1 集合(1)
1_集合

1.1.2集合的表示-枚举法
例1.1 下面是枚举法给出集合的例子
① A= {1,3,5,7,…} ② B= {2,4,6,8,…,100} ③ P= {a+1,a+2,a+3,…,a+999} ④ Q= {a,A,b,B,c,C,…,Z}
解释 ① 集合A由所有正奇数组成,是一个无限集; ② 集合B由2到100之间的50个偶数组成,是一个有限集,集合的基 数为card(B)=50; ③ 集合P由a+1到a+999的表达式组成,是一个有限集; ④ 集合Q由大、小写英文字母组成,是一个有限集,集合的基数为 card(Q)=52。
离散数学
第一篇
第1章:集合 第2章:关系 第3章:函数
集合论
1.1 集合的概念及表示
集合(set)作为数学中的基本概念,如同几何中的点、线、面 等概念一样,是不能用其他概念精确定义的原始概念,集合 是什么呢?下面是由康托尔首先给出的经典定义。
定义1.1 集合:集合就是由人们直观上或思想上能够明确区分的一 些对象所构成的一个整体。
, a , , a, a, a
,{a},{{a}}
练习
P() = ? P(P()) = ? P(P(P())) = ? ……
A
补集合
定义1.10 :对于任意集合A和全集U,由所有属于全集U但 不属于集合A的元素组成的集合称为集合A的补集合( complement),简称为补集,记作为A。 显然,全集的补集是空集,空集的补集是全集,即 U = , = U。
1.1.2集合的表示-图形法
(3)图形 法:利用平面上点的对应元素的封闭区域对集合进行 图解标示,一般通过平面上的方形或圆形表示一个集合, 又称为文氏图(Venn Diagrams)法。 例如:图1.1就是集合A、B、C和D的图形表示。
高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
1(1)集合与实数集

具有性质 M = { x x具有性质P }
花括号中竖线前的x 花括号中竖线前的 是 M 中元素的通用符号 中元素的通用符号, 而竖线后 则是 x 所具有的性质 所具有的性质.
4
集合与实数集
注
对几个常用的数集规定记号如下 对几个常用的数集规定记号如下 常用的数集 数集的字母的 右上角 标上 标上: 数集内排除0的集 数集内排除 的集. 的集 数集内排除0与负数的集 数集内排除 与负数的集. 与负数的集 N = {0, 1, 2,, n,};
13
集合与实数集
5. 逻辑符号 在逻辑推理过程中最常用的两个逻辑记号
,. Any(每一个 的 All(所有的 的字头 的倒写 每一个)或 所有的)的字头 每一个 字头E的倒写 所有的 的字头A的倒写 Exist(存在 或 字头 的倒写 存在)的 存在
" " 表示 "任取 ", 或"任意给定 " " ". "存在 ","至少存在一个或"能够找到 表示 至少存在一个 ",实数的阿基米德 (Archmed) 公理是这样 ". 如 叙述的: 叙述的 任意给定两个正的实数 a,b,都存在一个 都存在一个 自然数n, 自然数 使得 na > b. 用逻辑符号 和, 将阿基米德公理改写 阿基米德公理改写 公理改写:
8
规定
集合与实数集
2. 集合 集合(set)的关系及集合的运算 的关系及集合的运算 (2) 集合的运算 集合的基本运算有三种: 并集, 交集, 差集. 集合的基本运算有三种 并集 交集 差集 是两个集合, 由所有属于A 设 A, B 是两个集合, 由所有属于A 或者属 元素组成的集合 于B元素组成的集合 称为 与B的 并集 元素组成的集合, 称为A与 的 并集, 记作 A∪B , 即 ∪ A∪B = { x x ∈ A 或 x ∈ B }; ∪
集合(一、二)

1-2.集合【知识要点归纳】一、基础概念1.集合的定义一般地,指定的某些对象的全体称为集合,记作:A,B,C,D,…2.元素的定义集合中的每个对象叫做这个集合的元素,记作:a,b,c,d,…3.集合的三个特性: 、、4.集合的分类:根据集合中所含元素的个数来分: 、、5.常用数集:非负整数集(即自然数集):有理数集正整数集实数集整数集二.集合的表示方法1、列举法:把集合中的元素一一列举出来,写在花括号内表示集合的方法。
2、描述法:用集合所含元素的共同特征表示集合的方法。
格式:{x∈A| P(x)}3、图示法:(1)数轴法:{x∈R|3<x<10}、{x∈R|3≤x<10}、{x∈R|3≤x≤10}(2)Venn图:用一条封闭的曲线的内部来表示一个集合的方法。
