阶线性方程与常数变易法习题及解答
第4章_第4节_常数变易法

a11 ( x )e x a11 ( x ) sin x a12 ( x ) x a21 ( x )e a21 ( x ) sin x a22 ( x )
a11 ( x ) 1, a21 ( x ) a22 ( x ) 0 a12 ( x ) cos x sin x .
②
③
由③,得 y2 c2 , 再由 y2 ( 0) 1,得 c2 1
y2 1,
代入②得
dy1 y1 (cos x sin x ) 1 xe x dx 关于 y1 的一阶非齐线性方程
y1 ( x )
x x dt e 0 [
e x[
0
x
0
(cos t sin t te t )e
的一个基本解组,则(3.1)满足初值:
( 3.2)
( x0 ) ( x0 ) ( n1) ( x0 ) 0
的特解为: (3.1)的常数变易公式 n x W (t ) ni ( x) yi ( x ) f ( t )dt x0 W ( t ) i 1
x
x
0
c ( t ) dt
x
x
0
1 ( t ) f ( t ) dt
c ( x ) c ( x0 )
x
x
0
1 ( t ) f ( t ) dt
33
亦即
c ( x1 ( t ) f ( t ) dt
dy1 a11 ( x ) y1 a12 ( x ) y2 xe x dx dy2 a21 ( x ) y1 a22 ( x ) y2 dx 已知与其对应的齐线性方程组的一个基解矩阵
常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
微积分习题讲解与答案

习题8.11。
指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (1)02)(2=+'-'xy y y y x (2) 02=+'-y y x y x (3)0)(sin 42=+''+'''y x y y x (4)θθ2sin d d =+p p解 (1) 1阶 非线性 (2) 1阶 线性 (3) 3阶 线性 (4) 1阶 线性2.验证下列函数是否是所给微分方程的解 (1) xxy x y y x sin ,cos ==+' (2) 2212,2)1(x C y x xy y x -+==+'- (C 为任意常数) (3) xCe y y y y ==+'-'',02 (C 为任意常数) (4) x xe C eC y y y y 21212121,0)(λλλλλλ+==+'+-'' (C 1 ,C 2为任意常数)(5) C y xy x y x y y x =+--='-22,2)2( (C 为任意常数) (6) )ln(,02)(2xy y y y y y x y x xy =='-'+'+''- 解 (1) 是,左=x x xx x x x xcos sin sin cos 2=+-=右(2) 是,左=x x C x x Cx x 2)12(1)1(222=-++---=右(3) 是,左=02=+-xxxCe Ce Ce =右 (4) 是,左=0)())(()(2121212121221121222211=++++-+x x x x x xe C e C e C e C eC e C λλλλλλλλλλλλλλ =右(5) 是,左==-=---y x yx yx y x 222)2(右(6) 是,左=x xy yx xy y y x xy y x x xy xy xy xy x xy ---+-+----2)()(22)(22332=0)())(2()()(222222232=---+-+---x xy x xy y y x xy xy x xy xy xy xy = 右3.求下列微分方程的解(1) 2d d =x y; (2) x xy cos d d 22=; (3) 0d )1(d )1(=--+y y x y (4) yx xy y )1()1(22++=' 解 (1)C x y x y +==⎰⎰2,d 2d(2) 1sin ,d cos d C x y x x x y +='=''⎰⎰211cos ,d )(sin d Cx C x y x C x x y ++-=+='⎰⎰(3)⎰⎰=+-x y y yd d 11⎰⎰=+++-x y y y d d 12)1(解得⎰⎰⎰=++-x y yy d d 12d 即 C x y y +=++-|1|ln 2(4)⎰⎰+=+dx x xdy y y )1(122解得 2122)1ln()1ln(C x y ++=+整理得 22211C x y =++4。
