统计数据的描述量
描述性统计分析报告怎么写

描述性统计分析报告怎么写1. 引言描述性统计分析是统计学中一种常见的数据分析方法,通过对数据的基本统计量进行计算和描述,来分析和总结数据的特征和规律。
本文将介绍如何撰写一份完整的描述性统计分析报告,以便读者能够了解你所分析的数据集。
2. 数据概述在描述性统计分析报告中,首先需要对数据进行概述。
这部分可以包括以下内容:•数据来源:说明数据的来源和采集方式。
•样本规模:描述数据集中的样本数量。
•变量说明:对数据集中的各个变量进行简要描述,并说明其含义和取值范围。
3. 数据质量分析描述性统计分析报告还需要对数据的质量进行分析。
以下是一些常见的数据质量指标:•缺失值分析:统计各个变量中缺失值的数量和比例,并对缺失值的原因进行分析。
•异常值分析:检测数据集中是否存在异常值,并对异常值进行统计和分析。
•重复值分析:检测数据集中是否存在重复值,并对重复值进行统计和分析。
4. 描述性统计分析描述性统计分析的核心是计算并描述数据的基本统计量。
以下是一些常用的基本统计量:•平均值:计算数据的平均值,即各个数据点的算术平均数。
•中位数:计算数据的中位数,即将数据按大小排序后位于中间位置的值。
•众数:计算数据的众数,即频率最高的值。
•方差:计算数据的方差,即各个数据点与其均值的差平方的平均数。
•标准差:计算数据的标准差,即方差的平方根。
•百分位数:计算数据的百分位数,即将数据按大小排序后位于相应百分比位置的值。
对于每个基本统计量,都应进行描述和解释,可以使用表格、图表等形式呈现结果。
5. 变量关系分析除了对单个变量进行分析之外,描述性统计分析报告还可以分析变量之间的关系。
以下是一些常用的变量关系分析方法:•相关分析:计算各个变量之间的相关系数,并进行解释和分析。
•独立性分析:对两个分类变量之间的关系进行卡方检验,并进行解释和分析。
6. 结论和建议描述性统计分析报告的最后一部分是结论和建议。
在此部分中,应对前面的分析结果进行总结,并提出相关的建议。
统计学中的描述性统计分析方法

统计学中的描述性统计分析方法统计学是一门研究数据收集、整理、分析和解读的学科,它可以帮助我们更好地理解和解释数据。
描述性统计是统计学中的一个重要分支,旨在总结和揭示数据的基本特征。
在本文中,我们将介绍统计学中常用的描述性统计分析方法。
一、数据收集与整理描述性统计分析的第一步是数据收集,通过合适的调查问卷、实验或观察,我们可以获取所需的数据。
在数据收集完成后,我们需要对数据进行整理和准备,以便后续的分析。
二、测量指标在描述性统计中,我们常用各种测量指标来描绘数据的中心趋势、离散程度以及数据之间的关联性。
1. 中心趋势测量中心趋势测量用来反映数据集中的一个“典型值”。
(1)平均数(Mean):平均数是数据集中所有观测值的总和除以观测值的数量。
它可以用来衡量数据的总体情况。
(2)中位数(Median):中位数是将数据集按大小顺序排列后的中间值。
它可以忽略异常值的影响,更好地反映数据的中心位置。
(3)众数(Mode):众数是数据集中出现频率最高的值。
它在描述分类数据时特别有用。
2. 离散程度测量离散程度测量用来反映数据集的分散程度。
(1)标准差(Standard Deviation):标准差是数据集各个观测值与平均数之间的偏离度的平均值。
它反映了数据的总体分散程度。
(2)方差(Variance):方差是各个观测值与平均数之间偏离度的平方的平均值。
它是标准差的平方。
(3)极差(Range):极差是数据集中最大值与最小值之间的差值。
它可以用来衡量数据的全局范围。
三、数据可视化数据可视化是描述性统计分析中非常重要的一部分。
通过图表和图形的方式展示数据,可以使数据的特征更加直观地呈现出来。
1. 条形图(Bar Chart):条形图用于对比不同类别或组之间的数据差异。
2. 折线图(Line Chart):折线图可以展示变量随时间的变化趋势。
3. 饼图(Pie Chart):饼图适用于展示分类数据的比例关系。