注:边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.三.两种关系1.元素与集合的关系属于:a是集合A的元素,就说a属于集合A ,记作不属于:a不是集合A的元素,就说a不属于集合A,记作2.集合与集合的关系说明: 1.空集∅是一个特殊而又重要的集合,它不含任何元素,∅是任何集合的 ,∅是任何非空集合的 ,解题时不可忽视∅.2.若集合A 含有n 个元素,则A 的子集有 个,真子集有 个,非空真子集有 个.四.集合的三种运算常用运算性质:1.A ∩A = ,A ∩∅= ,A ∩B B ∩A ,A ∪A = ,A ∪∅= ,A ∪B B ∪A2.U A C A ⋂= ,U A C A ⋃= ,()U C C A = . 3.()U C A B ⋃= ,()U C A B ⋂= ,4.A∪B=A ⇔ ;A ∩B =A ⇔【经典例题】例1:设a,b 是非零实数,那么b b a a +可能取的值组成集合的元素是例2:用描述法分别表示(1)抛物线y=x 2上的点.(2)抛物线y=x 2上点的横坐标.(3)抛物线y=x 2上点的纵坐标.例3:已知集合230123{|222}A x x a a a a ==+⨯+⨯+⨯,其中{0,1}k a ∈(0,1,2,3)k =,且30a ≠.则A 中所有元素之和是( )(A )120 (B )112 (C )92 (D )84例4:已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,试求集合A 的所有子集.例5:有限集合P 中元素的个数记作card()P .已知card()10M =,A M ⊆,B M ⊆,A B =∅ ,且c a r d ()2A =,card()3B =.若集合X 满足X M ⊆,且A X ⊄,B X ⊄,则集合X 的个数是( )(A )672(B )640(C )384(D )352例6.设集合A={a |a =3n +2,n ∈Z},集合B={b|b=3k -1,k ∈Z},则集合A 、B 的关系是________.例7:已知集合A ={x |-2£x £5},集合}12|{-≤≤=p x p x B ,若A B ⊆,求实数p 的取值范围。
人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
1_1集合的概念

§1.1 集合的概念
【教学目标】
知识目标:
(1)理解集合、元素的定义,会判断元素与集合的关系,理解元素的三特征(确定性、无序性、互异性),记住常用数集的字母(R、Q、Z、N);
(2)掌握集合的列举法与描绘法,会用适当的方法表示集合。
水平目标:
通过集合语言的学习与使用,培养学生的数学思维水平。
情感目标:
通过表演,积极参与,获得成功感。
【教学重点】
元素与集合的关系,元素的三特征,集合的表示方法。
【教学难点】
集合表示法的选择与规范书写集合。
【教学设计结构】
(1)通过生活中的实例导入集合与元素的概念;
(2)引导学生自然地理解元素与集合的关系;
(3)针对集合不同情况,理解到能够用列举和描绘两种方法表示集合,然后再对表示法实行比照分析,完成知识的升华;
(4)通过练习,巩固知识;
(5)依照学生的认知规律,顺应学生学习思路展开,自然地层层推动教学。
【课时安排】
集合的概念:2课时;集合的表示方法:2课时。
【教学过程】
}
,99,正偶数集能够}
2,4,6,.
描绘法.在花括号内画一条竖线,竖线的左侧写
0的解集;
)所有奇数组成的集合;
)由第一象限所有的点组成的集合.
:用描绘法表示集合关键是找出元素的特征性
0得
1
2
x-,所以解集为
1 2⎫
-⎬
⎭
;
)奇数集合}
k∈Z;
3)第一有的点组成)0,
y x y
>
的解集.
强化思想
本次课学了哪些内容?重点和难点各是什么?
)本次课学了哪些内容?。
1集合的定义
(2)不属于:如果a不是集合A的元素,就说a
不属于A,记作 a A
练一练:
用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
一、集合的有关概念
1.集合---把一些元素组成的总体叫做集合, 简称集. 2.元素---我们把研究的对象统称为元素
一般用大括号”{ }”表示集合,也常用大写 的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
二、集合特性:
(1)确定性:集合中的元素必须是确定的.
