年浙江高考理科数学试题及解析
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
2022浙江高考理数试卷及答案

2022浙江高考理数试卷及答案【一】:2022年高考浙江卷理数试题及答案2022年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合P=,Q=,则P=,则A。
[2,3]B。
(-2,3]C。
[1,2)D。
2、已知互相垂直的平面A。
B。
C。
交于直线l,若直线m,n满足D。
3、在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线+y-2=0上的投影构成的线段记为AB,则,AB,=A。
B。
4C。
D。
6使得”的否定形式是B。
D。
则的最小正周期使得使得4、命题“A。
C。
5、设函数使得使得A。
与b有关,且与c有关B。
与b有关,但与c无关C。
与b无关,且与c无关D。
与b无关,但与c有关6。
如图,点列分别在锐角的两边上,且,(若A。
表示点P与Q不重合),为的面积,则是等差数列,。
是等差数列B。
C。
是等差数列D。
是等差数列7。
已知椭圆与双曲线的焦点重合,则A。
C。
且且B。
D。
则则则则且且分别为的离心率,8。
已知实数A。
若B。
若C。
若D。
若二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9。
若抛物线10。
已知上的点M到焦点的距离为10,则M到y轴的距离是。
,则A=,b=。
11、几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm,体积是cm。
12、已知,若,则a=,b=。
13、设数列的前n项和为,若,则=,=。
14、如图,在中,AB=BC=2,。
若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是。
15、已知向量a,b,a,=1,b,=2,若对任意单位向量e,均有,a·e,+,b·e,的最大值是。
三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16。
2022年理数高考试题答案及解析-浙江

绝密★考试结束前2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕本试题卷分选择题和非选择题两局部.全卷共5页,选择题局部1至3页,非选择题局部4至5页.总分值150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题局部〔共50分〕本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-=球的外表积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},那么A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),那么A ∩(C R B )=(1,4). 【答案】A 2.i 是虚数单位,那么3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i .【答案】D3.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;假设直线l 1与直线l 2平行,那么有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .假设|a +b |=|a |-|b |,那么a ⊥bB .假设a ⊥b ,那么|a +b |=|a |-|b |C .假设|a +b |=|a |-|b |,那么存在实数λ,使得a =λbD .假设存在实数λ,使得a =λb ,那么|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,那么a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :假设a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :假设存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.假设从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,那么取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种.∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,那么以下命题错误的选项是......A .假设d <0,那么数列{S n }有最大项B .假设数列{S n }有最大项,那么d <0C .假设数列{S n }是递增数列,那么对任意的n ∈N*,均有S n >0D .假设对任意的n ∈N*,均有S n >0,那么数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么C 的离心率是 A 23 B 6C 2D 3【解析】如图:|OB |=b ,|OF 1|=c .∴k PQ =b c,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c(x -acc a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e 6.