4. 散点图(Scatterplot):散点图可以直观地显示两个变量之间的关系。
统计学之统计数据的描述

则必然取2,而不能取其他
离散系数
离散系数
(coefficient of variation)
1. 标准差与其相应的均值之比 2.对数据相对离散程度的测度 3.消除了数据水平高低和计量单位的影
响
4v.用 较于对不同组别数v据s 离散程xs度的比
【 例 】某管理局抽查了所属的8家企业 ,其产品销售数据如表。试比较产品销售 额与销售利润的离散程度
累积的收入百分比
绝对公平线
A B
累积的人口百分比
基尼系数
1. 20世纪初意大利经济学家基尼(G. Gini)根据
洛伦茨曲线给出了衡收入分配平均程度的指
标 基尼系数=
A
A B
2. A表示实际收入曲线与绝对平均线之间的面积 3. B表示实际收入曲线与绝对不平均线之间的面
积
A B
• 如果A=0,则基尼系数=0,表示收入绝对 平均
一般用x表示变量;用f表示频数(次数) 。
2.1.3 次数分配图
分组数据—直方图和折线图
Excel
用直方形的宽度和高度来表示次数分 布的图形。
绘制直方图时,横轴表示各组组限, 纵轴表示次数(一般标在左方)和比 率(或频率,一般标在右方)。
分组数据的图示
我一眼就看 出来了,销 售量在170~ 180之间的天 数最多!
1. 一组数据中可以自由取值的数据的个数
2. 当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其
中必有一个数据则不能自由取值
3.
例如,样
x3=9,则
本有
x
3个数值,即
= 5。当 x
x=1=52,确x定2=4后,,x
1
统计数据的描述

身高 人数
(CM) (人)
152
1
154
2
155
2
156
4
157
1
158
2
159
2
160 12
161
7
162
8
163
4
身高 人数
(CM) (人)
164
3
165
8
166
5
167
3
168
7
169
1
170
5
171
2
172
3
174
1
总计 83
众数旳拟定方法
某年级83名女生身高资料
身高 人数
(CM) (人)
具有某种标志体现旳 单位数所占旳成数
P N1 N
不具有某种标志体现 旳单位数所占旳成数
Q N0 N
且有P Q
N1 N
N0
N
N1 N0 N
N N
1
是非标誌总体旳均值
均 值
XP
Xf 1 N1 0 N0 N1 P
f
N
N
几何平均数(又称“对数平均数”)
1.简朴几何平均数
X G n X1 • X2 Xn n X
多种平均数
❖ 平均数是一种数值,是对一种变量旳观察值进行计 算后得到旳.
❖ 我们常读到MBA旳平均工资,平均房价,道琼斯平 均股票价格,平均谋杀率等.你都了解这些平均数 吗?
❖ 让我们来看一下下面旳句子: ❖ 当代美国旳平均人是女人,平均每个女人有2.1个
孩子,且这些女人住在平均价值为$80000旳住房 中
72法则
❖ 计算翻一番需要旳时间时,能够用72除以增长速度旳数值, 得到时期数
统计量公式

统计量公式统计量是一种用于描述和总结数据集的数值指标或函数。
它们可以对数据进行量化和比较,从而得到有关数据分布和关系的信息。
以下是一些常见的统计量和它们的公式:1.平均数(Mean):平均数是一组数据的总和除以数据的个数。
公式为:μ = (x₁ + x₂ + ... + xₙ) / n,其中x₁,x₂,...,xₙ为数据集中的观测值,n为观测值的个数。
拓展:除了算术平均数,还有几种不同的平均数,如加权平均数、几何平均数和调和平均数。
2.中位数(Median):中位数是将一组数据按升序或降序排列后,位于中间位置的观测值。
若数据个数n为奇数,则中位数为第(n+1)/2个观测值;若n为偶数,则中位数为第n/2和n/2+1个观测值的平均值。
拓展:除了中位数,还有四分位数、百分位数等分位数,从而可以描述数据的分布和位置。
3.方差(Variance):方差衡量了数据集的离散程度,它表示每个观测值与平均值之间的差异的平方的平均值。
