半导体材料的导电性(2)
半导体的特性

半导体的特性
半导体是一种具有介于导体和绝缘体之间的电导性能的材料。
其特
性包括:
1. 导电性:半导体具有介于导体和绝缘体之间的导电性能。
在绝缘
体中,电子无法自由移动,而在导体中,电子可以自由移动。
半导体
的特点是在常温下,其导电性由掺杂与温度控制。
2. 能带结构:半导体的原子排列形成了能带结构,其中包含导带和
价带。
绝缘体的导带与价带之间的能隙非常大,而导体几乎没有能隙。
半导体的能隙介于导体和绝缘体之间,通常为1-3电子伏特。
3. 温度对导电性的影响:与导体不同,半导体的电导性能与温度密
切相关。
随着温度的升高,半导体的电导性能也会增加。
4. 掺杂:通过在半导体晶体中掺入少量的杂质,可以显著地改变其
导电性质。
杂质的掺杂可以分为N型和P型。
N型掺杂引入一个附加
的自由电子,而P型掺杂引入一个附加的空穴。
5. PN结:将N型和P型的半导体材料接触在一起形成PN结。
PN
结具有整流作用,即在正向偏置时,电流可以流动,而在反向偏置时,电流被阻塞。
6. 半导体器件:半导体的特性使其成为制造各种电子器件的理想材料,如二极管、晶体管、场效应管和集成电路等。
总的来说,半导体的特性使其成为现代电子技术的基础,广泛应用于计算机、通信、光电等领域。
半导体材料的导电性

或
vn
q c E
mn
上式说明了电子漂移速度正比于所施加的电场,而比例因子则 视平均自由时间与有效质量而定,此比例因子即为迁移率。
因此 同理,对空穴有
vn nE vp pE
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 7
载流子漂移
影响迁移率的因素:
散射机制 平均自由时间
半导体材料的导电性 2
载流子漂移
迁移率(mobility)
迁移率是用来描述半导体中载流子在单位电场下运动快慢的物
理量,是描述载流子输运现象的一个重要参数,也是半导体理论中 的一个非常重要的基本概念。
迁移率定义为:
q c
m
单位: cm2/(V·s)
由于载流子有电子和空穴,所以迁移率也分为电子迁移率和
1 0 15
并于最后在高浓度下达到一 10000
个最小值;
5000
迁 移/[ 率c 2 m(VS)1]
2000
电子的迁移率大于空穴的 1000
迁移率,而较大的电子迁移 500
率主要是由于电子较小的有 200
效质量所引起的。
100
50 Si
20 n, Dn
10
5
p,Dp
2
1 0 16
1 0 17
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 19
载流子漂移
对空穴有类似结果,但要将空穴所带的电荷转变为正。
Jpqpp vqppE
所以,因外加电场而流经半导体中的总电流则为电子及空
穴电流的总和,即
J J n J p qn n qp p E
半导体高中物理

半导体高中物理半导体是一种电子能带结构介于导体和绝缘体之间的材料,具有独特的导电性质。
在高中物理学中,半导体是一个重要的话题。
本文将探讨半导体的基本概念、性质和应用。
首先,我们来了解半导体的基本概念。
半导体是指在温度较高时表现为导体,而在温度较低时表现为绝缘体的物质。
它的导电性质是通过材料中的载流子(电子或空穴)传导电流来实现的。
在半导体中,电子和空穴是通过化学反应或热激发产生的。
半导体材料可以是单晶体(如硅、锗)或复合材料(如硅锗合金)。
半导体具有一些独特的性质。
首先是温度敏感性。
随着温度的升高,半导体的导电性会增强,因为更多的载流子会被激发出来。
这种特性使得半导体在温度传感器和温度控制器中得到广泛应用。
其次是光电性质。
半导体在受到光照时,会发生光生电效应,产生电子-空穴对。
这种特性使得半导体在光电器件(如太阳能电池、光电二极管)中有重要的应用。
半导体的导电性质可以通过掺杂来调节。
掺杂是指向半导体中引入杂质,改变其导电性质的过程。
掺杂分为施主掺杂和受主掺杂。
施主掺杂是向半导体中引入能够提供额外自由电子的杂质,如磷或砷。
这些自由电子可以增加半导体的导电性能,使其成为N型半导体。
受主掺杂是向半导体中引入能够提供额外空穴的杂质,如硼或铟。
这些空穴可以增加半导体的导电性能,使其成为P型半导体。
N型半导体和P型半导体的结合形成PN结。
PN结是半导体器件中最基本的结构之一。
当N型半导体和P型半导体相接触时,N型半导体中的自由电子会向P型半导体中的空穴扩散,形成电子-空穴对结合区域。
在这个结合区域中,自由电子和空穴会重新组合,形成电子空穴复合。
