圆内接多边形练习题

合集下载

83九年级下册第三章第八节圆内接正多边形课后作业

83九年级下册第三章第八节圆内接正多边形课后作业

圆内接正多边形课后作业一.基础性作业(必做题)1.圆内接正三角形的边长为6,则该圆的半径是()A .2B .4C .32D .342.如图1,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是()A .弦AB 的长等于圆内接正六边形的边长;B .弦AC 的长等于圆内接正十二边形的边长;C .弧AC =弧BC ;D .∠BAC =30°.3.正方形内接于圆,它的一边所对的圆周角等于.4.如图2,在圆内接正六边形ABCDEF 中,半径OC =4,OG ⊥BC ,垂足为点G ,则正六边形的中心角=°,边长=,边心距=.5.如图3,在圆内接正五边形ABCDE 中,对角线AC ,BD 交于点P .则∠APD 的度数等于.6.如图5,已知正方形ABCD 的外接圆为⊙O ,点P 在劣弧CD 上(不与C 点重合).(1)求∠BPC 的度数;(2)若⊙O 的半径为8,求正方形ABCD 的边长.图1图2图4图3二、拓展性作业(选做题)1.如图5,请用直尺和圆规确定已知圆的圆心,并作出此圆的内接正六边形ABCDEF ;(保留作图痕迹,不写作法)2.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形来确定圆周率.若设⊙O 的半径为R ,圆内接正n 边形的边长、面积分别为a n ,S n ,圆内接正2n 边形边长、面积分别为a 2n ,S 2n .刘徽用以下公式求出a 2n 和S 2n .22222))21(()21(n n n a R R a a --+=,R na n 21S n 2=.如图6,若⊙O 的半径为1,则⊙O 的内接正八边形AEBFCGDH 的面积为.图5图63.【探索发现】小迪同学在学习圆的内接正多边形时,发现:如图7,若P是圆内接正三角形ABC 的外接圆的弧BC上任一点,则∠APB=60°,在PA上截取PM=PC.连接MC,可证明△MCP 是(填“等腰”“等边”或“直角”)三角形,从而得到PC=MC,再进一步证明△PBC ≌,得到PB=MA,可证得:PB+PC=PA.【拓展应用】小迪同学对以上推理进行类比研究,发现:如图8,若P是圆内接正四边形ABCD 的外接圆的弧BC上任一点,则∠APB=∠APD=°,分别过点B、D作BM⊥AP于M、DN⊥AP于N.【猜想证明】分别过点B,D作BM⊥AP于M,DN⊥AP于N.请写出PB、PD与PA之间的数量关系,并说明理由.图7图8。

九年级数学 圆内接正多边形 专题练习(含解析)

九年级数学 圆内接正多边形 专题练习(含解析)

C.连接 AD,则 AD 分别平分∠EAC 与∠EDC D.图中一共能画出 3 条对称轴
答案:B 解析:解答: A.∵多边形 ABCDEF 是正六边形, ∴△ACE 是等边三角形,故本选项正确; B.∵△ACE 是等边三角形,∴是轴对称图形,不是中心对称图形,故本选项错误; C.∵△ACE 是等边三角形,∴连接 AD,则 AD 分别平分∠EAC 与∠EDC,故本选项正确; D.∵△ACE 是等边三角形,∴图中一共能画 3 条对称轴,故本选项正确. 故选 B. 分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.
C.18
D.36
答案:C
解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,
等边三角形的边长是 2 ,高为 3,
因而等边三角形的面积是 3 ,
∴正六边形的面积=18 , 故选 C. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.
12.已知某个正多边形的内切圆的半径是 ()
∴△OAB 是等边三角形, ∴OB=AB=24cm,
∴ 60 ´ 24 = 8 180
故选 B 分析:连接 OA、OB,得出等边三角形 AOB,求出 OB 长和∠AOB 度数,根据弧长公式求
出即可.
10.若一个正六边形的半径为 2,则它的边心距等于( )
A.2 B.1 C.
D.2
答案:C 解析:解答:已知正六边形的半径为 2,则正六边形 ABCDEF 的外接圆半径为 2, 如图:
连接 OA,作 OM⊥AB 于点 M, 得到∠AOM=30°,
则 OM=OA•cos30°= .
则正六边形的边心距是 .
故选 C. 分析:根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角 关系即可求出.

圆内接正多边形练习北师大版九年级数学下册

圆内接正多边形练习北师大版九年级数学下册

3.8圆内接正多边形练习一、填空题1.正六边形的中心角等于度.2.如图,正六边形ABCDEF内接于⊙O,若AB=2 .3.如图,在圆内画正六边形、正五边形,则∠ABC=.4.如图,正六边形ABCDEF的顶点B、C分别在正方形AGHI的边AG、GH上,如果AB=4 .二、选择题5.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O()cm2.(结果保留π)A.B.C.D.6.如图,正六边形ABCDEF是半径为2的圆的内接六边形,则图中阴影部分的面积是()A.B.C.D.7.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4 C.1::2 D.1:2:3 8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则()A.B.C.D.29.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个10.先作半径为的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,…,则按以上规律作出的第8个外切正六边形的边长为()A.B.C.D.11.如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10()A.40 B.50 C.60 D.80 12.如图,正六边形的顶点在矩形的各条边上,若阴影部分的面积为3()A.B.6 C.9 D.12 13.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A()A.30°B.40°C.45°D.60°14.正方形的边长为2,则正方形外接圆的半径是()A.1 B.C.D.2 15.如图,正八边形ABCDEFGH内接于⊙O,则∠ADB的度数为()A.45°B.25°C.22.5°D.20°16.如图,正五边形ABCDE的边长为2,连接AC、AD、BE,连接DF,给出下列结论:①∠FDG=18°;③(S四边形CDEF)2=9+2;④DF2﹣DG2=7﹣2.其中结论正确的个数是()A.1 B.2 C.3 D.4三、解答题17.如图,正三角形ABC内接于⊙O,若AB=cm,求⊙O的半径.18.如图是由边长为2的六个等边三角形组成的正六边形,建立适当的直角坐标系,写出正六边形各顶点的坐标.19.如图,⊙O的周长等于8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.20.如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.21.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.。