【答案】B9.设a >0,b >0A .假设2223a b a b +=+,那么a >bB .假设2223a b a b +=+,那么a <bC .假设2223a b a b -=-,那么a >bD .假设2223a b a b -=-,那么a <b【解析】假设2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,那么()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD 〞,“AB 与CD 〞,“AD 与BC 〞均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕非选择题局部〔共100分〕本卷须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每题4分,共28分. 11.某三棱锥的三视图(单位:cm)如下列图,那么该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 11312123⨯⨯⨯⨯=. 形,右侧面也是一直角三角形.故体积等于【答案】112.假设程序框图如下列图,那么该程序运行后输出的值是______________.【解析】T ,i 关系如以下列图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设2232S a =+,4432S a =+,那么q =______________.q 表示的式子.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.假设将函数()5f x x =表示为其中0a ,1a ,2a ,…,5a 为实数,那么3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 那么实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'==⇒=. 【答案】7417.设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,那么a =______________. 【解析】此题按照一般思路,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a =,舍去2a =,得答案:2a = 【答案】2a =三、解答题:本大题共5小题,共72分,解容许写出文字说明、证明过程或演算步骤. 18.(本小题总分值14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)假设a 2∆ABC 的面积.【解析】此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
(完整版)浙江高考理科数学试题和解析

WORD 完满格式2017 年一般高等学校招生全国一致考试(浙江卷)数学(理科)选择题部分(共50 分)1.(2017年浙江)已知会合P={x|-1 < x< 1} , Q={0< x< 2} ,那么 P∪Q=()A.( 1, 2)B.( 0, 1)C.( -1 , 0)D.( 1, 2)【分析】利用数轴,取P, Q全部元素,得P∪Q=( -1 , 2) .2. (2017年浙江 ) 椭圆x2y2)+=1 的离心率是(9413525A.3B.3C.3D.99-452.B 【分析】 e= 3=3.应选 B.3. (2017 年浙江 ) 某几何体的三视图如下图(单位:cm),则该几何体的体积(单位:cm3)是()(第 3 题图)A.1B.3C.31 D .3322223. A 【分析】依据所给三视图可复原几何体为半个圆锥和半个棱锥拼接而成的组合体,所1π×12 1π以,几何体的体积为V=3×3×(2+2×2×1) = 2 +1. 应选 A.x≥0,4. (2017年浙江)若x,y知足拘束条件x+y- 3≥0,则 z=x+2y 的取值范围是()x- 2y≤0,WORD 完满格式A. [0 , 6]B. [0 , 4]C. [6 ,+∞)D.[4,+∞)4. D【分析】如图,可行域为一开放地区,所以直线过点(2,1) 时取最小值4,无最大值,选 D.5. (2017 年浙江 ) 若函数f2M,最小值是m,则 M–( x)= x + ax+b在区间 [0 , 1] 上的最大值是()mA.与a相关,且与b相关B.与a相关,但与b没关C.与a没关,且与b没关D.与a没关,但与b相关a a25. B【分析】由于最值 f ( 0)=b, f ( 1) =1+a+b,f ( - 2) =b- 4中取,所以最值之差必定与 b 没关 . 应选 B.6.(2017 年浙江 ) 已知等差数列 { a n} 的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的()A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件6. C【分析】由S4+ S6-2 S5=10a1+21d-2(5a1+10d)=d,可知当d>0时,有S4+S6-2S5>0,即 S4+ S6>2S5,反之,若S4+ S6>2S5,则d>0,所以“ d>0”是“ S4+ S6>2S5”的充要条件,选 C.7. (2017年浙江)函数y=f(x)的导函数y=f ′( x)的图象如下图,则函数y=f ( x)的图象可能是()(第 7 题图)7. D【分析】原函数先减再增,再减再增,且x=0 位于增区间内 . 