这种电子空穴复合过程会导致PN结的区域失去自由电荷,形成一个电势差,称为内建电势。
内建电势使得PN结形成一个单向导电的区域,即正向偏置和反向偏置。
PN结具有一些重要的应用。
其中之一是二极管。
二极管是一种电子器件,可以在电流只能从P端流向N端的情况下导电。
二极管广泛应用于电源电路、整流电路和信号调制电路中。
半导体的导电特性

半导体的导电特性根据物质的导电能力可分为导体、半导体和绝缘体三大类,顾名思义半导体的导电能力介于导体绝缘体之间。
硅、锗、硒及大多数金属氧化物和硫化物都是半导体。
半导体的导电特性热敏性:当环境温度升高时,导电能力显著增强(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。
掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。
1.本征半导体本征半导体:完全纯净的、不含其它杂质的半导体通称本征半导体。
用得最多的是硅和锗,图1所示是硅和锗的原子结构图,它们都是四价元素,在原子的最外层轨道上都有四个价电子。
(a) 锗Ge (b) 硅Si图1 硅和锗的原子结构在本征半导体中,每个原子的一个价电子与另一原子的一个价电子组成一个电子对,并且对两个原子所共有,因此称为共价键。
由共价键结构形成的半导体其原子排列都比较整齐,形成晶体结构,因此半导体又称为晶体,如图2所示。
图2 晶体中原子的排列方式本征半导体的导电机理在本正半导体的晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓的共价键结构,如图3所示。
图3 硅单晶中的共价键结构在共价键结构的晶体中,每个原子的最外层都有八个价电子,因此都处于比较稳定的状态。
只有当共价键中的电子获得一定能量(环境温度升高或受到光照射)后,价电子方可挣脱原子核的束缚成为自由电子,并且在共价键中留下一个空位,称为空穴。
如图4所示。
图4 空穴和自由电子的形成在一般情况下,本征半导体中自由电子和空穴的数量都比较少,其导电能力很低。
由于本征半导体中的自由电子和空穴总是成对出现,因此在一定温度下,它们的产生和复合将达到动态平衡,使自由电子和空穴维持在一定数目上。
物质的半导体与导电性

物质的半导体与导电性物质的导电性是指物质对电流的传导能力,而物质的半导体性质则是介于导体和绝缘体之间的一类特殊物质。
在现代电子技术中,半导体材料被广泛应用于各种器件中,如晶体管、二极管等。
本文将探讨物质的半导体与导电性之间的关系以及其在电子技术中的应用。
一、导电性介绍导电性是物质对电流传导的能力。
在导体中,电流是以自由电子的形式传导的。
导体中的自由电子可在外加电场的作用下自由移动,因此导体具有很好的导电性能。
金属是常见的导体,其中的电子云结构使得金属中的电子可以自由地传导电流。
二、半导体的性质相比于导体,半导体的导电性能介于导体和绝缘体之间。
半导体材料中的电子处于较为固定的能级中,不能自由移动,但在一定温度下,他们可以通过热激发或施加外加电场的方式进行导电。
半导体材料的导电性与其晶体结构及施加于其上的电场有关。
三、半导体的掺杂为了提高半导体材料的导电性,常常通过掺杂的方式来引入杂质原子。
掺杂是指将少量其他元素的原子引入到半导体晶体中,取代原有晶体中的原子。
常用的掺杂原子有磷、硅等。
掺杂后的半导体分为两类:P型和N型。
P型半导体中,掺入的杂质原子减少了电子的数量,形成了空穴,因此P型半导体的导电主要是通过正电荷的空穴进行的。
N型半导体中,掺入的杂质原子增加了电子的数量,因此N型半导体的导电主要是通过电子进行的。
四、半导体器件的应用半导体材料的特殊性质使得其在电子技术领域有广泛的应用。
以下是几种常见的半导体器件及其应用:1. 晶体管:晶体管是一种由半导体材料构成的三层结构器件,可以用来放大和开关电子信号。
它是现代电子技术中最重要的器件之一,被广泛应用于各种电子产品中,如计算机、手机等。
2. 二极管:二极管是由P型和N型半导体材料构成的二层结构器件。
通过合适的电场作用,二极管可以实现电流只能向一个方向流动的特性。
因此,二极管常被用作整流器、稳压器等电子电路中。
3. 光电二极管:光电二极管是一种能够将光信号转化为电信号的器件。
半导体的导电性

通过升高温度,使半导体材料内部的缺陷和杂质激活,从而改变其导电性能。
退火工艺
将半导体材料加热到一定温度并保持一段时间,然后缓慢冷却。这种方法可以消 除材料内部的应力,并提高其导电性能。
