3.1空间向量及其运算第1课时完美版
3.1空间向量及其运算 第1课时

教学案3.1 空间向量及其运算(第 1课时)(向量的加法、减法、数乘运算)【学习目标】了解空间向量的概念;掌握空间向量的加、减运算及数乘运算法则,能够正确应用空间向量的加法交换律、加法结合律及数乘的分配律进行运算。
【本课重点】空间向量的概念及加法、减法、数乘运算【本课难点】空间向量的理解和运算【教学过程】一、知识要点:1.空间向量的概念在空间,具有大小和方向的量叫;向量的大小叫做向量的或,记为;长度为零的向量叫做,记为;模为1的向量称为;方向相且模相等的向量称为相等向量;方向相且模相等的向量称为相反向量;2.空间向量与平面向量空间任意两个向量都可以平移到同一平面内,成为同一平面内的两个向量。
空间任意三个向量呢?3.向量的加、减运算法则及数乘运算法则4.向量的加法及数乘运算律:加法交换律:加法结合律:数乘分配律: 数乘结合律:二、应用举例:例1.化简下列各式:(1)AB +BA ; (2)AB ++;(3)AB +BC +CD +DE +EA归纳结论:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:(2)首尾相接的若干向量构成一个封闭图形,则它们的和为零向量.即:例2.已知平行六面体ABCD -D C B A '''',化简下列向量表达式,并标出化简结果的向量:(1)AB +; (2)AB +AD +A A ;(3) ++21C C '; (4)31(A A '++)n 1n 1n 433221A A A A A A A A A A =++++- A A A A A A A A 1n 433221=++++例3.已知正方体ABCD -D C B A '''',点E 是上底面D C B A ''''的中心,求下列各式中x,y,z 的值。
(1)D B '=x +y +z A A ';(2)(2)=x +y +z A A '.【课堂小结】向量的加法可以用平行四边法则也可以用三角形法则,空间向量的加法与数乘向量的运算满足的运算律是:加法交换律,加法结合律,数乘分配律。
高中数学课件 空间向量及其运算(第一课时)

例2:已知平行六面体ABCD-A1B1C1D1,化简 下列向量表达式,并标出化简结果的向量。 1 .BC +AB
空间向量及运算
思考: 一个质量分布均匀的正三角形钢
板,重量为500N,在它的三个顶点处同时 受力,每个力与它相邻的三角形两边之间 的夹角都是60度,且大小均为200N,问钢 板将如何运动?
F1
F2
O F3
G
从建筑物上找向量的影子
一:空间向量的基本概念
阅读教材P84-85填写下表 平面向量 定义 表示法 向量的模 相等向量 相反向量 单位向量 零向量 具有大小和方向的量 几何表示法 字母表示法 a AB 向量的大小
首尾相接的若干向量之和,等于由起始向 量的起点指向末尾向量的终点的向量.
0 A1 A2 A2 A3 An 1 An An A1 ______
(4) 1 A2 A2 A3 A3 A1 0 A
A1 A
2
An-1
An A
3
…
A
4
首尾相接的若干向量构成一个封闭图 形,则它们的和为零向量.
加法结合律: (a + b)+c = a +(b + c)
练一练 化简( AB CD) ( AC BD)
解: 方法一: 将减法转化为加法进行化简 AB CD AB DC ( AB CD) ( AC BD) AB DC AC BD AB DC CA BD AB BD DC CA AD DA 0
高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修

表 示
字母表 法
示法
用一个字母表示,如图,此向量的起点是 A,终点
→
→
是 B,可记作 a,也可记作 A B ,其模记为|a|或|AB|
特殊向量
理解特殊向量应注意的几个问题 (1)零向量和单位向量均是从向量模的角度进行定义的,|0| =0,单位向量e的模|e|=1. (2)零向量不是没有方向,它的方向是任意的. (3)注意零向量的书写,必须是0这种形式. (4)两个向量不能比较大小.
第 三 章 空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算
自主学习 新知突破
1.经历向量及其运算由平面向空间推广的过程,了解空 间向量的概念.
2.掌握空间向量的加法、减法运算法则及其表示. 3.理解并掌握空间向量的加、减法的运算律.
李老师下班回家,先从学校大门口骑自行车向北行驶1 000 m,再向东行驶1 500 m,最后乘电梯上升15 m到5楼的住 处,在这个过程中,李老师从学校大门口回到住处所发生的总 位移就是三个位移的合成(如右图所示),它们是不在同一平面 内的位移,如何刻画这样的位移呢?
D.4个
解析: 共四个:AB,A1B1,CD,C1D1. 答案: D
3.两向量共线是两向量相等的________条件. 解析: 两向量共线就是两向量同向或反向,包含相等的 情况. 答案: 必要不充分
4.已知平行六面体 ABCD-A′B′C′D′,化简下列 表达式:
(1)A→B+BB→′-D→A′+D′ →D-B→C; (2)AC→′-A→C+A→D-AA→′. 解析: 根据平行六面体的性质. (1)原式=A→B+A′→D′+D′ →D+C→B=A→B+A′→D+C→B =D→C+D→A+A′→D=D→B+A′→D=A→′B; (2)原式=CC→′+A′→D=AA→′+A′→D=A→D.
课件2:3.1.1 空间向量及其加减运算