公式为:σ² = Σ (xᵢ- μ)² / n,其中xᵢ为观测值,μ为平均数,n为观测值的个数。
拓展:方差的开平方称为标准差,它将方差的测量单位换成了与原始观测值相同的单位,更易于解释和比较。
4.相关系数(Correlation coefficient):相关系数衡量了两个变量之间的线性关系的强度和方向。
常用的是皮尔逊相关系数,其公式为:r = Σ (xᵢ - μₓ)(yᵢ - μᵧ) / (nσₓσᵧ),其中xᵢ和yᵢ为两个变量的观测值,μₓ和μᵧ为两个变量的平均值,σₓ和σᵧ为两个变量的标准差。
拓展:除了皮尔逊相关系数,还有斯皮尔曼等级相关系数和判定系数等其他类型的相关系数。
这些统计量广泛用于统计学和数据分析中,可以帮助我们理解和解释数据的特征和关系。
同时,也有其他更多的统计量公式和概念,根据不同的数据类型和问题,可以选择适当的统计量来进行分析。
统计学公式

3
xi x 4 n(n 1) 3(n 1) 2 ( ) . s (n 1)(n 2)(n 3) (n 2)(n 3)
2
统计学公式
二、概率分布
一、度量事件发生的可能性:
1.事件 A 发生的概率: P ( A) 二、随机变量的概率分布:
统计学公式
一、用统计量描述数据
一、水平的度量:
x x2 x3 1.简单平均数: x 1 n
xn
X
i 1
n
i
n
.
k
M f M 2 f2 M k fk 2.加权平均数: x 1 1 f1 f 2 f k
M
i 1
i i
f
n
.(如果原始数据被分成 k 组,各
2
E2
.
四、假设检验
一、一个总体参数的检验
1.大样本的检验
(1)在大样本的情况下,样本均值的抽样分布近似服从正态分布,其抽样标准差为 /
2
n.
采用正态分布的检验统计量.设假设的总体均值为 0 ,当总体方差 已知时,总体均值检验 的统计量为: z
x 0
/ n
.
(2)当总体方差 未知时,可以采用样本方差 s 来代替,此时总体均值检验的统计量为:
组的组中值分别用 M1,M 2, ,M k 表示,各组的频数分别用 f1,f 2, ,f k 表示,则得到 样本平均数计算公式)
x n 1 2 3.中位数( M e ) : Me 1 x n x n 1 2 2 2
n
p ;
(1 )
统计数据的描述(统计学)

可以添加误差线来表示数据的波动范 围。
适用于展示定类变量和定比变量的数 据,如示时间序列数 据的变化趋势,便于 观察数据随时间的变 化规律。
可以添加趋势线来预 测未来的发展趋势。
适用于展示定比变量 的数据,如某品牌在 不同年份的销售数据。
饼图
用以展示分类数据的占比关系, 便于比较不同类别之间的比例大
在统计学中,许多随机变量遵循正态分布,例如人类的身高、考试分数 等。
偏态分布
偏态分布是指数据分布不对称的情况, 即数据偏向某一方向。
偏态分布的原因可能是数据本身的特性 偏态分布的描述需要使用中位数、均值
或测量误差。
和众数等统计量来全面了解数据特征。
峰态分布
峰态分布是指数据分布的形状 较为尖锐或平坦的情况。
峰态分布的判断可以使用峰 度系数来衡量,该系数描述 了数据分布的陡峭程度。
在峰态分布中,数据值在均值 附近较为集中,远离均值的数 据较少,形成较为尖锐或平坦
的分布形状。
05
数据的异常值处理
识别异常值的方法
统计检验法
通过统计检验,如Z分数、IQR等方 法,识别出异常值。
经验判断法
根据业务经验和专业知识,判断某些 数据是否异常。
小。
适用于展示定类变量的数据,如 某公司各部门的销售额占比。
可以添加图例来解释各部分所代 表的含义。
散点图
用以展示两个变量之间的相关 关系,便于发现变量之间的关 联和趋势。
适用于展示定比变量的数据, 如广告投入与销售额之间的关 系。
可以添加回归线来表示变量之 间的线性关系。
03
统计数据的数值描述
THANKS
感谢观看
统计数据的描述(统 计学)
统计学教案统计数据的描述与分析

统计学教案统计数据的描述与分析主题:统计学教案——统计数据的描述与分析引言:统计学是一门研究如何收集、分析和解释数据的学科。
在现代社会中,统计学在各个领域都起着重要作用,帮助我们了解和解释各种现象。