外加电场与磁场的影响
外加电场
通过外加电场,可以改变半导体材料内部的载流子分布和运动状态,从而影响其导电性能。
测量方法
电导率的测量通常采用四 探针法,通过四个接触材 料表面的探针来直接测量 电流和电压。
应用
电导率的测量可用于研究 半导体材料的晶体结构、 缺陷和掺杂等微观性质。
电极化率的测量
概述
电极化率是衡量半导体材 料在电场作用下极化程度 的重要参数,它与材料的 介电常数密切相关。
测量方法
电极化率的测量通常采用 电容法,通过在材料两端 施加交变电场并测量电容 的变化来计算电极化率。
载流子的产生与复合
载流子的产生
半导体材料中的原子或分子受到外部能量的激发,会释放出电子和空穴。
载流子的复合
电子和空穴在运动过程中,可能会重新结合在一起,从而消失。这种过程称为 载流子的复合。
03
半导体材料的导电性测量与表征
电导率的测量
01
02
03
概述
电导率是衡量半导体材料 导电性能的重要参数,它 反映了材料中载流子的迁 移率。
日期:
半导体的导电性
汇报人:
目 录
• 半导体导电性概述 • 半导体材料的导电原理 • 半导体材料的导电性测量与表征 • 半导体材料的导电性调控 • 半导体导电性的应用
01
半导体导电性概述
半导体材料定义
• 半导体材料定义:半导体材料是一种在导电性能上处于绝缘体 和导体之间的材料,具有独特的电子和空穴导电性。它们通常 在一定的温度和光照条件下,能显著提高其导电性。
半导体的导电特性

半导体的导电特性半导体是一种介于导体和绝缘体之间的物质。
它的导电特性与其他材料有所不同,因此对于理解和应用半导体的各种电子器件至关重要。
本文将深入探讨半导体的导电特性,包括本征导电、掺杂与载流子浓度、载流子迁移率以及PN结的导电特性等。
1. 本征导电半导体材料的本征导电是指在纯净无杂质状态下,通过自由载流子实现的导电现象。
半导体晶体中的自由电子和空穴是通过热激发或光激发的方式生成的。
具体而言,半导体中的自由电子主要来自于价带的电子跃迁,而空穴则是通过连带效应产生的。
在本征导电状态下,半导体的导电能力较弱。
2. 掺杂与载流子浓度为了提高半导体的导电性能,常常会对其进行掺杂。
掺杂是向半导体中加入少量杂质原子,以改变半导体的导电特性。
根据掺杂杂质的电性,可以将掺杂分为N型和P型两种。
N型半导体中掺入少量五价元素,如磷或砷,这些杂质原子提供了额外的自由电子,因此N型半导体中的导电能力增强。
P型半导体中掺入少量三价元素,如硼或铝,这些杂质原子提供了额外的空穴,因此P型半导体中的导电能力提高。
掺杂后的半导体中,载流子浓度变得非常高,因为掺杂引入了大量的自由电子或空穴。
这种载流子浓度的增加极大地改善了半导体的导电性能。
3. 载流子迁移率除了载流子浓度,载流子的迁移率也是决定半导体导电特性的重要因素之一。
载流子迁移率指的是自由载流子在半导体中运动时的移动速度。
迁移率取决于材料的特性以及杂质的种类和浓度。
在半导体晶体结构中,载流子的运动受到晶格缺陷、杂质和温度等因素的影响。
晶格缺陷会散射载流子,从而降低其迁移率。
而杂质的种类和浓度也会影响载流子的迁移率,高浓度的杂质会增加散射,降低迁移率。
此外,温度的升高也会导致晶格振动增加,进而增加自由载流子的散射,降低迁移率。
4. PN结的导电特性PN结是半导体中最基本的器件之一,其导电特性在电子学和光电子学领域有广泛应用。
PN结由N型半导体和P型半导体通过正向或反向偏置连接而成。
半导体的导电性及掺杂

半导体的导电性及掺杂半导体材料是一类介于导体和绝缘体之间的材料,具有特殊的导电性质。
本文将探讨半导体的导电性以及如何通过掺杂来改变其导电性。
一、半导体材料的导电性质半导体的导电性质是由其特殊的能带结构决定的。
在半导体中,存在着价带和导带之间的禁带。
价带是指电子处于低能量状态时所占据的能带,而导带则是指电子处于高能量状态时所占据的能带。
禁带是二者之间的能量间隔。
在固体材料中,原子核和价带中的电子形成了共价键,这些价带中的电子都是成对出现的,无法自由移动。
而在半导体中,由于禁带的存在,价带中的电子无法跃迁到导带中,导致半导体无法导电。
二、本征半导体和掺杂半导体半导体可以分为本征半导体和掺杂半导体两种类型。
本征半导体是指未经过任何掺杂的纯净半导体材料。
在本征半导体中,导带中的电子数量很少,因此导电性较差。
通常情况下,本征半导体的导电性取决于其材料的温度。
掺杂半导体是指通过掺杂过程向半导体材料中引入其他杂质元素,从而改变其导电性质的半导体材料。