二阶变系数微分方程的●常数变易法●平移法●级数法+题型和题法系统讲座

二阶变系数微分方程的●常数变易法●平移法●级数法 题型和题法系统讲座一、二阶变系数微分方程常数变易法已知()()()0y x p x y q x y '''++=的通解()1122Y x c y c y =+,求()()()()y x p x y q x y f x '''++=的通解y解答方法:令()()()()y x p x y q x y f x '''++=【例1】已知20x y xy y '''-+=的通解为()12ln Y x c x c x x =+,求2x y xy y x '''-+=的通解y 。
解:22111x y xy y x y y y x x x''''''-+=⇒-+= 令 ()()()12ln Y x v x x v x x x =+代入2111y y y x x x'''-+=,求得()1212212ln 11ln ln ln ln ln 11ln 11ln 1ln ln 2y c x c x x Y x x x x x x c x c x x x dx x x dx xxxxx xxxc x c x x x x =++⋅⋅=+-+++=++⎰⎰ 已知()()()0y x p x y q x y '''++=的一个特解1y ,求()()()()y x p x y q x y f x '''++=的通解y解答方法:()()()()y x p x y q x y f x '''++=可求得通解y 。
【例2】参见同济5版下册P300例4或同济6版上册P330例4。
【例3】已知1y x =是()2220x y x xy y '''-+=的一个特解,求()23222x y x xy y x '''-+=的通解y 。
巧用常数变易法解题

2k
6k +
1
=
-
1. 所以 k = 1 或 k =
1 3
,
所以所求的直线
方程为: y = x + 2 或 y =
1 3
x
+
2.
巧用常数变易法解题
王 辉 (陕西省咸阳市南郊高级中学 712046) 李政谦 (陕西省三原县南郊高级中学 713800)
在求解某些题目的过程中, 善于在几种 知识的交融点处去联想、发散, 并合理地用变 量 去代换常数或分解常数, 使其变成具有实 际 模型意义的常用曲线方程或区域关系, 并 利用其性质来解题, 往往使问题简单化、明了 化, 下面列举几个常见类型加以阐述. 1 在方程中的应用
8y - 6x + 50 + 8y + 6x + 50 的最大值. 分析 仔细观察已知式中的“25”与函
数 式中根号内的“50”的关系, 启发我们将 “50”变换为“25 + 25”, 将其中的一个“25” 用“x 2 + y 2”代替, 就可以得到如下的解法.
解 变换原函数得 t =
8y + 6x + 50 + 8y - 6x + 50
+ (x - 3) 2 + 2 = 10, 将方程中的常数“2”看作变量, 即令 2 =
y 2, 则 (x + 3) 2 + y 2 + (x - 3) 2 + y 2
= 10.
由 椭圆的定义可知, 这个方程表示以
F 1 (- 3, 0) , F 2 (3, 0) 为焦点, 长轴长为 10 的
椭圆,
+
c=
1, 求证: a2 +
江苏大学-常微分方程-3-7 - 一阶线性方程与常数变易法

2.2 一阶线性方程与常数变易公式(First order linear differential equationand constant variation formula )[教学内容] 1. 认识一阶线性齐次方程和一阶线性非齐次方程; 2.介绍一阶线性非齐次方程的常数变易公式; 3. 介绍电学知识和基尔霍夫定律; 4. 认识Bernoulli 方程及其通过变量替换化为一阶线性方程的解法; 5. 介绍其他可化为一阶线性方程的例子.[教学重难点] 重点是知道一阶线性非齐次方程的解法,难点是如何根据方程的形式引入新的变量变换使得新方程为一阶线性方程.[教学方法] 自学1、4;讲授2、3 课堂练习 [考核目标]1. 熟练运用常数变易公式;2. 知道⎰dx bx sin e ax 计算和一些三角函数恒等式; 3. 知道电学一些知识,如电容电流公式、电感电压公式和基尔霍夫定律; 4. 知道溶液混合问题建模; 5. 认识Bernoulli 方程并会经过适当变换化为线性方程求解. 6. 知道交换自变量和因变量化非线性方程为一阶线性方程.1. 