应选 D.1 8.(2017 年浙江 ) 已知随机变量ξi知足P(ξi =1)=p i,P(ξi =0)=1–p i,i =1,2.若 0<p1<p2<2,则()E ξ E ξ D ξ D ξ2)B E ξ E ξ D ξ D ξ2)A. (1)<(2),(1)<(. (1)<(2),(1)>(E ξ E ξ D ξ D ξ2)D E ξ E ξ D ξ D ξ2)C. (1)>(2),(1)<(. (1)>(2),(1)>(8. A 【分析】∵E( ξ1)= p1,E( ξ2)= p2,∴E( ξ1) <E( ξ2) ,∵D( ξ1 )= p1(1- p1) ,D( ξ2)= p2(1- p2) ,∴D(ξ1)- D(ξ2)=( p1- p2)(1- p1- p2)<0.应选A.9.(2017 年浙江 ) 如图,已知正四周体D–ABC(全部棱长均相等的三棱锥),P,Q,R分别BQ CR为 AB, BC, CA 上的点, AP=PB,= =2,分别记二面角D–PR–Q,D–PQ–R,D–QR–PQC RA的平面角为α,β,γ,则()(第 9 题图)A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α9.B 【分析】设 O为三角形 ABC中心,则 O 到 PQ距离最小, O到 PR距离最大, O到 RQ10.(2017 年浙江 ) 如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD= 2,CD= 3,AC与BD→→→→→→)交于点 O,记I1=OA·OB,I2=OB·OC,I3=OC·OD,则((第 10 题图)A.I 1<I 2<I 3 B .I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 310. C 【分析】由于∠ AOB=∠COD>90°, OA< OC,OB< OD,所以→·→> 0>→·→>OB OC OA OB→→OC ·OD . 应选 C.非选择题部分(共100 分)11. (2017年浙江 ) 我国古代数学家刘徽创办的“割圆术”能够估量圆周率π,理论上能把π 的值计算到随意精度.祖冲之继承并发展了“割圆术”,将π 的值精准到小数点后七位,其结果当先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S ,6 S6=.33【分析】将正六边形切割为 6 个等边三角形,则S =6×(111.22×1×1×sin 60 °)63 3=.212. (2017年浙江 ) 已知a,b∈R,( a+bi )2=3+4i (i是虚数单位)则a2+b2=___________,=___________.ab22=3,2,a -b a =412.5 2【分析】由题意可得a2-b 2+2abi=3+4i ,则ab=2,解得b2=1,则 a2+b2=5,ab=2.13.325432,,则 a =________,(2017 年浙江 ) 已知多项式( x+1)( x+2)=x +a x +a x +a x +a x+a123454a5=________.13.16 4 【分析】由二项式睁开式可得通项公式为Cr 3x r2-m2-mr+m Cm2·2= Cr 3·Cm2·2 ·x,2分别取 r=0 , m=1和 r=1 , m=0可得 a4=4+12=16,取 r=m,可得 a5=1×2=4.14.(2017 年浙江 ) 已知△ABC,AB=AC=4,BC=2.点D为AB延伸线上一点,BD=2,连结CD,则△ BDC的面积是___________,cos∠ BDC=___________.1510BE 114. 24【分析】取 BC中点 E,由题意, AE⊥BC,△ABE中,cos∠ABE=AB=4,∴cos1115115∠DBC=- 4,sin ∠DBC=1- 16= 4,∴S△BCD=2×BD×BC×sin∠DBC=2 . ∵∠ ABC=2∠BDC,211010∠BDC-1= 4,解得 cos∠BDC= 4或 cos∠B DC=- 4(舍去) .∴cos∠ABC=cos 2∠BDC=2cos1510综上可得,△ BCD 面积为2,cos∠BDC= 4 .15. (2017 年浙江 ) 已知向量a,b知足 | a|=1,| b|=2,则 | a+b|+| a- b| 的最小值是 ________,最大值是 _______.15.4,2 5 【分析】设向量a,b的夹角为θ,由余弦定理有 | a- b|=12+22- 2×1×2×cos θ=5-4 cos θ, | a+b|=12 +22- 2×1×2×cos( π- θ ) =5+4cos θ,则| a+b|+|a- b|=5+4cos θ +5-4co sθ ,令y=5+4cos θ+ 5-4cosθ ,则2=10+22∈[16,20],据此可得 (|a+b|+| a- b|)max20y25-16cos θ==25,(|a+b|+|a- b|)min=16=4,即 | a+b|+|a- b|的最小值是4,最大值是 2 5.16. (2017年浙江)从6男2女共8名学生中选出队长 1 人,副队长 1 人,一般队员 2 人组成 4 人服务队,要求服务队中起码有1 名女生,共有 ______种不一样的选法.(用数字作答)16. 