2020高考数学 最后突破抢分:第5讲 指数与指数函数

合集下载

【高考数学总复习】(第5讲)指数及指数函数(33页)

【高考数学总复习】(第5讲)指数及指数函数(33页)


1
22

2. 2
2.定义域为[1,1],由单调性可知
( 1 )1 ≤ ( 1 ) 1x2 ≤ ( 1 )0,即 1 ≤ y ≤ 1.
33
3
3
3.(1)函数的定义域为 R.函数的值域为(0, 1 ]. 256
(2)函数 y ( 1 )x26 x17在[3, )上是减函数. 2
同理可知 y ( 1 )x26 x17在(, 3]上是增函数. 2
(2)由图象指出其单调区间.
解 (2)由图象知函数 y (1)|x1|在 , 1上是增
3
函数,在 1, 上是减函数.
数形结合思想
21
回顾反思
(1)思想方法:指数型函数的作图一般从最基本的 (2)指知数能函提数升入:手带,有通绝过对平值移的,伸函缩数,图对象称,变一换般得有到两. 种方法,一是去掉绝对值作图,二是不去绝对值, 如 y f ( x )可依据函数是偶函数,先作出函数 f ( x)( x ≥ 0)的图象; x 0时的图象只需将函数 f ( x)( x ≥ 0)的图象关于 y 轴对称即可;又如函数 y f ( x) 的图象,可先作出函数 y f ( x)的图 象,然后保留 x 轴上方图象,将下方图象关于 x 轴 对称即可得函数 y f ( x) 的图象.
1
1
3
2
14
解 原式 [(2 3)2 ]2 - (33 )6 (24 )4 - 2 (23 )3 25 25
2
3

1
32

23

2 22

14
25 5
2 3 3 8 8 2 4.
(2
1

决战2020年高考数学(理)函数与导数专题: 指数与指数函数(解析版)

决战2020年高考数学(理)函数与导数专题: 指数与指数函数(解析版)