认识一阶线性齐次方程和一阶线性非齐次方程(First order (non)homogeneous linear differential equation ) (1) 称形如y p(x)dxdy=的方程为一阶线性齐次方程,其中p(x)连续; 称形如q(x)y p(x)dxdy+=的方程为一阶线性非齐次齐次方程,其中q(x) p(x),连续且q(x)不恒为零. (2) 当0y ≠时,改写y p(x)dxdy=为 1C dx p(x)|y |ln ,dx p(x)y dy dx, p(x)y dy +===⎰⎰⎰,其中⎰dx p(x)表示P(x)的一个原函数(antiderivative). 因此,y p(x)dxdy =通解(general solution)为1C p(x)dx e C ~,e C ~y =⎰±=,此外y=0也是解. 综上,y p(x)dxdy =的解为C ,e C y p(x)dx⎰=为任意常数. (3) 常数变易法:如何求q(x)y p(x)dxdy+=的解呢? 假定上述线性非齐次方程有如下形式的解 ⎰=p(x)dxeC(x)y ,则代入原方程来确定C(x),q(x)p(x)C(x)e e p(x) C(x)e (x)' C dxdy p(x)dxp(x)dx p(x)dx +⎰=⎰+⎰=, 即q(x)e(x)' C p(x)dx=⎰,C q(x)dx eC(x) q(x), e(x)' C p(x)dx-p(x)dx+⎰=⎰=⎰-,此处C 为任意常数,⎰⎰q(x)dx ep(x)dx-为函数q(x)ep(x)dx-⎰一个原函数.综上,一阶线性非齐次方程的通解为⎰⎰⎰⎰+⎰=+⎰⋅⎰=q(x)dx eeCeC)q(x)dx e(ey(x)p(x)dx-p(x)dxp(x)dxp(x)dx-p(x)dx.2. 一些实际应用例子(Applications ) 例28. 电容器的充电和放电模型RC 电路:假定开始电容C 上没有电荷,电容两端电压为0,合上开关1后,电池E 对电容C 开始充电,电池电压为E ,电阻阻值为R ,电容C 两端电压逐渐上升. 写出充电过程中,电容C 两端电压随时间变化的规律.解:设U(t)表示在时刻t 时电容两端电压,则根据电学知识,电容两端电量Q=U C ,电流I =dtdU C dt dQ =, 电阻两端电压为R I=dt dUR . 由基尔霍夫定律知,闭合回路上压降为零.即有0dt dU RC U E =--. 改写为 RC EU RC 1dt dU +⋅-=,这是一个一阶线性非齐次方程. 记RCE q(t) ,RC 1p(t)=-=, 由常数变易公式得到, C~e E )C ~(Ee e )C ~dt RCE e (e )C ~q(t)dt e(eU(t)RC tRC t RC t RC t RC t p(t)dtp(t)dt----+=+=+=+⎰⎰=⎰⎰再注意到初始条件U(0)=0,-E C ~0,C ~e Ee U(0)00==+=,因此,RC tEe E U(t)--=.例29. 考察如下RL 电路图,设电源E 的电压为0 U sin wt,U E m m >=为常数,求电感线圈上电流I 随时间的变化规律,设t=0时,I=0.解:设I(t)表示时刻t 时电感线圈上电流强度,则由电学知识有,电感线圈两端电压为dtdI L . 由基尔霍夫定律知,闭合回路电压降为零. 于是 0dtdIL I R E =--. 改写为sin wt U L1L I R dt dIm +-=, 这是一个一阶线性非齐次方程. 记wt sin L Uq(t) ,L R p(t)m =-=, 由常数变易公式得到,)C ~dt sin wt LU e (e )C ~q(t)dt e(eI(t)m L RtL Rt p(t)dtp(t)dt⎰⎰+=+⎰⎰=--.b a bt cos b bt sin a e bt))isin bt (cos e b a ib)(a Im()e ib a 1Im()dt e Im(dt )Im(e e dt bt sin e 22at a 22ib)t(a ib)t (a ibt at at +-=+⋅+-=+===++⎰⎰⎰22t LR m LRtm m LRt w (R/L) wt)cos w sin wt L R(e LU dt sin wt e LUdt sin wt L U e+-==⎰⎰令2222w(R/L)w φsin ,w(R/L)R/L φ cos +-=+=,于是由B sin A cos B cos A sin B)sin(A +=+知,22t LR mm LRt w (R/L)φ)sin(wt e L U dt sin wt L U e++=⎰,于是L Rt22m e C ~w (R/L)φ)sin(wt LU I(t)-+++=.