660【分析】由题意可得,“从8 名学生中选出队长 1 人,副队长1 人,一般队员 2人构成 4 人服务队”中的选择方法为C4 8×C1 4×C1 3(种)方法,此中“服务队中没有女生”的选法有 C4 6×C1 4×C1 3(种)方法,则知足题意的选法有C4 8×C1 4×C1 3- C46×C1 4×C1 3=660(种) .417. (2017 年浙江 ) 已知 a R ,函数 f ( x )=|x+ x -a|+a 在区间 [1 , 4] 上的最大值是 5,则 a的取值范围是 ___________ .94417. ( - ∞, 2]【分析】 x ∈[1,4],x+x ∈[4,5] ,分类议论:①当 a ≥5时, f ( x )=a-x- x4944+a=2a-x- x ,函数的最大值2a-4=5 ,∴ a=2,舍去;②当 a ≤4时, f ( x ) =x+x -a+a=x+ x ≤5,此时命题建立; ③当 4< a < 5 时,[f(x)] max =max{|4-a|+a,|5-a|+a}|4- a|+a ≥ |5 -a|+a ,,则|4-a|+a=5 9 9a 的取值范围是( - ∞, 9 或 |4-a|+a < |5-a|+a ,解得 a= 或 a < . 综上可得,实数 ] . |4-a|+a=5 2 22 18. (2017 年浙江 ) 已知函数 f ( x ) =sin 2x – cos 2x –23sin x cos x (x ∈ R ).( 1)求 f ( 2π)的值.3( 2)求 f ( x )的最小正周期及单一递加区间.2π 3 2π 118. 解:( 1)由 sin 3 = 2 , cos 3 =- 2,f ( 2π 3 2 - (- 1 2 3 1 ).)=( ) ) -2 3× ×(-3 2 2 2 22π 得 f ( 3 ) =2.(2)由 cos 2x=cos2x-sin 2x 与 sin 2x=2sin xcos x,π得 f(x)=-cos 2x- 3sin 2x=-2sin(2x+6 ) .所以 f(x) 的最小正周期是π.ππ 3π由正弦函数的性质得2 +2k π≤ 2x+ 6 ≤ 2 +2k π, k ∈ Z ,解得π+k π≤ x ≤ 3π+2k π, k ∈Z ,62π3π所以, f ( x )的单一递加区间是[+k π,+2k π] ,k ∈Z .6219. (2017 年浙江 ) 如图,已知四棱锥 P – ABCD ,△ PAD 是以 AD 为斜边的等腰直角三角形, BC ∥AD , CD ⊥ AD , PC =AD =2DC =2CB , E 为 PD 的中点.PEA DB C(第 19 题图)(1)证明: CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.19.解:( 1)如图,设PA中点为F,连结EF,FB.由于 E, F分别为 PD, PA中点,1所以 EF∥AD 且 EF=2AD,1又由于 BC∥AD, BC= AD,2所以 EF∥BC 且 EF=BC,即四边形 BCEF为平行四边形,所以 CE∥BF,所以 CE∥平面PAB.(2)分别取BC, AD的中点为M, N,连结 PN交 EF 于点 Q,连结 MQ.由于 E, F, N 分别是 PD, PA,AD的中点,所以Q为 EF 中点,在平行四边形BCEF中, MQ∥CE.由△ PAD为等腰直角三角形得PN⊥AD.由 DC⊥ AD, N是 AD的中点得 BN⊥ AD.所以 AD⊥平面 PBN,由 BC// AD得 BC⊥平面 PBN,那么平面 PBC⊥平面 PBN.过点 Q作 PB的垂线,垂足为 H,连结 MH.MH是 MQ在平面 PBC上的射影,所以∠QMH是直线 CE与平面 PBC所成的角.设 CD=1.在△ PCD中,由 PC=2, CD=1,PD= 2得 CE=2,1在△ PBN中,由 PN=BN=1, PB=3得QH= ,41在 Rt△MQH中,QH=,MQ=2,4所以 sin ∠=2,QMH8所以直线 CE与平面 PBC所成角的正弦值是2 8 .20. (2017年浙江 ) 已知函数f (x)=(–-x12x-1 ) e(x≥).x2(1)求f ( x) 的导函数;(2)求f ( x) 在区间 [ 1,+∞) 上的取值范围.220. 解:( 1)由于(x–2x-1 )′ =1-1,( e-x)′=-e -x,2x-11-x-x (1-x)(2x-1-2)e-x1所以 f ( x) =( 1-2x-1 )e- (x– 2x-1 ) e =2x-1(x >2).(1-x)(-x2x-1-2)e(2)由f′( x)=2x-1=05解得 x=1 或 x=2.由于x 115552(2,1)1(1,2)2(2,+∞)f ′( x)–0+0–f ( x)1 -11-5 e2↘↗e2↘221 2 -x11 - 1所以 f ( x )在区间 [ 2,+∞) 上的取值范围是 [0 ,2e 2] .21. (2017 年浙江 ) 如图,已知抛物线 x 2=y ,点 A ( - 1,1),B (3,9),抛物线上的点 p(x,y)(- 12 4 2 4 23< x < ) .过点 B 作直线 AP 的垂线,垂足为 Q . 2(第 19 题图)( 1)求直线 AP 斜率的取值范围;( 2)求 |PA| ·|PQ| 的最大值. 21. 解:( 1)设直线 AP 的斜率为 k ,x 2- 141k=1 =x- 2,x+2由于 -1 3-1 , 1).2 < x < ,所以直线 AP 斜率的取值范围是(2kx-y+1 1k+ =0,(2)联立直线 AP 与 BQ 的方程2 49 3x+ky- 4k- 2=0,-k 2+4k+3解得点 Q 的横坐标是 x Q = 2(k 2+1) . 