, ()2018112018i i i a b =∑-=()20181122018i i a =∑=2019,填2019.考点3 等差数列的前n 项和公式的综合应用【3-1】【2017届某某省黄陵中学高三(重点班)模拟一】若数列{}n a 满足115a =且1332n n a a +=-,则使10k k a a +⋅<的k 的值为( )A. 21B. 22C. 23D. 24 【答案】C【3-2】【2017届某某某某市高三上基础测试】设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =,则公差d =;n S 为最大值时的n =.【答案】2d =-10n =或11【解析】63(63),10163,2a a d d d =+-∴=+∴=-,因为31(31)a a d =+-,1162(2)a ∴=+⨯-,120a ∴=,221n S n n ∴=-+,当212(1)n =-⨯-,由n ∈Z 得10n =或11时,n S 为最大值.【3-3】【2017届某某省池州市东至县高三12月联考】已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >,其中正确命题的个数为( ) A. 2 B. 3 C. 4 D. 5 【答案】B【领悟技法】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n nn a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 【触类旁通】【变式一】【2017某某卷6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【变式二】【2018届某某省某某市部分学校新高三起点调研】设等差数列{}n a 满足3736a a +=,46275a a =,且1n n a a +有最小值,则这个最小值为__________.【答案】-12【解析】因为数列{}n a 是等差数列,且3736a a +=,所以4636a a +=,4646275,,a a a a =∴是一元二次方程2362750t t -+=的二根,由2362750t t -+=得()()25110t t --=, 125t ∴=或211t =,当4625,11a a ==时, 6411257642a a d --===--, ()44753n a a n d n ∴=+-=-+,当10,0n n a a +><时, 1n n a a +取得最小值,由()7530{71530n n -+>-++<解得465377n <<, 7n ∴=时, 1n n a a +取得最小值,此时()781min 4,3,12n n a a a a +==-=-,当4611,25a a ==时, 6425117642a a d --===-, ()44717n a a n d n ∴=+-=-,当10,0n n a a +时, 1n n a a +取得最小值,由()7170{71170n n -<+->解得101777n <<, 2n ∴=时, 1n n a a +取得最小值,此时()231min 3,4,12n n a a a a +=-==-, 故答案为12-. 【易错试题常警惕】易错典例:在等差数列{}n a 中,已知a 1=20,前n 项和为n S ,且S 10=S 15,求当n 取何值时,n S 有最大值,并求出它的最大值.【错解一】 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142 d.得d =-53,a n =20-(n -1)·53.当a n >0时,20-(n -1)·53>0,∴n<13.∴n=12时,S n 最大,S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.当n =12时,S n 有最大值S 12=130.【错解二】 由a 1=20,S 10=S 15,解得公差d =-53,令⎩⎪⎨⎪⎧20+(n -1)⎝ ⎛⎭⎪⎫-53>0, ①20+n ⎝ ⎛⎭⎪⎫-53≤0, ② 由①得n <13,由②得n≥12,∴n=12时,S n 有最大值S 12=130.易错分析: 错解一中仅解不等式a n >0不能保证S n 最大,也可能a n +1>0,应有a n ≥0且a n +1≤0. 错解二中仅解a n +1≤0也不能保证S n 最大,也可能a n ≤0,应保证a n ≥0才行. 正确解析: 解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142 d.∴d=-53. ∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0.即当n≤12时,a n >0,n≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.解法二:同解法一,求得d =-53,∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一,求得d =-53,又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴5a 13=0,即a 13=0.又a 1>0,∴a 1,a 2,…,a 12均为正数.而a 14及以后各项均为负数, ∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.温馨提醒:1.解决等差数列前n 项和最值问题时一般利用通项不等式组法,即①当a 1>0,d <0时,S n 最大⇔100n n a a +≥⎧⎨≤⎩;②当a 1<0,d >0时,S n 最小⇔10n n a a +≤⎧⎨≥⎩.2.在关于正整数n 的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.3.等差数列的基本运算中,容易出现的问题主要有两个方面:一是忽视题中的条件限制,如公差与公比的符号、大小等,导致增解;二是不能灵活利用等差(比)数列的基本性质转化已知条件,导致列出的方程或方程组较为复杂,增大运算量.【学科素养提升之思想方法篇】----函数思想在数列求最值问题中的应用数列是特殊的函数关系,因此常利用函数的思想解决数列中最值问题 1.等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为1(1)2n n n S na d -=+可变形为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,令A =d 2,B =a 1-d 2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题. 2.等差数列前n 项和的最值(1)若等差数列的首项a 1>0,公差d <0,则等差数列是递减数列,正数项有限,前n 项和有最大值,且满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0.(2)若等差数列的首项a 1<0,公差d >0,则等差数列是递增数列,负数项有限,前n 项和有最小值,且满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0.3.求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.【典例】【2018届某某省某某市五十五中开学考试】已知数列{}n a 是一个等差数列,且21a =,55a =-. (Ⅰ)求{}n a 的通项n a ;(Ⅱ)求{}n a 前n 项和n S 的最大值.【答案】(1)25n a n =-+;(2)n S 的最大值为4. 【解析】方得()224n S n =--+,根据二次函数图象及性质可知,当2n =时,前n 项和取得最大值,最大值为4.等差数列前n 项和22n S An Bn =+,因此可以看出二次函数或一次函数(0d =时)来求最值,考查数列与函数.试题解析:(1)525125252a a d ---===---, 所以()()()2212225n a a n d n n =+-=+-⨯-=-+; (2)13a =,()()213242n n n S n n n -=+⨯-=-+ 当2n =时,前n 项和取得最大值,最大值为4。