再注意到初始条件I(0)=0,22m0022m w(R/L)φsin L U C ~0,C ~e e w (R/L)φsin LU I(0)+-==++=,因此,t LR 22m22mew(R/L)sin(φL Uw (R/L)φ)sin(wt LUI(t)-+-++=).练习23. (1) 求dt bt cos e at ⎰; (2) 改写 t cos b sin t a +为θ)sin(t ba 122++,给出θ所满足的条件. (3) 由 Euler 公式b sin i b cos e ib+=和R b a, ,e e e b)i(a b i a i ∈=⋅+推导出:b asin sin b cos a cos b)cos(a b,sin a cos b cos a sin b)sin(a -=++=+和b))sin(a b)(sin(a 21b cos a sin -++=, b))cos(a b)(cos(a 21b cos a cos -++=. 作业24. (1) 如例28中RC 电路图,设E=10V , R=100Ω, C=0.01 F, 开始时刻电容C 上电压为零并在此刻合上开关1,问经过多长时间电容C 两端电压为V 5U 1=?(2)如下RL 电路图,设E, R, L 均为正的常数,求开关闭合后电路中电流强度I(t),假定I(0)=0.例30. 溶液混合问题:设容积为V (单位3m )的密封容器装着某种溶液如下图,从A 以速度r (单位/s m 3)流入浓度为0C e >(常数)的相同溶液,经充分混合后在B 以相同速度r 流出容器, 假设时刻t=0时,容器溶液浓度为0,问容器中浓度随时间变化的规律.解:设时刻t 时容器溶液浓度为C(t),则C(0)=0,且由溶质出入平衡,也即流入减去流出等于容器内溶质变化量,由微元法建立如下等式:V C(t))Δt)(C(t C(t)Δt r C Δt r e -+≈-,即e C VrC V r dt dC +-=. (以下略) 作业25. 假设伊利湖的存水量为34m 1048⨯,从休伦湖流入和从安大略湖流出的速度都是每年34m 1035⨯,在t=0时刻,伊利湖的污染物浓度时休伦湖的5倍. 如果流出的水是完全混合好的湖水,问使得伊利湖的污染物浓度减少到休伦湖2倍需要多少时间?(假定休伦湖污染物浓度为常数0C e >) 3. Bernoulli 方程及其解法称形如R n ,y q(x)y p(x)dxdyn ∈+=为Bernoulli 方程. 解法:当0y ≠时,改写原方程1n , n)q(x)(1y p(x) n)(1dxdy y n)-(1n -1n -≠-+-=, 令n)q(x)(1n)p(x)u (1dx du ,y u n1-+-==-,这是一个一阶线性非齐次方程. 例31 求解方程2y x xy6dx dy -=. 解:经过观察,原方程是一个Bernoulli 方程, n=2. (1)当0y ≠时,改写原方程为 x 2)(1y x62)(1dx dy 2)y-(1212---=--,令21y u -=,则 x u x6dx du +-=. 由常数变易公式得到, 6276-dx x6dx x6x C8x C)dx x (x )C xdx e(eu(x)+=+=+⎰⎰=⎰⎰-.返回原变量得到62x C8x y 1+=.(2) 当y=0时,容易验证0y =也是原方程的解. 作业26. 求解方程(1)33y x y x dxdy=+; (2)1y(1) ,y xy 'y x 22==-. 4. 交换自变量和因变量化非线性方程为一阶线性方程 例32. 求解(1)2y 2x y dx dy -=; (2)33yx xy 1dx dy -=. 解:(1) 这是一个一阶方程,非线性方程,不是Bernoulli 方程.(a) 当0y ≠时,交换自变量和因变量而改写原方程为 y x y2y y 2x dy dx 2-=-=. 这是一个一阶线性方程. 由常数变易公式得到, C)y)dy (e(ex dy y2dy y2+-⎰⎰=⎰-,即 |)y |ln (C y C)y)dy (y1(y x 222-=+-=⎰为所求方程的通积分. (b) 当y=0时,已验证y=0也是原方程的一个解. (2) 结合Bernoulli 方程来完成,留作练习.作业27. 求解方程(1)3y x y dx dy +=; (2) y2y x dx dy 22+=.5. 一些一阶线性方程的理论 (1)考虑方程q(x)y p(x)dxdy=+,其中p(x), q(x)都是以w>0为周期的连续函数. 用常数变易公式证明:(a) 若0q(x)≡,则方程任一非零解都以w 为周期的周期函数充要条件是p(x)的平均值.0p(x)dx w 1(x)p w==⎰ (b) 若q(x)不恒为零,则方程有唯一w 周期解充要条件是0p(x)dx w1(x)p w0≠=⎰, 试求出此解. (参见丁同仁、李承治《常微分方程教程》P36 习题5, 6)。