由于 ||= 1+k 2(x+ 1 )= 1+k 2(k+1) ,PA 2(k-1)(k+1) 2| PQ |=2 Q ,1+k (x -x)=- k 2+1所以 |PA| ·|PQ|= -(k-1)(k+1)3.令 f(k)=-(k-1)(k+1)3,由于 f ′(k)= -(4k-2)(k+1) 2,所以 f ( k ) 在区间 (-1,1 1) 上单一递加,( ,1) 上单一递减,22所以当k 1, |PA| ·|PQ| 获得最大27 =.21622. (2017年浙江)已知数列{x n}足x1=1,x n=x n+1+ln(1+x n+1)(n∈ N*).*明:当n∈ N ,(1) 0<x n+1<x n;x n x n+1(2) 2x n+1-x n≤2;1 1(3)2n-1≤x n≤2n-2.22.解:( 1)用数学法明x n> 0.当 n=1, x1=1>0.假 n=k , x k>0,那么 =+1 ,若 x k+1≤0, 0<k=x k+1 +ln(1+xk+1)≤0,矛盾,故xk +1>0.n k x所以 x n> 0(n∈ N*).所以 x n=x n+1+ln ( 1+x n+1)> x n+1,所以 0< x n+1< x n(n∈ N*).(2)由 x n=x n+1+ln ( 1+x n+1),得 x n x n+1-4x n+1+2x n=x n+12-2x n+1+( x n+1+2) ln ( 1+x n+1) .函数 f (x) =x2-2x+ ( x+2)ln ( 1+x)(x≥0),2x 2+x+ln ( 1+x)> 0(x> 0),f ′( x) =x+1函数 f ( x)在 [0 ,+∞] 上增,所以 f ( x)≥ f ( 0) =0,2-2x n+1+( x n+1+2) ln (1+x n+1) =f ( x n+1)≥ 0,所以 x n+1x n x n+1*故 2x n+1-x n≤( n∈ N).2(3)因 x n=x n+1+ln ( 1+x n+1)≤ x n+1+x n+1=2x n+1,1所以 x n≥2n-1,x n x n+1由2≥2x n+1-x n,1 111得 - ≥2( - )>0,x n+1 2x n 21 1 1 1n-1(1 1n-2,所以 -≥ 2(- )≥⋯≥ 2- )=2 x n2x n-1 2x1 2(完整版)浙江高考理科数学试题和解析 11 / 11 WORD 完满格式故 x n ≤ 1n-2 .21 1 *).综上, n-1 ≤ x n ≤ n-2 (n ∈ N 2 2..整理分享 ..。
高考真题——理科数学(浙江卷)解析版(1) Word版含答案

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
年高考浙江卷理科数学试题及详细解答

普通高等学校招生全国统一考试数学(理科)浙江卷本试题卷第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1至2页,第Ⅱ卷3至4页 满分150分,考试时间120钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共 50 分)注意事项:1. 答第 1 卷前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2. 每小题选出正确答案后,用2B 铅笔把答题纸上对应题目的答案标号填黑.叁考正式:如果事件 A , B 互斥,那么P ( A+ B ) = P( A)+ P( B) S=24R πP( A+ B)= P( A). P( B) 其中 R 表示球的半径 如果事件A 在一次试验中发生的概念是p 球的体积公式V=234R π 那么n 次独立重复试验中恰好发生 其中R 表示球的半径 k 次的概率:k n kn n p p C k P +-=)1()(4一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4] (2) 已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 (A)1+2i (B) 1-2i (C)2+i (D)2-I (3)已知0<a <1,log 1m <log 1n <0,则(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是(A) (B)4(C) (D)2(5)双曲线122=-y m x 上的点到左准线的距离是到左焦点距离的31,则m=( ) (A)21 (B)23 (C)81 (D)89(6)函数y=21sin2x+sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] (7)“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件(8)若多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x(A)9 (B)10 (C)-9 (D)-10(9)如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是(A)4π (B)3π (C)2π(D)42π(10)函数f:{1,2,3}→{1,2,3}满足f(f(x))= f(x),则这样的函数个数共有(A)1个 (B)4个 (C)8个 (D)10个第Ⅱ卷(共100分)注意事项:1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2022年浙江省高考数学试题及答案