本教案将介绍统计学中数据的描述和分析方法,以及如何运用这些方法进行实际问题的解决。
一、数据的描述在统计学中,我们经常需要描述数据的特征,以便更好地理解和分析数据。
以下是几种常用的描述统计量:1. 平均数:平均数是数据的总和除以观测次数的结果。
它是最直观也是最常用的描述统计量。
2. 中位数:中位数是将数据按照大小顺序排列后,位于中间位置的数值。
3. 众数:众数是数据中出现次数最多的数值。
4. 极差:极差是数据最大值与最小值之间的差异。
5. 方差:方差表示数据的离散程度,是各个观测值与平均数之差的平方的平均值。
6. 标准差:标准差是方差的平方根,用于度量数据分布的广度。
二、数据的分析数据分析是统计学的核心内容,通过分析数据可以得出结论和推断。
以下是几种常用的数据分析方法:1. 频率分析:频率分析是按照某个变量的取值进行分类,然后统计每个分类的频数。
2. 相关分析:相关分析用于判断两个变量之间的关系和相关性。
常用的相关分析方法有皮尔逊相关系数和斯皮尔曼相关系数。
3. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向。
4. 置信区间:置信区间是用来估计未知参数真值区间的统计量。
通过计算得出的置信区间可以帮助我们对未知参数进行推断。
小结:统计学作为一门重要的学科,提供了丰富的工具和方法来描述和分析数据。
数据的描述能够帮助我们理解数据的特征,数据的分析则能够帮助我们得出结论和推断。
通过学习统计学,我们可以更好地应用这些知识解决实际问题,提高数据分析的准确性和效率。
参考文献:1. 劳伦斯·S.沃尔斯(2013),《统计学导论》。
2. 陈忠进,王洪敏(2017),《应用统计学》。
注:本教案属于纯粹的学术内容,与任何政治、色情等不相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 未分组数据众数的确定
在数据量很大的时候,可以使用 Excel 统计函数中的 MODE 函数返回众数。
格式:MODE(<区域或数组1>,<区域或数组2>,…) 功能:返回所有参数中数据的众数。
14
(2) 分组数据众数的确定
对于分组数据的统计资料,众数也要用插值法来估算。 (1)确定众数所在的组
4
使用 Excel 函数求加权算术平均数
利用 Excel“数学和三角函数”中的 SUMPRODUCT 函数可以方便地计算出分组数据 的加权算术平均数。 语法规则: 格式:SUMPRODUCT(<区域1>,<区域2>,…) 功能:返回两个或多个区域中对应元素乘积之和。 例:利用比特啤酒公司各销售点分组频数分布数据, 求各销售点的平均销售量。
累计频数 2 8 28 43 51 55
解:Σf/2 = 27.5,中位数在“15-25”的组中,
Me
L
1 2
f Sm1 d
fm
15 27.5 8 10 20
24.75
12
4.众数
——是总体中出现次数最多的标志值,记为M 0。 众数明确反映了数据分布的集中趋势,也是一种 位置平均数,不受极端数据的影响。但并非所有 数据集合都有众数,也可能存在多个众数。 在某些情况下,众数是一个较好的代表值。 例如在服装行业中,生产商、批发商和零售商在 进行生产和存货决策时,更感兴趣的是最普遍的 尺寸而不是平均尺寸。 又如,当要了解大多数家庭的收入状况时,也要 用到众数。
5
2.几何平均数
当统计资料是各时期的发展速度等前后期的两两 比环数据,要求每时期的平均发展速度时,就需 要使用几何平均数。
几何平均数是 n 个数连乘积的 n 次方根。 (1) 简单几何平均数
xG n x1 x2 xn
(2) 加权几何平均数
xG
f
x f1 1
x2f2
xnfn
f i — 各比率出现的频数
各组频数 2 6 20 15 8 4
解:众数组是“15-25”的组,则
M0
L
1 1 2
d
15
20 6
10 22.37
(20 6) (20 15)
16
算术平均数、中位数和众数间的关系
f
1.频数分布呈完全对
称的单峰分布,算术