线性考试题库及答案解析

线性考试题库及答案解析1. 线性代数中,矩阵的秩是指什么?答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大数目。
2. 请解释线性方程组的解集。
答案:线性方程组的解集是指所有满足方程组的未知数的集合。
3. 什么是特征值和特征向量?答案:对于一个方阵A,如果存在一个非零向量v和标量λ,使得Av = λv,则称λ为矩阵A的特征值,v为对应的特征向量。
4. 矩阵的可逆性是什么?答案:如果一个方阵存在逆矩阵,则称该矩阵是可逆的。
5. 请解释什么是正交矩阵。
答案:正交矩阵是指一个矩阵的转置矩阵与其自身的乘积等于单位矩阵的矩阵。
6. 如何判断一个矩阵是否为正定矩阵?答案:一个实对称矩阵是正定的,如果它的所有特征值都是正的。
7. 线性空间的基是什么?答案:线性空间的基是构成该空间的一组线性无关的向量,且这组向量可以线性表出空间中的任意向量。
8. 请解释什么是线性变换。
答案:线性变换是指在两个线性空间之间,保持向量加法和数乘运算不变的映射。
9. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指方程组中所有方程的系数都为零时的解。
10. 请解释什么是矩阵的迹。
答案:矩阵的迹是指矩阵对角线元素之和。
11. 什么是向量的范数?答案:向量的范数是指衡量向量大小的非负实数。
12. 请解释什么是投影矩阵。
答案:投影矩阵是指将一个向量投影到另一个向量上得到的向量。
13. 什么是线性方程组的非齐次解?答案:线性方程组的非齐次解是指方程组中至少有一个方程的系数不为零时的解。
14. 什么是矩阵的行列式?答案:矩阵的行列式是一个标量值,它提供了矩阵是否可逆的信息。
15. 请解释什么是矩阵的伴随矩阵。
答案:矩阵的伴随矩阵是由原矩阵的代数余子式组成的矩阵的转置。
常微分方程习题答案

常微分方程习题答案常微分方程习题是数学学科中的重要内容之一。
通过解答这些习题,可以帮助学生巩固和加深对常微分方程的理解和应用能力。
下面将通过几个实例来展示常微分方程习题的解答过程。
第一个习题是求解一阶线性常微分方程。
考虑方程dy/dx + y = x。
首先将方程改写为dy/dx = x - y。
这是一个一阶线性常微分方程,可以使用常数变易法求解。
设y = uv,其中u和v是关于x的函数。
将y = uv代入方程,得到u(dv/dx) + v(du/dx) + uv = x。
整理后得到du/dx = (x - v)/u。
将等式两边分别关于x求导,得到d^2u/dx^2 = (du/dx - v)/u。
将方程du/dx = (x - v)/u带入,得到d^2u/dx^2 = (x - v)/u。
这是一个二阶常微分方程,可以通过适当的变量代换和求解方法得到解析解。
最后再将u和v代入y = uv,即可得到原方程的解。
第二个习题是求解一阶非线性常微分方程。
考虑方程dy/dx = y^2 + x。
这是一个一阶非线性常微分方程,可以使用分离变量法求解。
将方程改写为dy/(y^2 + x) = dx。
对方程两边同时积分,得到∫dy/(y^2 + x) = ∫dx。
对左边的积分进行变量代换,令u = y^2 + x,得到1/2∫du/u = x + C。
对等式两边积分,得到1/2ln|u| = x + C。
再将u代回,得到1/2ln|y^2 + x| = x + C。
整理后得到ln|y^2 + x| = 2x + 2C。
最后再对等式两边取指数,得到|y^2 + x| = e^(2x + 2C)。
由于指数函数的定义域为正实数,所以可以去掉绝对值符号,得到y^2 + x = e^(2x + 2C)。
这就是原方程的解。
通过以上两个习题的解答过程,我们可以看到常微分方程习题的解答方法多种多样,需要根据具体的方程形式选择合适的方法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 一阶线性方程与常数变易法习题及解答求下列方程的解1.dxdy =x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。
