抽样方法用样本估计总体及正态分布
第53讲 抽样方法、用样本估计总体与正态分布

第53讲 抽样方法、用样品估计总体与正态分布【考点解读】1.了解抽样方法、用样品估计总体的意义。
2.了解正态分布的意义及主要性质.【知识扫描】1.利用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样的方法.(1)一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
(3)当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.2.(1)用样本的频率分布估计总体的分布:频率分布表、频率分布直方图、频率折线图、茎叶图 (2)用样本的数字特征估计总体的特征:平均数、中位数、众数、极差、方差、标准差 3.正态分布(1)如果随机变量ξ的概率密度为 φμ,σ(xx ∈(-∞,+∞)其中μ、σ分别表示总体的平均数与标准差,称ξ服从参数为μ、σ的正态分布,记作ξ~N (μ,σ2),函数图象称为正态密度曲线,简称正态曲线.φμ,σ(x )dx ,则称ξ的分一般的,如果对于任何实数a <b ,随机变量ξ满足P (a <ξ≤b )= 布为正态分布(2)标准正态分布在正态分布中,当μ=0,σ=1时,正态总体称为标准正态总体,正态分布N (0,1),称为标准正态分布,记作ξ~N (0,1).(3)正态曲线的性质(ⅰ)曲线在x 轴的上方,与x 轴不相交; (ⅱ)曲线关于直线x =μ对称; (ⅲ)曲线在x =μ时位于最高点;(ⅳ)当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、右两边无限延伸时,以x 轴为渐近线向它无限靠近;(ⅴ)当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.(4)若ξ~N (μ,σ2),则E ξ=μ,D ξ=σ2.(5)若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6826, P (μ-2σ<X ≤μ+2σ)=0.9544, P (μ-3σ<X ≤μ+3σ)=0.9974.(6)通常认为服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值 ,并简称之为3σ原则.22()2x μσ--ba⎰【考计点拔】牛刀小试:1.从编号为150 的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )()5,10,15,20,25A ()3,13,23,33B ()1,2,3,4,C ()2,4,6,16,32D 【答案】B2.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4【解析】:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.3.(2011四川高考)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
高考数学总复习 10-1 随机抽样课件 新人教B版

(4)了解随机数的意义,能运用模拟方法估计概率, 初步体会几何概型的意义. (5)通过阅读材料,了解人类认识随机现象的过程.
2.用样本估计总体 (1)通过实例体会分布的意义和作用,在表示样本数 据的过程中,学会列频率分布表、画频率分布直方图、 频率折线图、茎叶图,体会它们各自的特点. (2)通过实例理解样本数据标准差的意义和作用,学 会计算数据标准差. (3)能根据实际问题的需求合理地选取样本,从样本 数据中提取基本的数字特征(如平均数、标准差),并作出 合理的解释.
(4)在解决统计问题的过程中,进一步体会用样本估 计总体的思想,会用样本的频率分布估计总体分布,会 用样本的基本数字特征估计总体的基本数字特征;初步 体会样本频率分布和数字特征的随机性. (5)会用随机抽样的基本方法和样本估计总体的思 想,解决一些简单的实际问题;能通过对数据的分析为 合理的决策提供一些依据,认识统计的作用,体会统计 思维与确定性思维的差异. (6)初步形成对数据处理过程进行评价的意识.
概率一般不单独命制大题, 若考大题, 常与随机抽样, 样本的数字特征, 数列,解析几何, 函数、方程与不等式, 线性规划等知识结合.只要依据其它知识列出等可能事 件,其概率即得,难度不大.
三、考查变量的相关性与统计案例 1.变量的相关性 2.回归分析 3.独立性检验 高考对这一部分考查比较慎重,主要是基础知识与 简单应用,很少考查综合性大题,即使考查,难度一般 不大.
(2)通过对典型案例(如“质量控制”“新药是否有 效”等)的探究,了解实际推断原理和假设检验的基本思 想、方法及初步应用. (3)通过对典型案例(如“昆虫分类”等)的探究, 了解 聚类分析的基本思想、方法及其初步应用. (4)通过对典型案例(如“人的体重与身高的关系” 等)的探究,了解回归的基本思想、方法及其初步应用.
概率与统计(理科)