九年级数学下册圆内接正多边形同步测试

九年级数学下册圆内接正多边形同步测试

第3章圆3.8圆内接正多边形同步测试新版北师大版◆基础题1.正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定2.正三角形的高、外接圆半径、边心距之比为()A.3:2:1 B.4:3:2 C.4:2:1 D.6:4:33.正六边形的边心距是,则它的边长是()A.1 B.2 C.2 D.34.如图,⊙O的一条弦AB垂直平分半径OC,且AB=2,则这个圆的内接正十二边形的面积为()A.6 B.6 C.12 D.125.正八边形的中心角等于度.6.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.7.如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为cm2.8.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则∠ACG= °.9.如图,正三角形ABC内接于⊙O,若AB=2cm,求⊙O的半径.10.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH 于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.◆能力题1.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A.B.2 C.D.32.若一个正多边形的中心角等于其内角,则这个正多边形的边数为()A.3 B.4 C.5 D.63.古代数学家祖冲之和他的儿子根据刘徽的“割圆术”(用圆内接正多边形的周长代替圆周长),来计算圆周率π的近似值.他从正六边形算起,一直算到正24576边形,将圆周率精确到小数后七位,在世界上领先一千多年.根据这个办法,由圆内接正六边形算得的圆周率π的近似值是()A.2.9 B.3 C.3.1 D.3.144.如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)5.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于.6.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .7.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.8.(1)如图1,在圆内接正六边形ABCDEF中,半径OC=4,求正六边形的边长.(2)如图2,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求证:AB=AC.◆提升题1.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD B.FC平分∠BFDC.AC2+BF2=4CD2D.DE2=EF•CE2.如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH 的面积为何()A.40 B.50 C.60 D.80【答案】A3.小刚在纸上画了一个面积为6分米2的正六边形,然后连接相隔一点的两点得到如图所示的对称图案,他发现中间也出现了一个正六边形,则中间的正六边形的面积是分米2.4.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.已知长宽分别为2cm,1cm的矩形被两个半径都为r的圆所覆盖,则r的最小值是cm.5.如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.6.教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:(1)如果设正三角形ABC的边长为a,那么CO= (用含a的式子表示);(2)根据折叠性质可以知道△CDE的形状为三角形;(3)请同学们利用(1)、(2)的结论,证明六边形KHGFED是一个六边形.答案和解析◆基础题1.【答案】B解:设正多边形的边数为n,则正多边形的中心角为,正多边形的一个外角等于,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.2.【答案】A解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴AD=3OD,∴AD:OA:OD=3:2:1.3.【答案】B解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.4.【答案】C解:如图,连接OA;取的中点D,连接AD、CD、OD;过点D作DE⊥OC于点E;∵OF=OA,且∠OFA=90°,∴∠OAF=30°,∠AOC=60°,∠AOD=∠COD=30°;∵圆的内接正十二边形的中心角==30°,∴AD、DC为该圆的内接正十二边形的两边;∵OC⊥AB,且AB=2,∴AF=;在△AOF中,由勾股定理得:;在△ODE中,∵∠EOD=30°,∴DE=OD=1,,∴这个圆的内接正十二边形的面积为12.5.【答案】45解:正八边形的中心角等于360°÷8=45°.6.【答案】6cm解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).7.【答案】24解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM =45°,∴MH =MG ,设MH =MG =x ,则HG =AH =AB =GF =x ,∴BG ×GF =2(+1)x 2=12,∴四边形ABGH 面积=(AH +BG )×HM =(+1)x 2=6,∴正八边形的面积为:6×2+12=24(cm 2).8.【答案】45°解:设正八边形ABCDEFGH 的外接圆为⊙O ;∵正八边形ABCDEFGH 的各边相等,∴圆周长,∴的度数为=90°,∴圆周角∠ACG =.9.解:过点O 作OD ⊥BC 于点D ,连接BO ,∵正三角形ABC 内接于⊙O ,∴点O 即是三角形内心也是外心,∴∠OBD =30°,BD =CD =BC =AB =,∴cos 30°=,解得:BO =2,即⊙O 的半径为2cm .10.(1)证明:∵在正六边形ABCDEF 中,AB =BC ,∠ABC =∠C =120°,在△ABG 与△BCH 中120AB BC ABC C BG CH =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABG ≌△BCH ;(2)解:由(1)知:△ABG ≌△BCH ,∴∠BAG =∠HBC ,∴∠BPG =∠ABG =120°,∴∠APH =∠BPG =120°.