函数与导数函数 指数与指数函数一、具体目标:指数函数(1) 了解指数函数模型的实际背景.(2) 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3) 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4) 体会指数函数是一类重要的函数模型.二、知识概述: 根式和分数指数幂 1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使n a 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义. (2)有理指数幂的运算性质(注意逆用) (1),(,,0)rsr sa a a r s Q a +⋅=∈>(2),(,,0)r s r s a a a r s Q a -÷=∈>【考点讲解】(3)(),(,,0)r s rs a a r s Q a =∈>.(4)(),(,0,0)s s sab a b s Q a b =∈>> 2.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质:a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1 当x <0时,y >1; 当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数3. 指数型函数有如下的性质: 形如. ()(0,1)f x y a a a >≠=一类函数,有如下结论:(1)()(0,1)f x y aa a >≠=的定义域、奇偶性与()f x 的定义域、奇偶性相同;(2)先确定()f x 的值域,再利用指数函数的单调性,确定()(0,1)f x y a a a >≠=的值域;(3)()(0,1)f x y aa a >≠=的单调性具有规律“同增异减”,即(),u u f x y a ==的单调性相同时,()(0,1)f x y a a a >≠=是增函数,(),u u f x y a ==的单调性不同时,()(0,1)f x y a a a >≠=是减函数.【真题分析】1.【2019优选题】若4a 2-4a +1=3(1-2a )3,则实数a 的取值范围是________.【解析】左边=(2a -1)2=||2a -1,右边=1-2a, 即||2a -1=1-2a, ∴2a -1≤0,解得a ≤12.【答案】⎩⎨⎧a ⎪⎪⎭⎬⎫a ≤122.【2019优选题】计算14030.75333264()(2)162---⎡⎤--++⎣⎦= . 【解析】化简:4164164331==-,1612])2[(4343==--,81161161161643434375.0====--,原式=11191416816-++=-.【答案】916-3.【2019优选题】若x ,x-1122为方程x 2-3x +a =0的两根,则-33222232x x x x -+-=+-________. 【解析】因为-1122x ,x 为方程x 2-3x +a =0的两根,所以-11223x x ,+=所以3322x x-+=()111221x x x x --⎛⎫+⋅+- ⎪⎝⎭2111122223x x x x --⎡⎤⎛⎫⎛⎫⎢⎥=+⋅+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=3×(32-3)=18,x 2+x -2=()212x x-+-x x -⎡⎤⎛⎫⎢⎥=+-- ⎪⎢⎥⎝⎭⎣⎦22112222=(32-2)2-2=47,所以33222232x x x x --+-=+-18314723-=-.【答案】134.【2018优选题】函数y =(a 2-5a +5)a x 是指数函数,则a 的值为________.【解析】∵函数y =(a 2-5a +5)a x 是指数函数,∴a 2-5a +5=1,解得a =1或a =4.又∵指数函数y =a x 的底数a 需满足a >0且a ≠1,∴a =4. 【答案】45.【2018优选题】函数y =a x +2-2(a >0,且a ≠1)的图像恒过点(m ,n ),则2m n a -=_______.【解析】令x +2=0,则x =-2, y =a x +2-2=a 0-2=-1,∴函数y =a x +2-2的图像恒过点(-2,-1),即m =-2,n =-1,∴m-n-a a a +===22201.【答案】16. 【2015山东,5分】已知函数f (x )=a x +b (a >0,且a ≠1) 的定义域和值域都是[]-1,0,则a +b =________. 【解析】当a >1时,函数f (x )=a x +b 在定义域上是增函数,∴f (0)为函数最大值,f (-1)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,无解,不符合题意,舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数,∴f (-1)为函数最大值,f (0)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,解得b =-2,a =12,∴a +b =-32.【答案】-327.【2019优选题】若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【解析】∵2x (x -a )<1,∴x -a <12x .∵存在正数x 使2x (x -a )<1成立,即存在正数x 使x -a <12x 成立,即存在正数x 使函数y =x -a 的图像在函数y =12x 的图像的下方.在坐标系中画出图像,如下图:由图像可知当-a <1,即a >-1时,存在正数x 使2x (x -a )<1成立. 【答案】D8. 【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.故选B . 【答案】B9.【2019年高考全国Ⅱ卷理数】若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.故选C . 【答案】C10.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1xy a =的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【答案】D11.【2019优选题】比较大小:(Ⅰ)a =1335-⎛⎫ ⎪⎝⎭,b =1435-⎛⎫ ⎪⎝⎭,c =1434-⎛⎫⎪⎝⎭,则它们的大小关系是________.(Ⅱ)a =(-3)3,b =-125,c =.π03,则它们的大小关系是________.(Ⅲ) 53532a ,b ,c ===,则它们的大小关系为________.【解析】:(Ⅰ) 113433,55a b --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭Q , 函数y =⎝⎛⎭⎫35x为减函数,11433355--⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭315⎛⎫= ⎪⎝⎭,∴a >b >1.14110441434555154434b c ---⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭===>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎝⎭∵, ∴b >c ,∴a >b >c .(Ⅱ)∵a =(-3)3<0,0<b =125-<50=1, c =π0.3>π0=1,∴a <b <c .(Ⅲ)∵53532a ,b ,c ===,∴101021055525a (),c ====(2)10=25=32,∴a 10<c 10,∴a <c .∵b 6=(33)6=32=9,c 6=(2)6=23=8,∴b 6>c 6,∴b >c .综上,a <c <b . 【答案】(Ⅰ)a >b >c (Ⅱ)a <b <c (Ⅲ)a <c <b12.【2016高考江苏卷】已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. 设12,2a b ==.(1)求方程()2f x =的根; (2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