叫做空间向量,向量的 大小 叫做向量的长度或模.
(2)与平面向量一样,空间向量也用 有向线段 表示.起点是
A,终点是 B 的向量 a 也可以记作
→ AB
.其模记作 |a|或|A→B|
.
(3) 长度为 0 的向量叫做零向量,记为 0;模为 1 的向量 叫做单位向量. (4) 方向相同且模相等 的 向 量 称 为 相 等 向 量 . 与 向 量 a___长__度__相__等__方__向_相__反___的向量称为 a 的相反向量,记为 -a .
2.向量加减运算时,特别注意相反向量的应用,三角形 法则的应用.
3.将一个向量用其他向量线性表示是重点,要特别注意 加法“首尾相接”,减法必须同一起点,指向被减.
巩固训练
一、选择题
1.化简下列各式:(1)A→B+B→C+C→A;(2)A→B-A→C+B→D-C→D;
(3)O→A-O→D+A→D;(4)N→Q+Q→P+M→N-M→P.结果为零向量的个数
跟踪练习 3 在正方体 ABCD-A1B1C1D1 中,E、F 分别为棱 BC,
A1B1 的中点,设D→A=a,D→C=b,D→D1=c,用 a、b、c 表 示向量B→1E,C→F.
[解析] B→1E=B→1B+B→E=B→1B+12B→C =-D→D1-12D→A=-c-12a; C→F=C→C1+C→1F=C→C1+C→1B1+12B→1A1 =D→D1+D→A-12D→C=c+a-12b.
O→An=O→A1+A→1A2+……An-1An=a1+a2+……+an. 用折线作向量的和时,有可能折线的终点恰恰重合到起点上, 这时的和向量就为零向量. 2.向量减法满足三角形法则:“同始连终、指向被减”. 即以同一点 O 作始点,作O→A=a,O→B=b,连结终点 A,B,则 A→B=b-a,B→A=a-b.
3.1.1空间向量及其加减运算第一课时.ppt

反果过p来 ,x对空y间b,任那意么两向个量不p共与线向的量向a量,
a
,b
,如
b 有什么位
置关系?
rC
ur p
P
br
A aB
xa, yb分别与a,b共线,
xa, yb都在a,b确定的平面内
并且此平行四边形在 a,b确定的平面内,
p xa yb在a,b确定的平面内,即p与a,b共面
解(3)
uuur
AC
uuur
uAuuBr1
uuAurD1
uuur
uuur
D1
C1
(
AD uuur
AB) uuur
(
AuAu1ur
AB)
(
AA1
AD)A1
B1
2(AD AB AA1)
uuuur
2AC1
D
C
x 2.
A
B
4.例题2
在 若正uAuEur方 体uAuAuuAur' C x1中uAuBur,点 yEuAu是Dur 面,A求C实’ 的数中x,y心. ,
A
(1) AB 1 (BC BD) 2
(2) AG 1 ( AB AC )
D
2
G
B
M
C
练习参考答案
A
(1)原式=AB BM MG AG
(2)原式
D
=AB BM
MG
1 ( AB 2
AC )
=BM MG 1 ( AB AC )
G
2
BM MG MB
B
M
C MG
———共线向量与共面向量
空间向量 及其加减运算
复习
⒈定义:既有大小又有方向的量叫向量.
3.1.1空间向量及其加减运算课件人教新课标

D' A'
D A
C' B'
C B
例3、在如图所示的平行六面体中,
求证: AC AB AD 2AC. D'
A' 证明:AC AB' AD'
AB BC AB BB' AD DD'
2( AB BC CC' )
D
2 AC' A
C' B'
C B
变式:
量相加.
4.推广
⑴首尾相接的若干向量之和,等于由起始向 量的起点指向末尾向量的终点的向量.即:
A1 A2 A2 A3 A3 A4 An1 An A1 An
A1
An1
A2
An
A3
A4
⑵首尾相接的若干向量构成一个封闭图形, 则它们的和为零向量.即:
A1 A2 A2 A3 A3 A4 An1 An An A1 0
(5)空间中任意两个单位向量必相等。
其中不正确命题的个数是( C )
A.1
B.2
C.3
D.4
D1 A1
C1 B1
a
D
C
A
B
平行六面体:平行四边形ABCD按向量 a 平移
到A1B1C1D1的轨迹所形成的几何体.
记做ABCD-A1B1C1D1 注:始点相同的三个不共面向量之和,等于以这三个向量
为棱的平行六面体的以公共始点为始点的对角线所示向量
高中数学 选修2-1
第三章 空间向量与立体几何
3.1 空间向量及其运算 3.1.1 空间向量及其加减运算
一、平面向量复习
⒈定义:既有大小又有方向的量叫向量.
高中数学选择性必修一课件:空间向量及其线性运算(第1课时)