◆ 能力题1.【答案】B解:延长AB ,然后作出过点C 与格点所在的直线,一定交于格点E .正六边形的边长为1,则半径是1,则CE =4,中间间隔一个顶点的两个顶点之间的距离是,则△BCE 的边EC 上的高是,△ACE 边EC 上的高是,则S △ABC =S △AEC ﹣S △BEC =×4×(﹣)=2.2.【答案】B解:360°÷n =.故这个正多边形的边数为4.3.【答案】B解:由题意n =6时,π≈=3.4.【答案】解:如图所示:∵正n 边形的中心角为2α,边长为5,∵边心距OD =.5.【答案】12解:连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB ==60°,∠AOC ==90°,∴∠BOC =30°,∴n ==12.6.【答案】72°解:连接OA 、OB 、OC ,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠AOB =∠BOC =72°,∵OA =OB ,OB =OC ,∴∠OBA =∠OCB =54°,在△OBP 和△OCQ 中,OB OC OBP OCQ BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△OBP ≌△OCQ ,∴∠BOP =∠COQ ,∵∠AOB =∠AOP +∠BOP ,∠BOC =∠BOQ +∠QOC ,∴∠BOP =∠QOC ,∵∠POQ =∠BOP +∠BOQ ,∠BOC =∠BOQ +∠QOC ,∴∠POQ =∠BOC =72°.7.(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,AB DE A D AP DQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.8.(1)解:连接OD,如图所示:∵六边形ABCDEF是圆O的内接正六边形,∴∠O==60°,∵OC=OD,∴△OCD是等边三角形,∴CD=OC=4,即正六边形的边长为4;(2)证明:∵AD是△ABC的中线,∴BD=CD=BC=5,∵AB=13,AD=12,∴BD2+AD2=52+122=169=132=AB2,∴△ABD是直角三角形,AD⊥BC,又∵BD=CD,∴AB=AC.◆提升题1.【答案】B解:∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,∴四边形ABCF是菱形,∴CF=AF,∴△CDF的周长等于CF+DF+CD,即△CDF的周长等于AD+CD,故A选项正确;∵四边形ABCF是菱形,∴AC⊥BF,设AC与BF交于点O,由勾股定理得OB2+OC2=BC2,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,∴AC2+BF2=4CD2.故C选项正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴,∴DE2=EF •CE,故D选项正确.2.【答案】A解:取AE中点I,则点I为圆的圆心,圆内接正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.易得△IDE的面积为5,则圆内接正八边形ABCDEFGH为8×5=40.3.【答案】2解:设O是原正六边形的中心,连接AO,FO,MO,设FO与AE交于点Q,AO与BE交于P,∵一个面积为6分米2的正六边形,连接相隔一点的两顶点得到如图所示的对称图案,∴∠AOF=×360°=60°,S△AOF=×6=1(分米2),∴△OAF是等边三角形,∵AB=AF,∴OA⊥BF,∴AP=OP,∴AM=OM,同理:OF⊥AE,OQ=FQ,∴OM=FM,∴点M是△AOF的外心,∴S△OAM=S△AOF=(分米2),∴S△OPM=S△OAM=(分米2),∴中间的正六边形的面积是:12×S△OPM=2(分米2).4.【答案】解:如图:矩形ABCD中AB=1,BC=2,则覆盖ABCD的两个圆与矩形交于E、F两点,由对称性知E、F分别是AD和BC的中点,则四边形ABFE、EFCD是两个边长为1的正方形,所以圆的半径r=,两圆心距=1.5.解:(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF、CE、CA,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC=,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或,∴DE=DH=或.6.解:(1)∵正三角形ABC的边长为a,由折叠的性质可知,点O是三角形的重心,∴CO=a;(2)△CDE为等边三角形;(3)由(2)知△CDE为等边三角形,∴CD=CE=DE=CO÷cos30°=a,∠ADE=∠BED=120°,同理可得,AH=AK=KH=a,BG=BF=GF=a,∠CKH=∠BHK=120°,∵AB=BC=AC=a,∴DE=DK=KH=HG=GF=FE=a,∠ADE=∠BED=∠CKH=∠BHK=∠CFG=∠AGF=120°,∴六边形KHGFED是一个正六边形.3.8圆内接正多边形一、选择题1.下列说法正确的是 ( ) A.各边相等的多边形是正多边形 B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为 ( ) A . :3 B . :2 C . 1:2 D . :23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为 ( )A .6,32B .32,3C .6,3D .62,324. 如图所示,正六边形ABCDEF 内接于⊙O , 则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为 ( ) A.1:2:3 B.3:2:1C.3:2:1D.1:2:36. 圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P , 则∠APB 的度数是( ). A .36° B .60° C .72° D .108°7.(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的 个数是( )A.4B.5C.6D.78.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 的度数是 ( ) A.60° B.65°C.72°D.75°二、填空题9.一个正n 边形的边长为a ,面积为S ,则它的边心距为__________.