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合
集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并用大括号{ } 括起来的方法叫做列举法
• 例1用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合。
中国的直辖市
√
身材较高的人
×
著名的数学家
×
对口3班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
三、重要数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
集合练习卷(1)---集合的概念
集合练习卷(1)---集合的概念一、知识点:1、集合:某些 的对象集在一起就形成一个集合,简称集。
2、元素:集合中的每个 叫做这个集合的元素。
3、元素性质:集合的元素具有 、 、 。
4、集合和元素地符号:集合用 字母表示,元素用 字母表示。
5、集合分类:按元素的多少,集合可分为 、 、 三类。
6、集合的表示方法:常用的有 与 。
7、元素与集合的关系:a 是集合A 的元素,记做 、a 不是集合A 的元素,记做 。
8、常用数集的记法:N 表示 、N *表示 、Z 表示 、Q 表示 、R 表示 、R +表示 、Q +表示9、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说集合A 集合B ,或集合B 集合A 。
也说集合A 是集合B 的子集。
即:若“B x A x ∈⇒∈”则B A ⊆。
10、任何一个集合是 的子集。
11、空集是 集合的子集。
12、相等:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,同时集合B 的 元素都是集合A 的元素,我们就说A B 。
即:若A B ,同时B A ,那么B A =。
13、真子集:对于两个集合A 与B ,如果A B ,并且A B ,我们就说集合A 是集合B 的真子集。
14、空集是 集合的真子集。
15、含n 个元素的集合,子集数为 ,真子集数为 ,非空真子集数为 。
答案:1、指定,2、对象,3、确定性、互异性、无序性,4、大写、小写,5、无限集、有限集、空集,6、列举法、描述法,7、A a ∈、A a ∉,8、自然数集、正整数集、整数集、有理数集、实数集、正实数集、正有理数集,9、任何一个、包含于、包含,10、它本身,11、任何一个12、任何一个、任何一个、等于、⊆、⊆,13、⊆、≠,14、任何一个非空,15、n 2、12-n 、22-n。
例1、下面给出的四类对象中,构成集合的是 ( )A.某班个子较高的同学B.相当大的实数C.我国著名数学家 D .倒数等于它本身的数练习:下列各项中,不可以组成集合的是 ( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数例2、下列八个关系式 ①{0}=φ ②0∈φ ③φ⊆{φ} ④φ∈{φ} ⑤{0}⊇φ⑥0∉{{0},φ} ⑦{φ}⊆{0} ⑧φ∈{0}其中正确的个数 ( )(A )4 (B )5 (C )6 (D )7 练习:若集合*}16|{N x Z x S ∈-∈=,用列举法表示集合S 。
人教版高中数学必修1集合教案
集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。
如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作N *或N + 。
Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。
1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。
集合1.1.1讲义
精锐教育学科教师辅导讲义练习题2答案 1.A 2.D3.B4.B5.C6.{}1,0,1,2-7.1928.⑴()()()(){}0,3,1,2,2,1,3,0;⑵{}0,1,2,,3;9.a =32-或47-. 10.{}3,2,1,0,1,2,3A =---;{}1,0,3,8B =-;()()()()()()(){}3,8,2,3,1,0,0,1,1,0,2,3,3,8C =----状元智慧树(思维导图):课后作业一、选择题:1.下列说法中正确的是 ( )A .2008年北京奥运会的所有比赛项目组成一个集合B .某个班年龄较小的学生组成一个集合C .1、2、3组成的集合与2、1、3组成的集合是不同的两个集合 D.{1,0,5,1,2,5}组成的集合有四个元素2.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素。
其中正确的个数是 ( ) A. 1 B. 2 C. 3 D. 43.下列条件中,能构成集合的是 ( ) A .世界著名的化学家B .在数轴上与原点非常接近的点C .所有的等腰三角形D .全年级成绩优秀的学生4.由实数x ,-x ,|x|,2x ,33x -所组成的集合,最多含( )A. 2个元素B. 3个元素C. 4个元素D. 5个元素 5.若{}x x 122+∈,,则x 的值为 ( )A. -2B. 1C. 1或-2D. -1或26.已知集合S={a,b,c}中的三个元素是△ABC 的三边长,那么△ABC 一定不是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形7. 设a 、b 、c 是非零的实数,则=+++a b c abc y |a||b||c||abc|的值所组成的集合为 ( )A.{4}B.{4,4}-C.{4,4,0}-D.{0,4} 二、填空题: 8.用符号“∈”,“∉”填空 ① 0N ,-1N ,3N ,21N ②31-Z ,2Q ,πQ ③ 5Z ,-11Q ,5-R9.集合{1,2}与集合{2,1}是否表示同一集合? 集合{1,2}与集合{(2,1)}是否表示同一集合? (填“是”或“不是”)10.对于集合{2,4,6}A =,若a A ∈,则6a A -∈,那么a 的值是 三.解答题11.由0,1,4组成的集合用A 表示,由1,4,(1)x x -组成的集合用B 表示,已知集合A=B ,求x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合
一集合
1.1集合
[教学目的]
⒈使学生初步理解集合的概念,知道常用数集及其记法;
⒉初步了解“属于”关系的意义;
3.初步了解有限集、无限集、空集的意义.