2022年浙江省高考数学试题及答案一、选择题(本大题共10小题,每小题5分,共50分)1. 设集合A={x|0<x<1},B={x|x^2<4},则A∩B=()A. {x|0<x<2}B. {x|0<x<1}C. {x|2<x<0}D. {x|2<x<2}2. 若函数f(x)=x^33x+1在区间(1,1)上单调递减,则实数a的取值范围是()A. a>1B. a<1C. a≥1D. a≤13. 已知等差数列{an}的前n项和为Sn,且a1+a3=20,a2+a4=26,则数列{an}的公差d=()A. 2B. 3C. 4D. 54. 在等腰三角形ABC中,AB=AC=4,∠BAC=60°,则三角形ABC的面积是()A. 2√3B. 4√3C. 6√3D. 8√35. 已知圆C:x^2+y^2=4,直线l:y=kx+2与圆C相交于A、B两点,若AB=2√2,则实数k的值是()A. 1B. 1C. ±1D. 06. 已知函数f(x)=log2(x+1),则f(x)的值域是()A. (∞,0)B. (0,+∞)C. (∞,+∞)D. (0,+∞)7. 已知正三棱柱ABCA1B1C1的底面边长为a,高为h,则该三棱柱的体积V是()A. V=√3/4a^2hB. V=√3/2a^2hC. V=a^2hD. V=√3a^2h8. 若复数z满足|z1|=|z+1|,则z在复平面上的轨迹是()A. 以原点为中心,半径为1的圆B. 以原点为中心,半径为2的圆C. 以点(1,0)为中心,半径为1的圆D. 以点(1,0)为中心,半径为1的圆9. 已知等比数列{an}的首项a1=1,公比q=2,则数列{an}的前5项和S5=()A. 31B. 32C. 33D. 3410. 已知函数f(x)=x^2+ax+b(a,b∈R),若f(x)在区间(1,1)上单调递增,则实数a的取值范围是()A. a>2B. a<2C. a≥2D. a≤2二、填空题(本大题共5小题,每小题5分,共25分)11. 若函数f(x)=x^33x+1在区间(1,1)上单调递减,则实数a的取值范围是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共50分)1.(2017年浙江)已知集合P={x|-1<x<1},Q={0<x<2},那么P∪Q=()A.(1,2)B.(0,1)C.(-1,0)D.(1,2)1.A 【解析】利用数轴,取P,Q所有元素,得P∪Q=(-1,2).2. (2017年浙江)椭圆x29+y24=1的离心率是()A.133B.53C.23D.592.B 【解析】e=9-43=53.故选B.3. (2017年浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()(第3题图)A .B .C .D .3. A 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为V=13×3×(π×122+12×2×1)=π2+1.故选A.4. (2017年浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x≥0,x+y-3≥0,x-2y≤0,则z=x+2y 的取值范围是( ) A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)4. D 【解析】如图,可行域为一开放区域,所以直线过点时取最小值4,无最大值,选D .5. (2017年浙江)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关5. B 【解析】因为最值f (0)=b ,f (1)=1+a+b ,f (-a 2)=b-a24中取,所以最值之差一定与b 无关.故选B.6. (2017年浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6. C 【解析】由S 4 + S 6-2S 5=10a 1+21d-2(5a 1+10d )=d ,可知当d >0时,有S 4+S 6-2S 5>0,即S 4 + S 6>2S 5,反之,若S 4 + S 6>2S 5,则d >0,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .7. (2017年浙江)函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )(第7题图)7. D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.故选D.8. (2017年浙江)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)8. A 【解析】∵E (ξ1)=p 1,E (ξ2)=p 2,∴E (ξ1)<E (ξ2),∵D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2),∴D (ξ1)- D (ξ2)=(p 1-p 2)(1-p 1-p 2)<0.故选A .9. (2017年浙江)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,BQ QC =CR RA =2,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则( )(第9题图) A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α9. B 【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此α<γ<β.