平均数、中位数和众
0
数三者相同。
2.频数分布为右偏态 时, f
众数小于中位数,算术平
Me
L
1 2
f fm
Sm1
d
其中:L — 中位数所在组的下限;
Sm-1 — 中位数所在组前一组的累计频数; fm — 中位数所在组的频数; d — 中位数所在组的组距。
11
例:计算下表数据的中位数
分组 0-5 5-15 15-25 25-35 35-45 >45
各组频数 2 6 20 15 8 4
6
例:某公司原料成本随时间增长的情况如下表
1992 1993
成本
200 228
年增长率(%)
14
求原料成本的平均年增长率。
1994 239.4
5
解一: xG 3 1.141.051.02 1.0688 解二: xG 3 244.2 / 200 1.0688 年平均增长率 = 1.0688 - 1 = 6.88%
均数大于中位数。
0
3.频数分布为左偏态时, f 众数大于中位数,算术平 均数小于中位数。
0
X (Me,M0) x
M0 Me X
x
X Me M0 x
17
补充习题
补充题3:某地区私营企业注册资金分组资料如下, 求该地区私营企业注册资金的平均数、中位数和 众数。
注册资金 (万元)
50以下
50~100
100~150 150~200 200~250 250以上
2
1.算术平均数
(1)基本公式:
算术平均数
总体单位标志总量 总体单位总数
3
(2)算术平均数的计算
(1)简单算术平均数
x
1 n
n
xi
i 1
n —总体单位总数;xi —第 i 个单位的标志值。 (2)加权算术平均数
x xi fi fi
xi —第 i 组的代表值(组中值或该组变量值); f i —第 i 组的频数。
对于等距分组,众数组是频数最高的组; (2)使用以下插值公式计算
M0
L
1 1 2
d
其中:
Δ1
Δ2
L — 众数组的下限
Δ1— 众数组与前一组的频数之差 Δ2 — 众数组与后一组的频数之差 d — 众数组的组距
d L 众数
15
例:计算下表数据的众数
分组 0-5 5-15 15-25 25-35 35-45 >45
可以使用 Excel 统计函数中的 MEDIAN 函数返回 未分组数据的中位数。 格式:MEDIAN(<区域或数组1>,<区域或数组 2>,…) 功能:返回所有参数中数据的中位数。
10
(2)分组数据中位数的确定
对于分组数据的统计资料,中位数要用插值法来估算。 (1)计算各组的累计频数; (2)确定中位数所在的组 ——是累计频数首次包含中位数位次Σf /2的组。
1995 244.2
2
7
(3)使用 Excel 求几何平均数
可以使用 Excel 统计函数中的 GEOMEAN 函数返 回几何平均数。 语法规则: 格式:GEOMEAN(<区域或数组1>,<区域或数组 2>,…) 功能:返回所有参数中数据的几何平均数。
8
3.中位数
将总体各单位标志值按由小到大的顺序排列后 处于中间位置的标志值称为中位数,记为Me 。 中位数是一种位置平均数,不受极端数据的影
第3章 统计数据的描述度量
本章主要介绍以下 3类综合统计指标: 度量中心(集中)趋势的平均指标 度量离散程度(变异性)的指标 度量偏斜程度的指标 度量两种数值变量关系的指标
1
§3.1 度量集中趋势的指标
常用的这类指标有以下五种:算术平均数、中位 数、众数、四分位数、几何平均数、五数汇总和 箱线图。
企业数 20
35
42
26
15
5
18
补充题3 答案
注册资金(万元) 企业数
50以下
20
50~100
35
100~150
42
150~200
26
200~250
15
250以上
5
累计企业数 20 55 97 123 138 143
响。当统计资料中含有异常的或极端的数据时, 中位数比算术平均数更具有代表性。
比如有 5 笔付款:9元,10元,10元,11元, 60元
付款的均值为 20 元,显然这并不是一个很好
的代表值,而中位数 均每笔的付款数。Me=10来自元则更能代表平9
(1) 使用 Excel 的统计函数返回未分组数据的中位数