第4题 第6题 第7题第8题10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中心,则∠MON=_____________.14.边长为a的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________. 不同点:(1)____________________________________________________________________;(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R、边心距r6、面积S6.第13题第18题第20题21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A.(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.23.如图1、图2、图3、…、图n ,M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB 、BC 上的点,且BM=CN ,连结OM 、ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是_________,图3中∠MON 的度数是_________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).第21题第22题3.8圆内接正多边形知识要点基础练知识点1正多边形与圆1.以下说法正确的是(C)A.每个内角都是120°的六边形一定是正六边形B.正n边形的对称轴不一定有n条C.正n边形的每一个外角度数等于它的中心角度数D.正多边形一定既是轴对称图形,又是中心对称图形2.小颖同学在手工制作中,把一个边长为12 cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为(B)A.2 3 cmB.4 3 cmC.6 3 cmD.8 3 cm3.如图所示,正六边形ABCDEF内接于☉O,则∠ADB的度数是(C)A.60°B.45°C.30°D.22.5°知识点2正多边形的性质4.同圆的内接正三角形与内接正方形的边长的比是(A)A. 6 2B. 3 4C. 6 3D. 4 3【变式拓展】以半径为1的圆内接正三角形、正方形、正六边形的边长为三边作三角形,则(B)A.这个三角形是等腰三角形B.这个三角形是直角三角形C.这个三角形是锐角三角形D.不能构成三角形5.如图,在☉O中,OA=AB,OC⊥AB,则下列结论正确的是(D)①弦AB的长等于圆内接正六边形的边长;②弦AC的长等于圆内接正十二边形的边长;③AA=AA ;④∠BAC=30°.A.①②④B.①③④C.②③④D.①②③6.(贵阳中考)如图,正六边形ABCDEF内接于☉O,☉O的半径为6,则这个正六边形的边心距OM的长为 3 3 .7.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是☉O的直径,用直尺和圆规作☉O的内接正八边形ABCDEFGH.(不写作法,保留作图痕迹)解:如图所示,八边形ABCDEFGH即为所求.综合能力提升练8.正六边形的两条平行边之间的距离为1,则它的边长为(D)A. 3 6B. 3 4C. 2 3 3D. 3 39.(连云港中考)如图所示,一动点从半径为2的☉O上的A0点出发,沿着射线A0O方向运动到☉O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到☉O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到☉O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到☉O上的点A4处;…按此规律运动到点A2019处,则点A2019与点A0间的距离是(C) A.4 B.2 3C.2D.010.张萌取三个如图1所示的面积为4 cm2的钝角三角形按如图2所示的方式相连接,拼成了一个正六边形,则拼成的正六边形的面积为(C)A.12 cm2B.20 cm2C.24 cm2D.32 cm211.如图,正六边形ABCDEF中,AB=4,P是ED的中点,连接AP,则AP的长为 (C)A.4 3B.8C.2 13D.2 1112.(株洲中考)如图,正五边形ABCDE和正三角形AMN都是☉O的内接多边形,则∠BOM= 48°.13.如图,若干个全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需7个五边形.14.如图,已知☉O和☉O上的一点A.(1)作☉O的内接正方形ABCD和内接正六边形AEFCGH;(2)在(1)题的作图中,如果点E在AA上,求证:DE是☉O的内接正十二边形的一边.解:(1)作法:①作直径AC;②作直径BD⊥AC;③依次连接A,B,C,D四点,四边形ABCD即为☉O的内接正方形;④分别以A,C为圆心,OA长为半径作弧,交☉O于点E,H,F,G;⑤顺次连接A,E,F,C,G,H各点,六边形AEFCGH即为☉O的内接正六边形.(2)连接OE,DE.∵∠AOD= 360° 4 =90°,∠AOE= 360° 6 =60°,∴∠DOE=∠AOD-∠AOE=30°,∴DE为☉O的内接正十二边形的一边.拓展探究突破练15.如图1,2,3,4分别是☉O的内接正三角形、正四边形、正五边形、正n边形,点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动.(1)求图1中∠APN的度数;(2)图2中,∠APN的度数是90°,图3中,∠APN的度数是108°;(3)试探索∠APN的度数与正多边形边数n的关系.解:(1)∵点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动,∴AA=AA ,则∠BAM=∠CBN,∴∠APN=∠ABP+∠BAM=∠ABP+∠CBN=∠ABC=60°.(2)提示:在题图2中,∵点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动,∴AA=AA ,∴∠BAM=∠CBN.又∵∠APN=∠ABN+∠BAM,∴∠APN=∠ABN+∠CBN,即∠APN=∠ABC.∵四边形ABCD是正四边形,∴∠ABC=90°,∴∠APN=90°.同理可得:在题图3中,∠APN=108°.(3)由(1)(2)可知,∠APN=它所在的正多边形的内角度数,由多边形内角和公式可知:正多边形的内角度数为 (A-2)×180°A (n≥3,且n为整数), ∴∠APN= (A-2)×180°A.。