概率与统计(理科)一、高考考试内容离散型随机变量的分布列,离散型随机变量的期望和方差。
抽样方法、总体分布的估计、正态分布、线性回归。
二、考试要求:(1)了解离散型随机变量的意义,会求某些简单的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布去估计总体分布。
(5)了解正态分布的意义及主要性质。
(6)了解线性回归的方法和简单应用。
三、应试策略1、正确理解有关概念。
(1)随机试验与随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件;条件每实现一次,叫做一次试验;如果试验结果预先无法确定,这种试验叫做随机试验。
(2)频率与概率:对于一个事件来说概率是一个常数;频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率。
(3)互斥事件与对立事件:对立事件一定是互斥事件,但互斥事件不一定是对立事件。
(4)互斥事件与相互独立事件:不可能同时发生的事件叫互斥事件,而相互独立事件则是指两个事件是否发生与否相互之间没有影响。
2、公式的应用(1)常用公式 ①等可能事件的概率:基本事件总数中所含基本事件数A n m A P ==)( ②互斥事件的概率:)()()(B P A P B A P +=+③对立事件的概率:1)()()(____=+=+A P A P A A P④相互独立事件的概率:)()()(B P A P B A P ⋅=⋅⑤n 次独立重复试验中事件A 恰好发生k 次的概率:k n k k n n P P C k P --=)1()((2)注意事项:①每个公式都有成立的条件,若不满足条件,则这些公式将不再成立。
②对于一个概率问题,应首先弄清它的类型,不同的类型采用不同的计算方法,一般题中总有关键语说明其类型,对于复杂问题要善于进行分解,或者运用逆向思考的方法。
抽样方法、正态分布

抽样方法、正态分布重点、难点讲解:1.抽样的三种方法:简单随机抽样、系统抽样、分层抽样。
后两种方法是建立在第一种方法基础上的。
2.了解如何用样本估计总体:用样本估计总体的主要方法是用样本的频率分布来估计总体分布,主要有总体中的个体取不同数值很少和较多甚至无限两种情况。
3.正态曲线及其性质正态分布常记作N(),其正态分布函数:f(x)=, x∈(-∞,+∞)。
把N(0,1)称为标准正态分布,相应的函数表达式:f(x)=, x∈(-∞,+∞)。
正态图象的性质:①曲线在x轴的上方,与x轴不相交。
②曲线关于直线x=μ对称。
③曲线在x=μ时位于最高点。
④当x<μ时,曲线上升;当x>μ时,曲线下降,并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。
⑤当μ一定时,曲线的形状由确定,越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中。
4.一般正态分布与标准正态分布的转化对于标准正态分布,用表示总体取值小于x0的概率,即=p(x<x0),其几何意义是由正态曲线N(0,1),x轴,直线x=x0所围成的面积。
又根据N(0,1)曲线关于y轴的对称性知,,并且标准正态总体在任一区间(a,b)内取值概率。
任一正态总体N(),其取值小于x的概率F(x)=。
5.了解“小概率事件”和假设检验的思想。
知识应用举例:例1.为了了解某大学一年级新生英语学习的情况,从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?思路分析:因为总体的个数503,样本的容量50,不能整除,故可采用随机抽样的方法从总体中剔除3个个体,使剩下的个体数500能被样本容量50整除,再用系统抽样方法。
解:第一步:将503名学生随机编号1,2,3,……,503第二步:用抽签法或随机数表法,剔除3个个体,剩下500名学生,然后对这500名学生重新编号。
第三步:确定分段间隔k==10,将总体分成50个部分,每部分包括10个个体,第一部分的个体编号为1,2,......,10;第二部分的个体编号11,12,......,20;依此类推,第50部分的个体编号491,492, (500)第四步:在第一部分用简单随机抽样确定起始的个体编号,例如是7。
随机抽样-用样本估计总体