故选B.10. (2017年浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=→OA ·→OB ,I 2=→OB ·→OC ,I 3=→OC ·→OD ,则( )(第10题图) A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 310. C 【解析】因为∠AOB=∠COD>90°,OA <OC ,OB <OD ,所以→OB·→OC >0>→OA ·→OB >→OC ·→OD .故选C.非选择题部分(共100分)11. (2017年浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=. 11. 332 【解析】将正六边形分割为6个等边三角形,则S 6=6×(12×1×1×sin 60°)=332.12. (2017年浙江)已知a ,b ∈R ,(a+bi )2=3+4i (i 是虚数单位)则a 2+b 2=___________,ab =___________.12.5 2 【解析】由题意可得a 2-b 2+2abi=3+4i ,则⎩⎪⎨⎪⎧a2-b2=3,ab=2,解得⎩⎪⎨⎪⎧a2=4,b2=1,则a 2+b 2=5,ab=2.13. (2017年浙江)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,,则a 4=________,a 5=________.13. 16 4 【解析】由二项式展开式可得通项公式为Cr 3x r Cm 2·22-m = Cr 3·Cm 2·22-m ·x r+m ,分别取r=0,m=1和r=1,m=0可得a 4=4+12=16,取r=m ,可得a 5=1×22=4.14. (2017年浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是___________,cos∠BDC =___________.14. 152104 【解析】取BC 中点E ,由题意,AE⊥BC,△ABE 中,cos∠ABE=BE AB =14,∴cos ∠DBC=-14,sin∠DBC=1-116=154,∴S △BCD =12×BD×BC×sin∠DBC=152.∵∠ABC=2∠BDC ,∴cos∠ABC=cos2∠BDC=2cos 2∠BDC -1=14,解得cos∠BDC=104或cos∠BDC=-104(舍去).综上可得,△BCD 面积为152,cos∠BDC=104.15. (2017年浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是_______. 15. 4,2 5 【解析】设向量a ,b 的夹角为θ,由余弦定理有|a -b |=12+22-2×1×2×cos θ=5-4cos θ,|a +b |=12+22-2×1×2×cos (π-θ)=5+4cos θ,则|a +b |+|a -b |=5+4cos θ+5-4cos θ,令y=5+4cos θ+5-4cos θ,则y 2=10+225-16cos2θ ∈[16,20],据此可得(|a +b |+|a -b |)max =20=25,(|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是25.16. (2017年浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)16. 660 【解析】由题意可得,“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为C4 8×C1 4×C1 3(种)方法,其中“服务队中没有女生”的选法有C4 6×C1 4×C1 3(种)方法,则满足题意的选法有C4 8×C1 4×C1 3- C4 6×C1 4×C1 3=660(种).17.(2017年浙江)已知a R ,函数f (x )=|x+4x -a|+a 在区间[1,4]上的最大值是5,则a 的取值范围是___________.17.(-∞,92]【解析】x∈[1,4],x+4x ∈[4,5],分类讨论:①当a≥5时,f (x )=a-x-4x +a=2a-x-4x ,函数的最大值2a-4=5,∴a=92,舍去;②当a≤4时,f (x )=x+4x -a+a=x+4x ≤5,此时命题成立;③当4<a<5时,[f(x)]max =max{|4-a|+a,|5-a|+a},则⎩⎪⎨⎪⎧|4-a|+a≥|5-a|+a ,|4-a|+a=5或⎩⎪⎨⎪⎧|4-a|+a <|5-a|+a ,|4-a|+a=5解得a=92或a <92.综上可得,实数a 的取值范围是(-∞,92].18.(2017年浙江)已知函数f (x )=sin 2x –cos 2x –23sin x cos x (x ∈R ).(1)求f (2π3)的值.(2)求f (x )的最小正周期及单调递增区间. 18.解:(1)由sin 2π3=32,cos 2π3=-12,f (2π3)=(32)2-(-12)2-23×32×(-12).得f (2π3)=2.(2)由cos 2x=cos 2x-sin 2x 与sin 2x=2sin xcos x , 得f(x)=-cos 2x-3sin 2x=-2sin(2x+π6).