2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步测试题(附答案)

2021-2022学年北师大版九年级数学下册《3.8圆内接正多边形》同步测试题(附答案)一.选择题(共10小题,满分40分)1.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径作,,若AB =1,则阴影部分图形的周长是()A.π+1B.πC.π+1D.π2.如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:①AO⊥BE,②∠CGD=∠COD+∠CAD,③BM=MN=NE.其中正确的结论是()A.①②B.①③C.②③D.①②③3.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20°D.9°4.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°5.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD 的度数为()A.30°B.36°C.60°D.72°6.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度7.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是()A.83°B.84°C.85°D.94°8.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°9.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO的度数为()A.24°B.48°C.60°D.72°10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7二.填空题(共10小题,满分40分)11.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.12.如图,正五边形形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.(结果保留π)13.已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.14.阅读下列材料:问题:如图1,正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=2,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.15.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.16.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.17.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.18.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=.19.如图,正五边形ABCDE内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是.(填序号)20.如图,正三角形AMN与正五边形ABCDE内接于⊙O,则∠BOM的度数是.三.解答题(共4小题,满分40分)21.O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为;②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为;(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为;②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.22.如图,正五边形ABCDE中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.23.比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①;②.不同点:①;②.24.如图,分别是正方形、正五边形和正六边形,(1)试分别计算这三种正多边形的相邻两条对角线的夹角的度数;(2)探究正n边形相邻两条对角线的夹角满足的规律.参考答案一.选择题(共10小题,满分40分)1.解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴的长=的长==π,∴阴影部分图形的周长=的长+的长+BC=π+1.故选:A.2.解:∵A、B、C、D、E是⊙O上的5等分点,∴=,∴AO⊥BE,故①正确;∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°,∴∠COD=72°,∵∠COD=2∠CAD,∴∠CAD=36°;连接CD∵A、B、C、D、E是⊙O上的5等分点,∴===,∴∠BDC=∠DCE=∠CAD=36°,∴∠CGD=108°,∴∠CGD=∠COD+∠CAD,故②正确;连接AB,AE,∴∠MBA=∠MAB=36°,∴AM=BM,∵∠MAN=36°,∠ANM=∠DAE+∠AEB=72°,∴AM≠MN,∴BM≠MN③错误!则∠BAM=∠ABM=∠EAN=∠AEN=36°,∵AB=AE,∴△ABM≌△AEN(ASA),∴BM=EN=AM=AN,∵∠MAN=36°,∴AM≠MN,∴③错误.故选:A.3.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.4.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.5.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.6.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON(SAS)∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故选:C.7.解:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°﹣72°﹣60°=48°,∴∠AOB=360°﹣108°﹣48°﹣120°=84°,故选:B.8.解:设点E第一次落在圆上时的对应点为E′,连接OA、OB、OE′,如图,∵五边形ABCDE为正五边形,∴∠EAB=108°,∵正五边形ABCDE绕点A逆时针旋转,点E第一次落在圆上E′点,∴AE=AE′=3,∵OA=AB=OB=OE′=3,∴△OAE′、△OAB都为等边三角形,∴∠OAB=∠OAE′=60°,∴∠E′AB=120°,∴∠EAE′=12°,∴当点E第一次落在圆上时,则点C转过的度数为12°.故选:A.9.解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠BOA=360°﹣120°﹣108°=132°,∵AO=BO,∴∠ABO=∠OAB==24°故选:A.10.解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:D.二.填空题(共10小题,满分40分)11.解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.12.解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.13.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故答案为:72°.14.解:(1)如图2.∵△BPC绕点B逆时针旋转90°,得到了△BP′A,∴∠P′BP=90°,BP′=BP=,P′A=PC=1,∠BP′A=∠BPC,∴△BPP′为等腰直角三角形,∴PP′=PB=2,∠BP′P=45°,在△APP′中,AP=,PP′=2,AP′=1,∵()2=22+12,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°∴∠BP′A=45°+90°=135°,∴∠BPC=∠BP′A=135°;(2)如图3.∵六边形ABCDEF为正六边形,∴∠ABC=120°,把△BPC绕点B逆时针旋转120°,得到了△BP′A,∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,∴∠BP′P=∠BPP′=30°,过B作BH⊥PP′于H,∵BP′=BP,∴P′H=PH,在Rt△BP′H中,∠BP′H=30°,BP′=4,∴BH=BP′=2,P′H=BH=2,∴P′P=2P′H=4,在△APP′中,AP=2,PP′=4,AP′=2,∵(2)2=(4)2+22,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°,∴∠BP′A=30°+90°=120°,∴∠BPC=120°,过A作AG⊥BP′于G点,∴∠AP′G=60°,在Rt△AGP′中,AP′=2,∠GAP′=30°,∴GP′=AP′=1,AG=GP′=,在Rt△AGB中,GB=GP′+P′B=1+4=5,AB===2,即正六边形ABCDEF的边长为2.故答案为135°;120°,2.15.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.16.解:∵AF是⊙O的直径,∴=,∵五边形ABCDE是⊙O的内接正五边形,∴=,∠BAE=108°,∴=,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,故答案为:54.17.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.18.解:连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM﹣∠AOB=48°,故答案为:48°.19.解:①∵∠BCD=180°﹣72°=108°,∠E=108°,∴∠ADE=×(180°﹣108°)=36°,∴∠ADC=108°﹣36°=72°,∴∠BCD+∠ADC=108°+72°=180°,∴BC∥AD,故本选项正确;②∵∠BAE=108°,∠CAD=×=36°,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,,∴△BAC≌△EAD(SSS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为:①②③.20.解;连接AO,∵正三角形AMN与正五边形ABCDE内接于⊙O,∴∠AOM=×360°=120°,∴∠AOB=×360°=72°,∵∠BOM=∠AOM﹣∠AOB,∴∠BOM=120°﹣72°=48°故答案为:48°三.解答题(共4小题,满分40分)21.解:(1)①a;(1分)②a;(2分)(2)①a;(3分)②正方形ABCD的边被扇形纸板覆盖部分的总长度为a.(4分)理由:证明:连接OA、OD∵四边形ABCD是正方形,点O为中心∴OA=OD,∠OAM=∠ODN=45°又∵∠AOD=∠POQ=90°∴∠AOM+∠AOQ=90°∠DON+∠AOQ=90°∴∠AOM=∠DON∴△AOM≌△DON∴AM=DN∴AM+AN=DN+AN=AD=a(8分)(3)∵正五边形的内角为(5﹣2)×180°÷5=108°∴当扇形纸板的圆心角α为72°时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(10分)(4)∵正多边形的中心角为,∴当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.(12分)22.(1)证明:∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD,(2分)∵F、G分别是BC、CD的中点,∴BF=CG,(4分)在△ABF和BCG中,AB=BC,∠ABC=∠BCD,BF=CG,(5分)∴△ABF≌△BCG;(6分)(2)解:由(1)知∠GBC=∠F AB,∵∠AHG=∠F AB+∠ABH=∠GBC+∠ABH=∠ABC(,7分)∵正五边形的内角为108°,∴∠AHG=108°.(9分)(注:本小题直接正确写出∠AHG=108°不扣分)23.解:相同点不同点①都有相等的边.①边数不同;②都有相等的内角.②内角的度数不同;③都有外接圆和内切圆.③内角和不同;④都是轴对称图形.④对角线条数不同;⑤对称轴都交于一点.⑤对称轴条数不同.24.解:(1)解:由正方形ABCD,可得:AC⊥BD,∴α4=90°;由正五边形ABCDE,可得:AB=BC=CD,∠ABC=∠BCD=108°,∴∠DBC=∠ACB==36°,∴α5=180°﹣∠DBC﹣∠ACB=108°;同理:α6=120°;(2).。