2.[2017全国卷Ⅰ]为评估一种农作物的种 植效果,选了n块地作试验田.这n块地的 亩产量(单位:kg)分别为x1,x2,…,xn,下 面给出的指标中可以用来评估这种农作物 亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
2.用样本的数字特征估计总体的数字特征 (1)众数:一组数据中出现次数最多的数。 (2)中位数:将数据按大小顺序排列,若有奇数个数,则最中间的数是中 位数;若有偶数个数,则中间两数的平均数是中位数。
(3)平均数:-x =_x_1+__x_2_+_n_…__+__x_n___ ______,反映了一组数据的平均水平。
B.某车间包装一种产品,在自动传送带上,每隔 5分钟抽一包产品,称其质量是否合格
C.某校分别从行政、教师、后勤人员中抽取2人、 14人、4人了解学校机构改革的意见
D.用抽签法从10件产品中选取3件进行质量检验
[答案] D
[解析] A,B不是简单随机抽样,因为抽 取的个体间的间隔是固定的;C也不是,因 为总体的个体有明显的层次;D是简单随机 抽样中的抽签法.故选D.
A.480 B.481
C.482 D.483
[答案] C
[解析] 根据系统抽样的定义可知,样本的 编号成等差数列,令a1=7,a2=32,d=25, 所以7+25(n-1)≤500,所以n≤20,最大编 号为7+25×19=482.
4.[2019山东临沂模拟]某班共有52人,现根
据学生的学号,用系统抽样的方法,抽取 一个容量为4的样本,已知3号、29号、42
号同学在样本中,那么样本中还有一个同 学的学号是( )
A.10
高考数学一轮总复习课件:随机抽样、用样本估计总体

6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )
用样本分布估计总体分布

106
1
思考:一般地,列出一组样本数据的频 率分布表可以分哪几个步骤进行?
开始 计算极差(最大值-最小值) 确定组距和组数(设k=极差÷组距,若k为 整数,则组数=k,否则,组数=k+1) 确定分点,将数据分组 绘表,(统计各组频数,计算各组频率) 结束
知识探究(二):频率分布直方图
思考1:为了直观反映样本数据在各组中的分布情 况,我们将上述频率分布表中的有关信息用下面 的图形表示: 频率分布表
从上面的数据很难直接估计出总体的分布情况,为此, 我们可以先将以上数据按每个数据出现的频数和频率。 汇成下表:
宽度/mm 频 数 头盖骨的宽度主要在 频 率 宽度/mm 142 143 频 7 10 数 频 率
136~149mm之间, 121 1 0.009 135mm以下以及150mm 129 1 0.009 以上所占比例相对较小
fi / x
0.0018 0.0018 0.0114 0.0416 0.0868 0.0472 0.0076
0.10
0.08 0.06 0.04 0.02 0
0.0472 6
140~145mm
145~150mm 150~155mm
46
25 4 1
0.434
0.236 0.038 0.009
142 146 140 148 140 140 139 139 144 138 146 153 148 152 143 140 141 145 148 139 136 141 140 139 158 135 132 148 142 145 145 121 129 143 148 138 149 146 141 142 144 137 153 148 144 138 150 148 138 145 145 142 143 143 148 141 145 141
高三数学高效课堂资料学案四十九 随机抽样、 用样本估计总体、正态分布