2021版高考文科数学(人教A版)一轮复习第六章 第3讲 等比数列及其前n项和

2021版高考文科数学(人教A版)一轮复习第六章 第3讲 等比数列及其前n项和

第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(非零). ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论1.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 2.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.3.等比数列{a n }的前n 项和S n =A +B ·C n ⇔A +B =0,公比q =C (A ,B ,C 均不为零) 二、习题改编1.(必修5P53练习T3改编)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选 D.设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8,即a 26=a 3·a 9.2.(必修5P53习题T1改编)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=54,a 2+a 4=52,则q = . 答案:23.(必修5P54A 组T8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为 .解析:设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案:27,81一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)运用等比数列的前n 项和公式时,忽略q =1的情况; (2)“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件; (3)对等比数列项的符号不能作出正确判断.1.已知在等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值是( ) A .1 B .-12C .1或-12D .-1或12解析:选C.当q =1时,a n=7,S 3=21,符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1q 2=7,a 1(1-q 3)1-q =21,得q =-12.综上,q 的值是1或-12,故选C.2.在等比数列{a n }中,a 3=2,a 7=8,则a 5= .解析:因数列{a n }为等比数列,则a 25=a 3a 7=16,又a 3>0,所以a 5=4. 答案:43.在等比数列{a n }中,a 2=4,a 10=16,则a 2和a 10的等比中项为 . 解析:设a 2与a 10的等比中项为G ,因为a 2=4,a 10=16,所以G 2=4×16=64,所以G =±8.答案:±8等比数列的基本运算(师生共研)(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .(2)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.则a n = .【解析】 (1)通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q=1×⎣⎡⎦⎤1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-12=58. 优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=⎝⎛⎭⎫-123=-18,所以S 4=S 3+a 4=34+⎝⎛⎭⎫-18=58. 优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎣⎡⎦⎤1-⎝⎛⎭⎫-124=58.(2)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1. 【答案】 (1)58(2)22n -1解决等比数列有关问题的常见数学思想(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.(3)整体思想:应用等比数列前n 项和公式时,常把q n 或a 11-q当成整体进行求解.1.(一题多解)(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又S 4=a 1(1-q 4)1-q=15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4解析:选A.因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.等比数列的判定与证明(典例迁移)(1)已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n}是等比数列 (2)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.【解】 (1)选D.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n,不一定是常数,所以D 错误. (2)证明:因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n ,所以b n +1b n=a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.【迁移探究1】 (变问法)若本例(2)中的条件不变,试求{a n }的通项公式. 解:由(2)知b n =a n +1-2a n =3·2n -1, 所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.所以a n 2n =12+(n -1)·34=3n -14,所以a n =(3n -1)·2n -2.【迁移探究2】 (变条件)在本例(2)中,若c n =a n3n -1,证明:数列{c n }为等比数列.证明:由[迁移探究1]知,a n =(3n -1)·2n -2,所以c n =2n -2. 所以c n +1c n =2n -12n -2=2,又c 1=a 13×1-1=12,所以数列{c n }是首项为12,公比为2的等比数列.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.(一题多解)已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12D .12解析:选A.法一:当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.法二:因为等比数列的前n 项和S n =k ×q n -k ,则12a =-16,a =-13.2.(2019·高考全国卷Ⅱ节选)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.证明:{a n +b n }是等比数列,{a n -b n }是等差数列.证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.等比数列的性质及应用(多维探究) 角度一 等比数列项的性质的应用(1)(2020·洛阳市第一次联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .- 2 C. 2D .-2或 2(2)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.(2)由题意知a 1a 5=a 23=4,因为数列{a n }的各项均为正数,所以a 3=2.所以a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25.所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.【答案】 (1)B (2)5角度二 等比数列前n 项和的性质的应用(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3= .【解析】 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.(2)设等比数列{a n }的公比为q ,因为S 6S 3=12,所以{a n }的公比q ≠1.由a 1(1-q 6)1-q÷a 1(1-q 3)1-q =12,得q 3=-12,所以S 9S 3=1-q 91-q 3=34. 【答案】 (1)2 (2)34等比数列性质应用问题的解题突破口等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项公式的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进行适当变形.此外,解题时注意“设而不求”的运用.1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14D .15解析:选 C.因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解得m =5, 所以b 5=324,即a 13a 14a 15=324. 所以n =14.3.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10= .