北师版九年级数学下册《圆内接正多边形(2)》同步练习3

北师版九年级数学下册《圆内接正多边形(2)》同步练习3

《圆内接正多边形(2)》同步练习3基础检测1.八边形的内角和等于________度.2.半径为R 的圆内接正三角形的面积是( ) A .232R B .2πR C .2332R D .2334R3.如图,菱形花坛ABCD 的边长为6m ,∠B =60°,其中由两个正六边形组成的部分种花,则种花部分的图形周长为____________.4.(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是__________. (2)如图2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图3中,并写出这个图形的边数.(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?拓展提高1.如图,在平面直角坐标系中,四边形OABC 为正方形,顶点A 、C 在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,已知点A 的坐标为(0,8),则圆心M 的坐标为_________.(图1)(图2) (图3)ADB2.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于__________.3.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC//QR ,则∠AOQ 的度数是_________.4.各边相等的圆内接多边形一定是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么,如果不是,举出反例.5、图(1)、图(2)、图(3)是分别由两个公共顶点A 的正三角形、正四边形和正五边形组成的图形,且其中一个正多边形的顶点B ′在另一个正多边形的边BC 上. ⑴图(1)中,∠B′CC′=__________.(直接写出答案)⑵图(2)中,求∠B′CC′;(写出解答过程)⑶图(3)中,∠B′CC′=_________.(直接写出答案)P QR C BAODC ABS 1S 2⑷当满足条件的图形为正n 边形时(如图(4)),猜想:∠B ′CC ′=________(直接写出答案).(1) (2) (3) (4) 体验中考1.(2009年,肇庆)若正六边形的边长为2,则此正六边形的边心距为__________. 2.(2009年,黄石市)如图,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( )A .2B .4C .8D .16【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

九年级数学下册《圆内接正多边形》专项练习(含答案)

8 圆内接正多边形A 卷1.边长为a 的正六边形的边心距是__________,周长是____________,面积是___________.2.如图1,正方形的边长为a ,以顶点B 、D 为圆心,以边长a 为半径分别画弧,在正方形内两弧所围成图形的面积是___________.(1) (2) (3)3.圆内接正方形ABCD 的边长为2,弦AE 平分BC 边,与BC 交于F ,则弦AE 的长为__________.4.正六边形的面积是18,则它的外接圆与内切圆所围成的圆环面积为_________.5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________.6.正三角形的内切圆半径、外接圆半径和高的比为___________.7.在半径为R 的圆中,内接正方形与内接正六边形的边长之比为___________.8.同圆的内接正n 边形与外切正n 边形边长之比是______________.9.正三角形与它的内切圆及外接圆的三者面积之比为_____________.10.正三角形的外接圆半径为4cm ,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________.3B 卷1.正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________.2.如果正三角形的边长为a ,那么它的外接圆的周长是内切圆周长的_______倍.3.如图2,正方形边长为a ,那么图中阴影部分的面积是__________.4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________.5.半径为R 的圆的内接正n 边形的面积等于__________.6.如果圆的半径为a ,它的内接正方形边长为b ,该正方形的内切圆的内接正方形的边长为c ,则a,b,c 间满足的关系式为___________.7.如图3,正△ABC 内接于半径为1cm 的圆,则阴影部分的面积为___________.8.如果圆内接正六边形的边长为10cm ,则它的边心距为_______cm ,正六边形的一边在圆上截得的弓形面积是____________.9.已知正方形的边长为a ,以各边为直径在正方形内画半圆,则所围成的阴影部分(如图)的面积为__________.10.周长相等的正方形和正六边形的面积分别为和,则和的大小关系为__________.24S 6S 4S 6S参考答案A 卷1.2.3.点B 到弦AE 的垂线段长为,由勾股定理或射影定理,求得弦AE 的长为. 4.由正六边形的面积为18,得正六边形的边长为2,边心距为3,从而正六边形的外接圆半径为2,内切圆半径为3,故所围成的圆环面积为3π. 5.设所求正方形的边长为x ,则外接圆的半径为,正方形的一边截成的小弓形面积为,即 = 2π- 4,于是,得正方形的边长等于4.6.设正三角形的边长为a ,则内切圆半径为,外接圆半径为,高为,故内切圆半径、外接圆半径和高的比为1:2:3.7.内接正方形的边长为R ,内接正六边形的边长为R ,其比为:1.8.设圆的半径为R ,则同圆的内接正π边形和外切正n 边形的边分别为2Rsin和2Rtg ,其比为cos . 9.设正三角形的边长为a ,则内切圆半径为,外接圆半径为,其面积分别为、和,三者之比为3:π:4π . 10.求得正三角形的边长即所作正方形的边长为4,从而外接圆的半径长为2.2233;6;23a a 222a a -π552558333x 22224181x x ππ-224181x x ππ-a 63a 33a 2322n ︒180n ︒180n︒180a 63a 33243a 2121a π231a π336B 卷1.由已知得正方形的边长为2r , 从而正方形的外接圆半径为r ,所求弓形的面积为. 2.边长为a 的正三角形的外接圆半径和内切圆半径分别为、,其周长分别为的πa 和,故它的外接圆周长是内切圆周长的2倍. 3.阴影部分面积为 4.设所求正多边形的边数为n ,则它的一个内角等于, 相应的外角等于180°- , 则由已知,得=8×(180°-),解之,得n = 18. 5.半径为R 的圆的内接正n 边形的边长为2Rsin ,边长距为Rcos , 则正n 边形的面积为= 6.半径为a 的圆的内接正方形的边长为a ,即 b =a ; 边长为b 的正方形的内切圆的内接正方形的边长为b ,即 C = b , 从而得知 a =c ,故a,b,c 三者之间的关系为:7.设正△ABC 的边长为a ,则=1,a=, 于是阴影部分的面积为π· 8.边心距×10=5(); 正六边的一边在圆上截得的弓形的面积减去三角形的面积,即 22)221(r -πa 33a 63332a π3322241)22(21)2(41a a a πππ=-︒⋅-180)2(n n ︒⋅-180)2(nn ︒⋅-180)2(n n ︒⋅-180)2(nn n ︒180n︒180n n nR n R n R n ︒⋅︒=︒⋅︒⋅⋅180cos 180sin 180cos 180sin 2212222222222c a b +=a 333))(433()3(431222cm -=⋅-π2332cm )(325350104310321222cm -=⋅-⋅⋅ππ9.图中四个半圆都通过正方形的中心,用正方形的面积减去四隙的面积,剩下的就是阴影部分的面积,而正方形的面积减去两个半圆的面积就得两个空隙的面积,故所求阴影部分的面积为 10.设周长为a ,则正方形的正六边形的边长分别为,其面积分别为,故.22])2([22222a a a a a -=⨯⋅--ππa a 6141和222243)61(436161a a a =⋅⋅和64S S <。