[重点难点]
重点:集合的基本概念与表示方法.
难点:运用集合的两种常用表示方法—列举法与描述法,正确表示一些简单的集合.
§1.1.1 集合的基本概念(第一课时)
教学目的
使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.
[教学过程]
一、复习引入
集合概念及其基本理论称为集合论,它的创始人是德国数学家康托尔(Cantor1845-1918).它是近、现代数学的一个重要的基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑学等,都建立在集合理论的基础上;另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.
下面我们正式引入集合的概念.
二、学习、讲解新课
⒈集合与集合的元素
先考察下面几组对象:
⑴ 1,2,3,4,5;⑵与一个角的两边距离相等的所有点;
⑶所有的直角三角形;⑷ x2,3x+2,5y3-x,x2+y2;
⑸某农场所有的拖拉机;⑹高一(2)班教室里的所有桌子;
⑺连云港外国语学校的所有学生.
它们分别是由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
.集合中的每个对象叫做这个集合的元素.
例如⑴是由1,2,3,4,5组成的集合,其中的对象1,2,3,4,5都是这个集合的元素,而其他的对象则不是此集合的元素.
注意:①组成集合的可以是任何事物、东西等,例如⑴是一些数,⑵是一些点、⑶是一些图形、⑷是一些整式、⑸是一些物体、⑹是一些人等等;
②在集合里的对象才能叫做该集合的元素,如⑴中,不能说“元素2是这个集合的元素”,而应该说“2是这个集合的元素”,或者说“对象2是这个集合的元素”.
练习:P5 1
⒉表示集合的符号:大括号与大写的拉丁字母.
我们一般用大括号表示集合.例如上述的⑴⑺可以分别表示成{1,2,3,4,5}与{连云港外国语学校的学生}(注意不能写成{连云港外国语学校的所有学生},因为这里大括号就表示着“所有”的意思).
为了方便起见,还常用大写的拉丁字母表示集合,如A,B,M,E等;用小写的拉丁字母表示集合里的元素,如a,b,m,e等.
⒊常用数集及其记法
一些常用的数集我们常用下列记号:
全体非负整数的集合通常简称为非负整数集(或自然数集),记作N,
非负整数集内排除0的集,也称正整数集,表示成N*或N+ ;
全体整数的集合通常简称为整数集,记作Z;
全体有理数的集合通常简称为有理数集,记作Q;
全体实数的集合通常简称为实数集,记作R.
练习:(1)P5 2
(2)判断下列说法是否正确
1、所有在N中的元素都在N*中( )
2、所有在N中的元素都在Z中( )
3、有在N*中的元素都在Z中( )
4、所有在Q中的元素都在R中( )
5、有既在R中又在N*中的数组成的集合中一定包含0()
6、N不在中的数不能使方
程4x=8 成立()
⒋集合元素与集合的关系
如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a 不属于集合
A,记作a A(或a A).例如,设D={1,2,3,4,5},则5∈D,而3/2 D.
⒌集合元素的特性
我们知道,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素.集合中的元素具有以下的特性:
⑴确定性:集合中的元素必须是确定的,不能模棱两可.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.
⑵互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.
⑶无序性:集合中的元素间是无次序关系的.
⑷任意性:集合中的元素可以是任意的具体确定的事物.