高三数学高效课堂资料学案四十九 随机抽样、用样本估计总体、正态分布(概率与统计学案三,共八个)一、考点与能力要求1.熟练掌握随机抽样的概念、抽样方法及三种抽样的区别与联系;2.掌握频率、中位数、众数、方差、标准差的定义;3.能利用频率分布直方图解决与概率有关的实际问题;4.了解正态分布曲线的特点及曲线所表示的意义并结合具体题目进行运算。
二、知识讲解 (一)预备知识1.抽样方法:三种抽样的共同点与各自特点分别是什么?2.样本分析(1)样本平均值 (2)样本众数 (3)样本中位数 (4)样本方差众数、中位数、平均数都是描述一组数据集中趋势的量,方差是用来描述一组数据波动情况的特征数。
3.频率分布直方图(1)频率分布直方图的绘制; (2)样本估计总体;(3)用样本平均数估计总体平均数,用样本标准差估计总体标准差。
4.正态分布 (1)正态变量概率密度曲线的函数表达式为 ,其中参数σμ,分别表示什么变量?标准正态分布怎样表示?(2)正态分布曲线的几何性质?(二)基础知识析理 1.随机抽样(1)基础解读:随机抽样包括简单随机抽样、系统抽样、分层抽样三种。
它们的共同点:抽样过程中每个个体被抽取的机会相同,都是不放回的抽样 。
不同点:使用的范围不同。
简单随机抽样适用于总体个数较少的抽样;系统抽样适用于总体个数较多的抽样;分层抽样适用于总体由差异明显的几部分所组成的抽样。
(2)应用:(2017江苏) 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为22()21(),2x f x e x R μσπσ--=∈∙22222123()()()()n x x x x x x x x S n-+-+-+∙∙∙+-=2222123()()()()n x x x x x x x x S n -+-+-+∙∙∙+-=60件进行检验,则应从丙种型号的产品中抽取 件. 2.正态分布(1)基础解读:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
64 0.4
8.为了解学生身高情况,某校以10%的比例对全校 700名学生按性别进行分层抽样调查,测得身高情况 的统计图如下:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm之间的概 率;
5.对于每个个体所取不同数值较少的总体,常用条 形图表示其样本分布,而对于每个个体所取不同数 值较多或可以在实数区间内取值的总体,常用频率 分布直方图表示其分布.
6.在用样本的频率分布估计总体分布时,要清楚以 下概念:频率分布折线图,总体密度曲线,茎叶图.
用样本的数字特征估计总体的数字特征,要理解以下 概念:
(3)从样本中身高在165~180cm之间的女生中 任选2人,求至少有1人身高在170~180cm之 间的概率.
C
m=n
6.一个总体中的1000个个体编号为0,1,2,…, 999,并依次将其分为10个小组,组号为0,1,2, …,9,要用系统抽样方法抽取一个容量为10的 样本,规定如果在第0组随机抽取的号码为x,那 么依次错位地得到后面各组的号码,即第k组中 抽取的号码的后两位数为x+33k的后两位数.当 x=24时,所抽样本的第5个号码是 456 .
抽样方法用样本估计总体及 正态分布
【学习目标】
1.了解简单随机抽样,系统抽样和分层抽样的方法, 会画频率分布直方图和茎叶图.
2.了解用样本估计总体的思想,会用样本的频率分布 估计总体分布,会用样本的基本数字特征估计总体的 基本数字特征;初步体会样本频率分布和数字特征的 随机性.
3.了解正态分布曲线的特点及曲线表示的意义.
【点评】高考中关于直方图及其应用的考查大有 加强的趋势,因此既要会作相关统计数据的直方 图,又要会观察直方图,提升识图能力,同时还 要加强与概率问题的综合.
【点评】本题主要考查分层抽样的概念和运算,以 及运用统计知识解决实际问题的能力.
1.设计抽样方案时,必须保证其满足简单随机 抽样的四个特点.
(2)由于每个品种的数据都只有25个,样本不大, 画茎叶图很方便,此时茎叶图不仅清晰明了地展 示了数据的分布情况,便于比较,没有任何信息 损失,还可以随时记录新的数据.
(3)通过观察茎叶图可以看出:
①品种A的亩产平均数比品种B高;
②品种A的亩产标准差比品种B大,故品种A的亩 产稳定性较差.
【点评】茎叶图是新增知识点,既要会作茎叶图, 同时也要会看茎叶图,但考纲要求为“了解和会” 的层次,注重基础是关键.
B
B
B
1
概率 随机数表
抽签
不放回 等概率
均衡
差异明显
(2)分层抽样是建立在简单随机抽样或系统 抽样的基础上的,由于它充分利用了已知信息, 因此利用它获取的样本更具有代表性,在实际的 应用中更为广泛.
中间位置
最多
频率
μ和σ N(μ,σ2) X~N(μ,σ2)
位于x轴上方与x轴不相交 x=μ
分散 集中
37 20
1013
【点评】分层抽样、系统抽样的基础知识的考纲要 求是“了解”和“会”,因此复习时重点在基础知 识的了解与简单应用.
0.5 2 0.0215
【点评】正态分布问题求解切入点通常是应用数形结 合思想和“σ原则”及正态分布曲线的性质数据,有什么优点? (3)通过观察茎叶图,对品种A与B的亩产量及其稳定 性进行比较,写出统计结论.
即众数,中位数,平均数,标准差.
7.正态分布是一种非常常见的分布,应理解正态分 布的有关概念,掌握正态曲线的有关性质并会求有关 的概率.
【命题立意】本题主要考查利用概率知识、统计 知识解决实际应用问题的能力.考查计算能力.
D
D
B
4.为了了解某地区高三学生的身体发育情况, 抽查了该地区100名年龄为17.5岁~18岁的男生 体重(kg),得到频率分布直方图如下:
2.用抽签法抽样关键是将号签搅拌均匀.当总 体容量较大,样本容量也较大,可用系统抽样法 抽样,在抽样前有的要先随机剔除一部分个体, 多余个体的剔除不影响抽样的公平性.
3.进行分层抽样的关键是根据每一层所占的比例确 定出每一层应抽取的个体数.
4.要注意理解频率分布直方图纵坐标的含义,并搞 清其与频率分布条形图的异同.