北师大版九年级数学下《3.8圆内接正多边形》同步习题含答案

北师大版九年级数学下册第三章圆 3.8 圆内接正多边形同步习题一、选择题(9分×3=27分)1.同圆的内接正三角形与内接正方形的边长的比是( )A.62 B.34 C.63 D.432.周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S33.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ的度数为( )A.60°B.65°C.72°D.75°二、填空题(9分×2=18分)4.点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形中心,则∠MON=____________.,第4题图),第5题图)5.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为_______cm2.三、解答题(17分+18分+20分=55分)6.学习完正多边形和圆后,在师生共同小结与归纳时,下面有几位同学谈了自己的想法.针对以上三位同学的意见,谈谈自己的想法.7.如图,已知l是⊙O的切线,切点为A,点B在⊙O上,BC交⊙O于E,交直线l于C,OC交⊙O于F,且AB=AO=AC.一同学通过测量猜测,EF为⊙O的内接正二十四边形的一边,你认为他的猜测正确,请你证明;若你认为他的猜测不正确,请说明理由.8.如图1,2,3,…,n,M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDE…的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是_______;图3中∠MON的度数是________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:1. A2. B3. D4. 45°5. 406. 解:矩形不一定是正多边形,因为其各边不一定都相等,菱形不一定是正多边形,因为其各角不一定相等,正方形是正多边形;圆内接菱形是正方形,因为菱形各边相等,且各边所对的弧也相等,可推出其各内角也都相等;正多边形是轴对称图形,但不一定是中心对称图形.7. 解:猜测正确.证明:连接OE.∵AB=AO=AC,又OB=OA,∴△OAB为等边三角形,∴∠OAB=60°,由l切⊙O于A得OA⊥l,∴∠ABC =∠ACB =15°,∴∠AOE =30°,由OA =CA ,OA ⊥AC 得∠AOC =45°,∴∠EOF =15°,而360°15°=24,故EF 为⊙O 的内接正二十四边形的一边.8. 解:(1)连接OB 、OC.∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°,又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON =∠BOC =120°(2)90°72°(3)∠MON =360°n。

《圆内接正多边形》同步练习 (精品)2022年 附答案

3.8 圆内接正多边形1.以下边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形(2)正五边形(3)正六边形(4)正八边形A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(4)2.以下说法正确的选项是A.每个内角都是120°的六边形一定是正六边形.B.正n边形的对称轴不一定有n条.C.正n边形的每一个外角度数等于它的中心角度数.D.正多边形一定既是轴对称图形,又是中心对称图形.3.假设同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3,r4,r6,那么r3:r4:r6等于( )A.B.C.D.4.如图,假设正方形A1B1C1D1内接于正方形ABCD的内接圆,那么的值为〔〕A.B.C.D.5.正六边形ABCDEF内接于⊙O,图中阴影局部的面积为,那么⊙O的半径为______________________.第5题图第6题图6.如图,正方形ABCD内接于⊙O,点E在上,那么∠BEC= .7.将一块正六边形硬纸片〔图1〕,做成一个底面仍为正六边形且高相等的无盖纸盒〔侧面均垂直于底面,见图2〕,需在每一个顶点处剪去一个四边形,例如图中的四边形AGA/H,那么∠GA/H 的大小是度.8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,那么此正方形的边长为.9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。

(1)求图10-1中∠APN 的度数;(2)图10-2中,∠APN 的度数是_______,图10-3中∠APN 的度数是________。

(3)试探索∠APN 的度数与正多边形边数n 的关系〔直接写答案〕第17章 一元二次方程17.1 一元二次方程◆随堂检测1、判断以下方程,是一元二次方程的有____________.〔1〕; 〔2〕; 〔3〕;〔4〕;〔5〕;〔6〕.〔提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.〕2、以下方程中不含一次项的是〔 〕A .B .C .D .3、方程的二次项系数___________;一次项系数__________;常数项_________.4、1、以下各数是方程解的是〔 〕N 图10-1N 图10-2 A M 图10-3M 图10-4A、6B、2C、4D、05、根据以下问题,列出关于的方程,并将其化成一元二次方程的一般形式.〔1〕4个完全相同的正方形的面积之和是25,求正方形的边长.〔2〕一个矩形的长比宽多2,面积是100,求矩形的长.〔3〕一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.分析:此题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.解:〔1〕由题意得,时,即时,方程是一元一次方程.〔2〕由题意得,时,即时,方程、一次项系数是、常数项是.◆课下作业●拓展提高1、以下方程一定是一元二次方程的是〔〕A、 B、C、 D、2、是关于的一元二次方程,那么的值应为〔〕A、=2B、C、D、无法确定3.是一元二次方程的一个解,那么的值是〔〕A.-3 B.3 C.0 D.0或34.假设是关于的方程的根,那么的值为〔〕A.1 B.2 C.-1 D.-25.根据以下表格对应值:A、 B、3.24<C、5<D、<6.假设一元二次方程有一个根为1,那么_________;假设有一个根是-1,那么b与、c之间的关系为________;假设有一个根为0,那么c=_________.7.下面哪些数是方程的根?-3、-2、-1、0、1、2、3、0,求的值是多少?9.关于的方程.〔1〕为何值时,此方程是一元一次方程?〔2〕为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