求解有关集合问题时,能紧紧抓住元素的特证进行分析,将有利于问题的解决.
练习:1、回答下列问题
(1)A=所有素质好的人能否表示为集合
(2)A={2,2,4}表示是否准确
(3)A= { a,b } ,B= { b,a}是否表示同一集合
(4)把某学校的全体教师、汽车、篮球、教学楼集在一起,能否组成一个集合。
2、(1)A= {2,4} B={{1,2} , { 2,3} , {2,4} , {3,5} } A与B的关系如何
⒍集合的表示方法
集合的表示方法,通常有列举法、描述法和图示法三种.
⑴列举法:就是把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如上述⑴、⑷组成的集合可分别表示为{1,2,3,4,5}与{ x2,3x+2,5y3-x,x2+y2}.
注意:1.用列举法表示集合时,不管元素的排列顺序如何,只要所列的元素完全相同,它们表达的就是同一个集合.
2.集合中的元素是没有重复现象的,即任何两个相同的对象在同一个集合中时,只能算作这个集合的一个元素.
练习1:用列举法表示下列集合:
(1)小于5的正奇数(2)方程x2-9=0的解的集合(3){15以内的质数}
请同学们思考如何表示一个平面上的所有直角三角形组成的集合?能否用刚才的列举法来表示?
⑵描述法:就是把集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.这时往往在大括号内先写上这个集合的元素的一般形式,再画一条竖线,在竖线右边写上这个集合的元素的公共属性.例如,由不等式x-3>2的所有的解组成的集合(即不等式x-3>2的解集),可以表示为{x∈ R|x-3>2};由抛物线y=x2+1上所有点的坐标组成的集合,可以表示为{(x,y)| y=x2+1}. 注:有时也可以用冒号或分号代替竖线,写成{x∈R:x-3>2}或{x∈R;x-3>2}. 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可以省去竖线及其左边的部分,例如,由所有直角三角形组成的集合,可以表示为{直角三角形};由连云港外国语学校所有学生组成的集合,可以表示为{连云港外国语学校的学生}等.
练习1:用列举法或描述法表示下列集合:
①小于100的自然数;②不等式x2-x+4<0的解集;
练习2:用描述法表示下列集合
(1)抛物线x2=y上的点(2) 抛物线x2=y上的点的横坐标(3)抛物线x2=y上的点的纵坐标
⑶图示法:就是用一条封闭的曲线的内部来表示集合的方法.
例如,图1-1表示任意一个集合A;图1-2表示集合{1,2,3,4,5}.
以上讲了集合的三种表示方法,究竟用那种方法,要根据各表示法的优点及具体问题
而定.宜用描述法表示;而集合{x∈R |-1<x<2}则不能用列举法表示.
⒎集合的分类:有限集与无限集
从前面的例子我们看到,有些集合的元素有限,有些集合的元素无限,因此集合按元素有限与无限可分为有限集与无限集:
⑴有限集:含有有限个元素的集合叫做有限集.如上节开始所例举的⑴⑷⑸⑹⑺组成的集合都是有限集.
⑵无限集:含有无限个元素的集合叫做无限集.如上节开始所例举的⑵⑶组成的集合都是无限集.
⒏什么叫空集?
先看一个例子:由方程x2+1=0的所有实数解组成的集合,可以表示为{x∈R|x2+1=0},由于方程x2+1=0无实数解,所以此集合是没有元素的.我们把不含任何元素的集合叫做空集,记作φ.例如,{两条平行线的公共交点}=φ,{两边之和小于第三边的三角形}=φ等.
注意:不要把数0或集合{0}与空集φ混淆,数0不是集合,{0}是含有一个元素的集合,而φ是不含任何元素的集合.
三、例题:
【例1】下面有四个命题
(1)地球周围的行星能确定一个集合;
(2)实数中不是有理数的所有数的全体能确定一个集合;
(3){1,2,3}与{1,3,2}是不同集合;
其中正确命题的个数是
A.0个B.1个
C.2个D.3个
【例2】设A={x-2,2x2+5x,12},已知-3∈A,求x.
【例3】判断下列集合哪些是有限集,哪些是无限集.
(1){(x,y)|x+y-1=0}是________.
(2){x∈N|4x-6<7}是________.
(3)某只山羊身上的毛组成的集合是________.。