2.dtdx +3x=e t 2 解:原方程可化为:dt dx =-3x+e t 2 所以:x=e ⎰-dt 3 (⎰e t 2 e -⎰-dt 3c dt +)=e t 3- (51e t 5+c) =c e t 3-+51e t 2 是原方程的解。
3.dtds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c + ) =e t sin -(⎰+c dt te t t sin cos sin )= e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。
4.dx dy n x x e y nx =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x nn x dx x n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx =0解:原方程可化为:dx dy =-1212+-y xx ⎰=-dx x x ey 212(c dx e dx x x +⎰-221) )21(ln 2+=x e )(1ln 2⎰+--c dx e x x =)1(12xce x + 是原方程的解.6. dx dy 234xyx x += 解:dx dy 234xy x x += =23yx +x y 令xy u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2c x u +=331 c x x u +=-33 (*)将xy u =带入 (*)中 得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye y Q y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
8. =x+y 解:则P(y)= e 方程的通解为:x=e e 2331*)22y dy c yy cy y ++⎰ =y( =即 x= +cy是方程的通解 ,且y=0也是方程的解。
()()()19.,1),()(())01adx P x dx a x P x dx P x dxa a dy ay x a dx x xa x P x Q x x x e e x e e Q x dx c a a -+=++==⎰⎰==⎰⎰+==⎰为常数解:(方程的通解为: y=1x+1 =x (dx+c) x x当 时,方程的通解为 y=x+ln/x/+c当 时,方程01a a a≠a 的通解为y=cx+xln/x/-1当 ,时,方程的通解为x 1 y=cx +- 1-3331()()()310.11(),()1(())(*)dx P x dx x P x dx P x dx dy x y x dxdy y x dx xP x Q x x xe e xe e Q x dx c x x dx c c xc x --+==-+=-=⎰⎰==⎰⎰++++⎰⎰33解:方程的通解为: y=1 =xx =4x 方程的通解为: y=4()()()223333233232332311.2()2()()2,()2(())((2)p x xdx x p x p x x dy xy x y dxxy x y dxxy x y dxxy x dxy zdz xz x dxP x x Q x x e dx e e e dx e dxQ x dx c e x -----+==-+=-+=--+==--+==-⎰⎰==⎰⎰+-⎰⎰23-2x dy 解:两边除以y dy dy 令方程的通解为:z= =e 222)11)1,0x x dx c ce y ce y +++++==22 =x 故方程的通解为:(x 且也是方程的解。
22212111()()222ln 112.(ln 2)424ln 2ln 2ln 22ln 2ln (),()(())ln 1(())(P x dx P x dx dx dx x x c x y x ydx xdy x dy x y y dx x xy dy x y y dx x xdy x y dx x xy zdz x z dx x xx P x Q x x xz e e Q x dx c x z e e dx c x x -------=++=-=-=-==-==-⎰⎰=+⎰⎰=-+=⎰⎰解: 两边除以 令方程的通解为:222ln ())ln 1424ln 1:()1,424x dx c x x c x x c x y x -+=++++=⎰方程的通解为且y=0也是解。