常见的掺杂元素有硼、磷、砷等。
掺杂的过程会使得半导体材料中的导电性质发生显著改变,从而使电子或空穴数量增加,提高导电能力。
三、掺杂对半导体导电性的影响掺杂的类型和浓度决定了半导体材料的导电性质。
1. N型半导体N型半导体是指通过向半导体中引入电子供体杂质元素,如磷或砷,使得电子数量增多的材料。
在N型半导体中,杂质原子释放的额外电子进入导带,从而增加了导电性能。
这些额外的电子被称为自由电子,它们能够自由地在半导体中移动并参与导电过程。
2. P型半导体P型半导体是指通过向半导体中引入电子受体杂质元素,如硼,使得空穴数量增多的材料。
在P型半导体中,杂质原子缺少一个电子,形成了一个空穴。
空穴可以看作是正电荷的移动载流子。
空穴在半导体中移动,从而参与了导电过程。
通过掺杂N型半导体和P型半导体,可以制造出PN结。
PN结是一种广泛应用于半导体器件中的结构,如二极管和晶体管等。
PN结的导电性质由P区和N区的不同导电性决定,使得半导体器件具有特殊的电子控制功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Foundation of Microelectron Circuit
半导体材料的导电性
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 1
本章内容
载流子漂移与扩散 产生与复合过程 连续性方程式 热电子发射、隧穿及强电场效应
苏州科技学院电子与信息工程系
微电子电路基础
微电子电路基础
半导体材料的导电性 5
载流子漂移
当一个小电场E施加于半导体时,每一个电子会从电场上受到一个-qE的 作用力,且在各次碰撞之间,沿着电场的反向被加速。因此,一个额外的速 度成分将再加至热运动的电子上,此额外的速度成分称为漂移速度(drift
velocity)
一个电子由于随机的热 运动及漂移成分两者所造成 的位移如图所示。
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 9
载流子漂移
杂质散射:
杂质散射是当一个带电载流子经过一个电离的杂质时所引 起的。
由于库仑力的交互作用,带电载流子的路径会偏移。杂质 散射的几率视电离杂质的总浓度而定。
然而,与晶格散射不同的是,杂质散射在较高的温度下变 得不太重要。因为在较高的温度下,载流子移动较快,它们在 杂质原子附近停留的时间较短,有效的散射也因此而减少。由 杂质散射所造成的迁移率µI理论上可视为随着T3/2/NT而变化, 其中NT为总杂质浓度。
迁 移/[ 率c 2 m(V•S)1]
2000
迁移率在低杂质浓度下达 1000
到一最大值,这与晶格散射 500
所造成的限制相符合;
200
电 子 及 空 穴 的 迁 移 率 皆 随 着杂质浓度的增加而减少,
100
50 1 0 1 4 20
1 0 15
并于最后在高浓度下达到一 10000
个最小值;
5000
迁 移/[ 率c 2 m(V•S)1]
2000
电子的迁移率大于空穴的 1000
迁移率,而较大的电子迁移 500
率主要是由于电子较小的有 200
效质量所引起的。
100
50 Si
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 10
载流子漂移
碰撞几率: 平均自由时间的倒数。
在单位时间内,碰撞发生的总几率1/τc是由各种散射机所引 起的碰撞几率的总和,即
1 1 1
c
c,晶格 c,杂质
所以,两种散射机制同时作用下的迁移率可表示为:
1 11
l i
苏州科技学院电子与信息工程系
晶格散射(lattice scattering) 杂质散射(impurity scattering)。
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 8
载流子漂移
晶格散射:
晶格散射归因于在任何高于绝对零度下晶格原子的热震动 随温度增加而增加,在高温下晶格散射自然变得显著,迁移率 也因此随着温度的增加而减少。理论分析显示晶格散射所造成 的迁移率µL将随T-3/2方式减少。
3 kT 2
其中mn为电子的有效质量,而vth为平均热运动速度。
在室温下(300K),上式中的电子热运动速度在硅晶及砷化镓中 约为107cm/s。
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 4
载流子漂移
半导体中的电子会在所有的方向做快速的移动,如图所示.