3.8 圆内接正多边形课后练习2020-2021学年 北师大版九年级下册数学

第三章圆8.圆内接正多边形课后练习2020-2021学年下学期九年级下册初中数学北师大版一、单选题(共12题)⌢上,则∠P的度数为()1.如图,正方形ABCD内接于⊙O,点P在ABA. 30°B. 45°C. 60°D. 90°2.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n多边形的边长相等,则n的值为()A. 3B. 4C. 5D. 63.已知圆内接正六边形的半径为2,则该内接正六边形的边心距为()A. 2B. 1C. √3D. √324.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是()A. 18°B. 36°C. 54°D. 72°5.如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A. 8B. 10C. 12D. 156.正多边形的内切圆与外接圆的半径之比为√2,则这个正多边形为()2A. 正十二边形B. 正六边形C. 正四边形D. 正三角形7.一个圆的内接正六边形与内接正方形的边长之比为()A. 3:2B. 1:√3C. 1:√2D. √2:√38.正方形外接圆的半径为4,则其内切圆的半径为()A. 2 √2B. √2C. 1D. √229.已知正六边形ABCDEF内接于⊙O,若⊙O的直径为2,则该正六边形的周长是()A. 12B. 6√3C. 6D. 3√310.半径为a的圆的内接正六边形的边心距是()A. a2B. √2a2C. √3a2D. a11.半径为R的圆内接正三角形的面积是()A. √32R2 B. πR2 C. 3√32R2 D. 3√34R212.如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15cm,则线段GH 的长为()A. √5cmB. 5 √3cmC. 3 √5cmD. 10 √3cm二、填空题(共6题)13.如图,正五边形ABCDE内接于⊙O,点F在弧CD上,则∠BFE的度数为________14.如图,正方形ABCD和正六边形AEFCGH均内接于⊙O,连接HD;若线段HD恰好是⊙O 的一个内接正n边形的一条边,则n=________.15.若圆内接正方形的边心距为3,则这个圆内接正三角形的边长为________.16.数学家刘徽首创割圆术,用圆内接正多边形的面积去无限逼近圆面积并以此求出圆周率.如图,正六边形ABCDEF的边长为2,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.17.如图,正六边形ABCDEF内接于⊙O,若AB=3cm,则⊙O的半径为________.18.我国古代数学家刘徽创造的“割圆术”,利用了圆内接正多边形和外切正多边形的面积或周长,无限逼近圆来近似估计圆的面积或周长,从而估算出π的范围.如图1,用圆内接正方形和外切正方形周长可得2 √2<r<4,那么利用图2中的圆内接正六边形和外切正六边形周长可进一步将π的范围缩小到________(结果保留根号)三、综合题(共4题)19.如图,已知圆O内接正六边形ABCDEF的边长为6cm,求这个正六边形的边心距n,面积S .20.如图,ABCDE是⊙O的内接正五边形.求证:AE∥BD.21.试比较图中两个几何图形的异同,请分别写出它们的两个相同点和两个不同点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆内接多边形练习题 一、选择
1.圆内接四边形ABCD 中,//AD BC ,AC 与BD 交于点E ,在下图中全等三角形的对数为 A.2对 B.3对 C.4对 D.5对
2.如图,四边形ABCD 为圆内接四边形,AC 为BD 的垂直平分线,60,ACB AB a ∠== ,则CD =
A.
3a B.2
a C.12a D.13a
3.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB
B A 1
1的值为( )
A .
21 B .22 C .
41 D .4
2 二、填空
1、已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为
______________________.
2.如图,正方形ABCD 内接于⊙O ,点E 在 AD 上,则∠BEC= .
3.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /
H ,那么∠GA /
H 的大小是 度.
D
A
4如图,在正六边形ABCDEF 的内部,以AB 为边作正方形ABMN ,连接MC ,则∠BCM 的度数为( )
5.三角形三边长为5,12,13,则它的外接圆圆心到顶点的距离为 .
6.圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠= .
7.如图,AB 为半圆O 的直径,C 、D 为半圆上的两点,20BAC ∠=
,则ADC ∠= .
三、解答题
1.如图,锐角三角形ABC 中,60A ∠=
,BC 为圆O 的直径,⊙O 交AB 、AC 于D 、E ,求证:
2BC DE =.
B
2.如图,⊙O 的内接四边形ABCD 中,M 为CD 中点,N 为AB 中点,AC BD ⊥于点E ,连接ON 、ME ,并延长ME 交AB 于点F.求证:MF AB ⊥.
A
B
C
3.已知:如图所示,10,8,AB cm BC cm ==CD 平分ACB ∠. (1)求AC 和DB 的长; (2)求四边形ACBD 的面积.
4、(10分)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50
元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y 件.
(1)写出y 与x 的函数关系式(标明x 的取值范围);
(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售例如达到8000元,销售单价应定为多少?
(2012•临沂)如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.
(1)求点B 的坐标;
(2)求经过点A 、O 、B 的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.。

相关文档
最新文档