13222(2)2122xydy y x dxdy y x y dx xy x y=--==- 这是n=-1时的伯努利方程。
两边同除以1y, 212dy y y dx x =- 令2y z = 2dz dy y dx dx= 22211dz y z dx x x=-=-P(x)=2xQ(x)=-1 由一阶线性方程的求解公式 22()dx dx x x z e e dx c -⎰⎰=-+⎰ =2x x c +22y x x c =+ 14 23y dy e x dx x += 两边同乘以y e 22()3y yydy e xe e dx x += 令y e z = ydz dy e dx dx= 222233dz z xz z z dx x x x+==+ 这是n=2时的伯努利方程。
两边同除以2z22131dz z dx xz x =+ 令1T z= 21dT dz dx z dx =- 231dT T dx x x-=+ P (x )=3x - Q(x)=21x - 由一阶线性方程的求解公式3321()dx dx x x T e e dx c x--⎰⎰=+⎰ =321()2x x c --+ =1312x cx ---+ 131()12z x cx ---+= 131()12y e x cx ---+= 2312y y x e ce x -+= 2312y x x e c -+=15 331dy dx xy x y=+ 33dx yx y x dy=+ 这是n=3时的伯努利方程。
两边同除以3x 3321dx y y x dy x=+ 令2x z -= 32dz dx x dy dy-=- 3222dz y y dy x=--=322yz y -- P(y)=-2y Q(y)=32y - 由一阶线性方程的求解公式223(2)ydy ydy z e y e dy c ---⎰⎰=-+⎰=223(2)y y e y e dy c --+⎰=221y y ce --++ 222(1)1y x y ce --++=22222(1)y y y x e y ce e --++=22222(1)y e x x y cx -+=16 y=xe +0()x y t dt ⎰ ()x dy e y x dx=+ x dy y e dx=+ P(x)=1 Q(x)=x e 由一阶线性方程的求解公式11()dx dx x y e e e dx c -⎰⎰=+⎰=()x x x e e e dx c -+⎰=()x e x c +0()()xx x x e x c e e x c dx +=++⎰ c=1y=()x e x c +17 设函数ϕ(t)于-∞<t<+∞上连续,'ϕ(0)存在且满足关系式ϕ(t+s)=ϕ(t)ϕ(s)试求此函数。
令t=s=0 得ϕ(0+0)=ϕ(0)ϕ(0) 即ϕ(0)=2(0)ϕ 故(0)0ϕ=或(0)1ϕ=(1) 当(0)0ϕ=时 ()(0)()(0)t t t ϕϕϕϕ=+= 即()0t ϕ=(t ∀∈-∞,+∞)(2) 当(0)1ϕ=时 '0()()()lim t t t t t t ϕϕϕ∆→+∆-=∆=0()()()lim t t t t t ϕϕϕ∆→∆-∆ =0()(()1)lim t t t t ϕϕ∆→∆-∆=0(0)(0)()lim t t t t ϕϕϕ∆→∆+-∆='(0)()t ϕϕ 于是'(0)()d t dtϕϕϕ= 变量分离得'(0)d dt ϕϕϕ= 积分 '(0)t ce ϕϕ= 由于(0)1ϕ=,即t=0时1ϕ= 1=0ce ⇒c=1故'(0)()t t e ϕϕ=20.试证:(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程()之解;(2)若()y y x =是()的非零解,而()y y x =:是()的解,则方程()的通解可表为()()y cy x y x =+:,其中c 为任意常数.(3)方程()任一解的常数倍或任两解之和(或差)仍是方程()的解. 证明:()()dy P x y Q x dx=+ () ()dy P x y dx= () (1) 设1y ,2y 是()的任意两个解则 11()()dy P x y Q x dx=+ (1) 22()()dy P x y Q x dx=+ (2) (1)-(2)得()1212()()d y y P x y y dx-=- 即12y y y =-是满足方程()所以,命题成立。
(2) 由题意得:()()dy x P x y dx= (3) ()()()()d y x P x y x Q x dx =+:: (4) 1)先证y cy y =+:是()的一个解。