单一电子的热运动可视为与晶格原子、杂质原子及其他散射中心碰撞所引发 的一连串随机散射,在足够长的时间内,电子的随机运动将导致单一电子的 净位移为零。
半导体材料的导电性 2
载流子漂移
迁移率(mobility)
迁移率是用来描述半导体中载流子在单位电场下运动快慢的物
理量,是描述载流子输运现象的一个重要参数,也是半导体理论中 的一个非常重要的基本概念。
迁移率定义为:
q c
m
单位: cm2/(V·s)
由于载流子有电子和空穴,所以迁移率也分为电子迁移率和
平均自由程(mean free path):
碰撞间平均的距离。
平 均 自 由 时 间 (mean free
time)τc: 碰撞间平均的时间。
1
E=0 2
6
5 4
平均自由程的典型值为10-5cm, 平均自由时间则约为1微微秒 (ps, 即10-5cm/vth≈10-12s)。
3 (a)随机热运动
苏州科技学院电子与信息工程系
空穴迁移率,即:
电子迁移率 空穴迁移率
n
q c
mn
p
q c
mp
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 3
载流子漂移
迁移率的导出
半导体中的传导电子不是自由电子,晶格的影响需并入传导 电子的有效质量
在热平衡状态下,传导电子在三维空间作热运动
由能量的均分理论得到电子的动能为
1 2
mnvth2
值得注意的是,电子的 净位移与施加的电场方向相 反。
E
1
2
5
4 3
6
这种在外电场作用下载流子的定向运动称为漂移运动。
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 6
载流子漂移
电子在每两次碰撞之间,自由飞行期间施加于电子的冲 量为-qEτc,获得的动量为mnvn,根据动量定理可得到
qEc mnvn
微电子电路基础
半导体材料的导电性 11
载流子漂移
实例
104
右图为不同施主浓度硅晶
103
µn与T的实测曲线。小插图则 为理论上由晶格及杂质散射所
造成的µn与T的依存性。
102
对低掺杂样品,晶格散射 为主要机制,迁移率随温度的 增加而减少;对高掺杂样品, 杂质散射的效应在低温度下最 为显著,迁移率随温度的增加 而增加。同一温度下,迁移率 随杂质浓度的增加而减少。
或
vn
q c E
mn
上式说明了电子漂移速度正比于所施加的电场,而比例因子则 视平均自由时间与有效质量而定,此比例因子即为迁移率。
因此 同理,对空穴有
vn nE vp pE
苏州科技学院电子与信息工程系
微电子电路基础
半导体材料的导电性 7
载流子漂移
影响迁移率的因素:
散射机制 平均自由时间 迁移率
最重要的两种散射机制:
50 100
苏州科技学院电子与信息工程系
微电子电路基础
n/[c 2 m•(v•s)1]
lg n
ND1014cm3
1 016 1 017来自T 3/2T 3/2杂质散射 晶格散射 lgT
1 018
1 019
200
500
1000
半导体材料的导电性 12
扩散系/( 数cm2•s-1)
载流子漂移
如图为室温下硅及砷化镓中所测量到的以杂质浓度为函数的迁移率。