所以f(x)的最小正周期是π.由正弦函数的性质得π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z,解得π6+kπ≤x≤3π2+2kπ,k∈Z,所以,f (x )的单调递增区间是[π6+kπ,3π2+2kπ],k∈Z.19. (2017年浙江)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(第19题图)(1)证明:CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.19.解:(1)如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA中点,所以EF∥AD且EF=12AD,又因为BC∥AD,BC=12AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC ,AD 的中点为M ,N ,连接PN 交EF 于点Q ,连接MQ.因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ∥CE. 由△PAD 为等腰直角三角形得PN⊥AD. 由DC ⊥AD ,N 是AD 的中点得BN ⊥AD . 所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD=2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt△MQH 中,QH=14,MQ =2,所以sin∠QMH =28,所以直线CE 与平面PBC 所成角的正弦值是28.20. (2017年浙江)已知函数f (x )=(x –2x-1)e -x(x≥12).(1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围.20.解:(1)因为(x –2x-1)′=1-12x-1,(e -x )′=-e -x ,所以f (x )=(1-12x-1)e -x -(x –2x-1)e -x =(1-x)(2x-1-2)e -x2x-1(x>12). (2)由f′(x )=(1-x)(2x-1-2)e -x2x-1=0解得x=1或x=52.因为又f (x )=12(2x-1-1)2e -x ≥0,所以f (x )在区间[12,+∞)上的取值范围是[0,12e -12].21. (2017年浙江)如图,已知抛物线x 2=y ,点A (-12,14),B (32,94),抛物线上的点p(x,y)(-12<x <32).过点B 作直线AP 的垂线,垂足为Q .(第19题图)(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值. 21. 解:(1)设直线AP 的斜率为k , k=x2-14x+12=x-12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx-y+12k+14=0,x+ky-94k-32=0,解得点Q 的横坐标是x Q =-k2+4k+32(k2+1).因为|PA |=1+k2(x+12)=1+k2(k+1),|PQ |=1+k2(x Q -x)=-(k-1)(k+1)2k2+1,所以|PA|·|PQ|=-(k-1)(k+1)3. 令f(k)=-(k-1)(k+1)3,因为f′(k)=-(4k-2)(k+1)2,所以f (k )在区间(-1,12)上单调递增,(12,1)上单调递减,因此当k =12时,|PA|·|PQ|取得最大值2716.22. (2017年浙江) 已知数列{x n }满足x 1=1,x n =x n +1+ln(1+x n +1)(n∈N *). 证明:当n∈N *时, (1)0<x n +1<x n ; (2)2x n +1− x n ≤xnxn+12;(3)12n-1≤x n ≤12n-2.22.解:(1)用数学归纳法证明x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若x k+1≤0,则0<x k = x k +1+ln (1+ x k +1)≤0,矛盾,故x k +1>0. 因此x n >0(n∈N *).所以x n =x n+1+ln (1+x n+1)>x n+1, 因此0<x n+1<x n (n∈N *). (2)由x n =x n+1+ln (1+x n+1),得x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln (1+x n+1).记函数f (x )=x2-2x+(x+2)ln (1+x )(x≥0), f′(x )=2x2+x x+1+ln (1+x )>0(x >0),函数f (x )在[0,+∞]上单调递增,所以f (x )≥f (0)=0, 因此x n+12-2x n+1+(x n+1+2)ln (1+x n+1)=f (x n+1)≥0, 故2x n+1-x n ≤xnxn+12(n ∈N *).(3)因为x n =x n+1+ln (1+x n+1)≤x n+1+x n+1=2x n+1, 所以x n ≥12n-1,由xnxn+12≥2x n+1-x n ,得1xn+1-12≥2(1xn -12)>0, 所以1xn -12≥2(1xn-1-12)≥…≥2n-1(1x1-12)=2n-2,故x n ≤12n-2.综上,12n-1≤x n ≤12n-2(n∈N *).。