解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝⎛⎭⎫-98=-53. 答案:-53思想方法系列11 分类讨论思想求解数列问题(2020·武汉市调研测试)已知正项等比数列{a n }的前n 项和为S n ,满足a 1=1,a 3-4a 1=0.(1)求S n ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值.【解】 (1){a n }是正项等比数列,由a 3-4a 1=0,所以a 1q 2-4a 1=0 所以q =2,则a n 的前n 项和S n =1-2n1-2=2n -1.(2)由(1)知a n =2n -1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0, 所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6)=-S 4+S 10-S 4+60-90 =S 10-2S 4-30=(210-1)-2×(24-1)-30 =210-25-29 =1 024-32-29 =963.分类讨论思想在数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.1.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2解析:选A.法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.2.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立; 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2 (-q )·⎝⎛⎭⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).[基础题组练]1.(2020·广东六校第一次联考)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( )A .16B .15C .8D .7解析:选B.设公比为q ,由题意得4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2,又a 1≠0,所以4q =4+q 2,解得q =2,所以S 4=1×(1-24)1-2=15,故选B.2.(2020·辽宁五校联考)各项为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析:选C.由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,所以log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.3.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( )A .2n -1B .2n -1 C .2n -1D .2n +1解析:选B.当n =1时,S 1=2a 1-1=a 1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.4.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( ) A.13 B.17 C.23D .37解析:选A.法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A.法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.5.(2020·宁夏中卫一模)中国古代数学著作《算法统宗》中有这一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A .24里B .12里C .6里D .3里解析:选C.记该人每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,所以a 6=192×125=6,故选C.6.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5= .解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12137.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .解析:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6. 答案:68.已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为 ;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)= .解析:由a 2=2,a 1+a 3=5,{a n }是递减的等比数列,得a 1=4,a 3=1,a n =4×⎝⎛⎭⎫12n -1,则a 1a 2+a 2a 3+…+a n a n +1是首项为8,公比为14的等比数列的前n 项和.故a 1a 2+a 2a 3+…+a n a n +1=8+2+12+…+8×⎝⎛⎭⎫14n -1=8×⎣⎡⎦⎤1-⎝⎛⎭⎫14n1-14=323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n .答案:a n =4×⎝⎛⎭⎫12n -1323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n 9.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.10.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3的值;(2)判断数列{b n }是否为等比数列,并说明理由. 解:(1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4, 将n =2代入得,a 3=3a 2,所以,a 3=12, 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.[综合题组练]1.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1) B.18×(910-1) C.126×(279-1) D .126×(2710-1)解析:选D.因为a n +1-a n =b n +1b n=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .解析:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.答案:4n +1-433.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.解:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -3.(2)由(1)可知,S n =a 1(1-q n)1-q =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n <8. 因为a n >0,所以S n 单调递增. 又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.4.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.解:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,所以a n =3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, 因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执
同是寒窗苦读,怎愿甘拜下风!
1
(江苏专用)2018版高考数学专题复习 专题6 数列 第38练 数列
的前n项和练习 理
训练目标 (1)求数列前n项和的常用方法;(2)数列通项求和的综合应用.
训练题型 (1)一般数列求和;(2)数列知识的综合应用.

解题策略
数列求和的常用方法:(1)公式法;(2)分组法;(3)并项法;(4)倒序相加法;
(5)裂项相消法;(6)错位相减法.
1.(2016·东营期中)若数列{an}的通项公式是an=(-1)n·(3n-2),则a1+a2+…+a10=
________.
2.(2017·山西晋中联考)已知数列{an}的通项公式是an=2n-12n,其前n项和Sn=32164,则项
数n=________.
3.(2016·河南中原名校联考二)已知函数f(x)=x2+ax的图象在点A(0,f(0))处的切线
l

与直线2x-y+2=0平行,若数列{1fn}的前n项和为Sn,则S20的值为________.
4.(2016·徐州模拟)若Sn是数列{an}的前n项和,且a1=-1,an+1=Sn·Sn+1,则Sn=
________.
5.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=a1+an+n,则1a1+1a2+…+1a2 013=
________.
6.(2016·合肥第二次教学质量检测)已知数列{an}的前n项和为Sn,若Sn=2an-2n,则
S
n

=________.