探究 1 根据向量相等的概念,向量运算时可以根据需要平移向量;化简向 量表达式主要是利用平行四边形法则或三角形法则进行化简,在化简过程中遇到 减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加减法之间 可相互转化.另外,要按照题目要求,将化简的结果在图中标注好.
思考题 3 (1)在长方体 AC1 中,化简式子: D→A-D→B+B→1C-B→1B+A→1B1-A→1B=___B_→D_1___.
点,P 在平面 ABCD 上的射影恰好是正方形的中心 O,Q 是 CD 的中点,求下列 各题中 x,y 的值.
(1)O→Q=P→Q+xP→C+yP→A; (2)P→A=xP→O+yP→Q+P→D.
【解析】 (1)∵O→Q=P→Q-P→O=P→Q-12(P→A+P→C)=P→Q-12P→A-12P→C, ∴x=y=-12. (2)∵P→A+P→C=2P→O,∴P→A=2P→O-P→C. ∵P→C+P→D=2P→Q,∴P→C=2P→Q-P→D, ∴P→A=2P→O-(2P→Q-P→D)=2P→O-2P→Q+P→D. ∴x=2,y=-2.
题型二 空间向量的加减运算
例 3 (1)化简(A→B+C→D)-(A→C+B→D). 【解析】 (A→B+C→D)-(A→C+B→D) =A→B+C→D-A→C-B→D =A→B+C→D+C→A+D→B =(C→A+A→B)+(C→D+D→B) =C→B+C→B=2C→B.
(2)如图,已知长方体 ABCD-A′B′C′D′,化简下列向量表达式,并在 图中标出化简结果的向量.
(2)由于这个长方体的对角线长为 p2+q2+1= 2,故模为 2的向量有A→C1, C→1A,A→1C,C→A1,B→D1,D→1B,B→1D,D→B1.
(3)与向量A→B相等的所有向量(除它自身以外)有A→1B1,D→C,D→1C1. (4)向量A→A1的相反向量为A→1A,B→1B,C→1C,D→1D.
高中数学第3章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算课件新人教A版选修2_1

[解] O→G=O→M+M→G =12O→A+23M→N =12O→A+23(M→A+A→B+B→N) =12O→A+2312O→A+O→B-O→A+21B→C =12O→A+23O→B-12O→A+12(O→C-O→B) =16O→A+13O→B+13O→C=16a+13b+13c.
②字母表示法:用字母 a,b,c,…表示;若向量 a 的起点是 A, 终点是 B,也可记作: A→B ,其模记为 |a| 或 |A→B| .
2.几类常见的空间向量
名称
方向
零向量
_任__意__
单位向量
任意
相反向量
_相__反__
相等向量
相同
模 _0__ _1 _
相等
相__等__
记法 _0 _
a 的相反向量:__-__a__ A→B的相反向量:_B→_A_ a=b
2.利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用三 角形法则、平行四边形法则,将目标向量转化为已知向量. (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性 质.
2.如图,已知空间四边形OABC,M,N分别 是边OA,BC的中点,点G在MN上,且MG= 2GN,设O→A=a,O→B=b,O→C=c,试用a,b,c表 示向量O→G.
空间向量的线性运算 【例2】 (1)如图所示,在正方体ABCD-A1B1C1D1中,下列各式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.1空间向量及加减其运算
【学情分析】:
向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。
在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。
【教学目标】:
(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法
(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法
(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。
【教学重点】:
空间向量的概念和加减运算
【教学难点】:
空间向量的应用
四.练习巩
固 1.课本P86练习1-3
2.如图,在三棱柱1
11C B A ABC -中,M 是1BB 的中点,
化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1
解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =--
巩固知识,注意区别加
减法的不同处.
五.小结
1.空间向量的概念:
2.空间向量的加减运算
反思归纳
六.作业 课本P97习题3.1,A 组 第1题(1)、(2)
练习与测试:
(基础题)
1.举出一些实例,表示三个不在同一平面的向量。
2.说明数字0与空间向量0的区别与联系。
答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。
3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。
4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;
(2)12
1
AA CB AC +
+; (3)CB AC AA --1
解:(1)11CA BA CB =+ (2)AM AA CB AC =+
+12
1
(3)11BA CB AC AA =--
(中等题)
5.如图,在长方体///B D CA OADB -中,3,4,2,OA i OB j OC k ===,点E,F 分别是/
/,B D DB 的中点,试用向量k j i ,,表示OE 和OF
解:j i OE 423
+=
k j i OF 242
3
++=。
6.在上题图中,试用向量k j i ,,表示EF 和FE 解:EF =OE OF -=k 2, FE =--EF =--k 2。