7.(2016·苏州模拟)设f(x)是定义在R上恒不为零的函数,且对任意的x,y∈R,都有
f(x)·f(y)=f(x+y),若a1=12,an=f(n)(n∈N*),则数列{an}的前n项和S
n
的取值范围是

________________.
8.(2016·宿迁模拟)数列{an}的通项公式an=ncos nπ2+1,前n项和为Sn,则S2 012=
________.
9.(2016·云南师大附中月考)设S=1+112+122+1+122+132+ 1+132+142+…+
1+12 0142+12 0152,则不大于S的最大整数[S]等于________.
10.正项数列{an}的前n项和Sn满足:S2n-(n2+n-1)Sn-(n2+n)=0.
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执
同是寒窗苦读,怎愿甘拜下风!
2
(1)求数列{an}的通项公式an;
(2)令bn=n+1n+22a2n,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<564.
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执

同是寒窗苦读,怎愿甘拜下风!
3
答案精析
1.15 2.6 3.325462 4.-1n
5.2 0131 007
解析 因为an+1=a1+an+n=1+an+n,
所以an+1-an=n+1.
用累加法:an=a1+(a2-a1)+…
+(an-an-1)

=1+2+…+n=nn+12,

所以1an=2nn+1=21n-1n+1.
所以1a1+1a2+…+1a2 013
=2 1-12+12-13+13-14+…



+12 013-
1

2 014

=21-12 014=2 0131 007.
6.n·2n
解析 ∵Sn=2an-2n
=2(Sn-Sn-1)-2n,
即Sn=2Sn-1+2n(n≥2),

∴Sn2n=2Sn-12n+1=Sn-12n-1+1,

∴Sn2n-Sn-12n-1=1,
且S1=a1=2,∴S12=1,
∴数列{Sn2n}是首项为1,公差为1的等差数列,
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执
同是寒窗苦读,怎愿甘拜下风!
4
∴Sn2n=n,∴Sn=n·2n.
7.[12,1)
解析 由已知可得a1=f(1)=12,
a2=f(2)=[f
(1)]2=(12)2,

a3=f(3)=f(2)·f
(1)

=[f(1)]3=(12)3,…,

an=f(n)=[f
(1)]n=(12)n,

所以Sn=12+(12)2+(12)3+…+(12)n

=12[1-12n]1-12
=1-(12)n,
因为n∈N*,所以12≤Sn<1.
8.3 018
解析 由于f(n)=cos nπ2的值具有周期性,
所以可从数列的周期性及从头开始连续四项的和为定值入手解决.
当n=4k+1(k∈N)时,

an=(4k
+1)cos 4k+12π+1=1,

当n=4k+2(k∈N)时,
an=(4k
+2)cos 4k+22π+1

=-(4k+2)+1=-4k-1,
当n=4k+3(k∈N)时,

an=(4k
+3)cos 4k+32π+1=1,

当n=4k+4(k∈N)时,
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执
同是寒窗苦读,怎愿甘拜下风!
5
an=(4k
+4)cos 4k+42π+1

=(4k+4)+1=4k+5,
∴a4k+1+a4k+2+a4k+3+a4k+4=1-4k-1+1+4k+5=6.
∴S2 012=a1+a2+a3+a4+a5+…+a2 012
=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a2 009+a2 010+a2 011+a2 012)
=6×503=3 018.
9.2 014

解析 ∵1+1n2+11+n2

= n2+n2+2n2+n+1n21+n2
=n2+n+1nn+1=1+(1n-1n+1),
∴S=1+(11-12)+1+(12-13)+…+1+(12 014-12 015)
=2 015-12 015,故[S]=2 014.
10.(1)解 由S2n-(n2+n-1)Sn-(n2+n)=0,
得[Sn-(n2+n)](Sn+1)=0,
由于{an}是正项数列,所以Sn+1>0.
所以Sn=n2+n(n∈N*).
n≥2时,an=Sn-Sn-1=2n

n=1时,a1=S
1
=2适合上式.

所以an=2n(n∈N*).
(2)证明 由an=2n(n∈N*),

得bn=n+1n+22a2n=n+14n2n+22

=1161n2-1n+22,
T
n
=116 1-132+122-142

+132-152+…+ 1n-12-1n+12
+


1n2-1
n
+2

2
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执
同是寒窗苦读,怎愿甘拜下风!
6
=1161+122-1n+12-1n+22
<1161+122
=564(n∈N*).
即对于任意的n∈N*,都有Tn<564.

相关文档
最新文档