2020年 名师讲解 高考数学 提分宝典 必做题之指数与指数函数

2020年 名师讲解 高考数学 提分宝典 必做题之指数与指数函数

第5讲 指数与指数函数一、填空题 1.⎝ ⎛⎭⎪⎫32×⎝ ⎛⎭⎪⎫-760+×42-=________.解析 原式==2.答案 22.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.解析 ∵a 2-2a -3=0,∴a =3或a =-1(舍).函数f (x )=3x 在R 上递增,由f (m )>f (n ),得m >n . 答案 m >n3.(2017·衡水中学模拟改编)若a =⎝ ⎛⎭⎪⎫23x ,b =x 2,c =x ,则当x >1时,a ,b ,c 的大小关系是________(从小到大). 解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =x <0,所以c <a <b . 答案 c <a <b4.函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,给出下列结论:①a >1,b <0; ②a >1,b >0; ③0<a <1,b >0; ④0<a <1,b <0.其中判断正确的结论有________(填序号).解析 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.答案 ④5.(2017·南京、盐城一模)已知c =则a ,b ,c 的大小关系是________.解析 ∵y =⎝ ⎛⎭⎪⎫25x 在R 上为减函数,35>25,∴b <c .又∵y =在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a . 答案 b <c <a6.(2017·南京调研)已知函数f (x )=a x (a >0,且a ≠1),如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)=________. 解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0. 又∵f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=a x 1+x 2=a 0=1. 答案 17.(2017·南通调研)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是________.解析 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 答案 [2,+∞)8.(2017·安徽江南十校联考)已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________. 解析 f (x )=⎩⎨⎧e x ,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号), 当x <1时,f (x )=e |x -2|=e 2-x >e ,因此x =1时,f (x )有最小值f (1)=e. 答案 e 二、解答题9.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. 解 (1)由于a x -1≠0,则a x ≠1,得x ≠0, 所以函数f (x )的定义域为{x |x ≠0}. 对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫ax1-a x +12(-x )3 =⎝ ⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数. (2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况,当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0, 即1a x -1+12>0,即a x +12(a x -1)>0,则a x >1. 又∵x >0,∴a >1. 因此a >1时,f (x )>0.10.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0. 解 (1)因为f (x )是定义在R 上的奇函数, 所以f (0)=0,即-1+b2+a=0,解得b =1, 所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )< -f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1, 即3t 2-2t -1>0,解不等式可得t >1或t <-13,故原不等式的解集为⎩⎨⎧⎭⎬⎫t |t >1或t <-13. 11.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 因为2x >0,所以由2x (x -a )<1得a >x -⎝ ⎛⎭⎪⎫12x ,令f (x )=x -⎝ ⎛⎭⎪⎫12x ,则函数f (x )在(0,+∞)上是增函数, 所以f (x )>f (0)=0-⎝ ⎛⎭⎪⎫120=-1,所以a >-1.答案 (-1,+∞)12.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论:①a <0,b <0,c <0;②a <0,b ≥0,c >0; ③2-a <2c ;④2a +2c <2.其中一定成立的是________(填序号). 解析作出函数f (x )=|2x -1|的图象如图中实线所示, ∵a <b <c ,且f (a )>f (c )>f (b ),结合图象知a <0,0<c <1, ∴0<2a <1,1<2c <2, ∴f (a )=|2a -1|=1-2a <1, ∴f (c )=|2c -1|=2c -1,又f (a )>f (c ),即1-2a >2c -1,∴2a +2c <2. 答案 ④13.(2017·北京丰台一模)已知奇函数y =⎩⎨⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=________.解析 依题意,f (1)=12,∴a =12, ∴f (x )=⎝ ⎛⎭⎪⎫12x ,x >0.当x <0时,-x >0.∴g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x =-2x .答案 -2x (x <0)14.(2017·常州市教育学会期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由. 解 (1)∵f (x )=e x -⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x +⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ), ∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.。

2020年高考数学一轮复习《指数与指数函数》

2020年高考数学一轮复习《指数与指数函数》

2020年高考数学一轮复习《指数与指数函数》考纲解读1. 了解指数函数模型的实际背景.2. 理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算及性质.3. 理解指数函数的概念和单调性,掌握指数函数图象通过的特殊点.4. 认识到指数函数是一类重要的函数模型. 命题趋势探究指数函数是中学数学中基本初等函数之一,这部分内容在高考中处于重要的地位.高考中往往以基础知识为主,主要考查指数函数的性质及应用,一般以选择题和填空题的形式出现,例如数值的计算、函数值的求法、数值大小的比较等,但有时也与函数的基本性质、二次函数、方程、不等式、导数等内容结合起来编制综合题.近几年高考中有加强考查的趋势. 知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ∈R);(2)mm n n a a a -=( m ,n ∈R)(3)(a m )n =a mn (m ,n ∈R);(4)(ab )m=a m b m (m ∈R);(5)pp a a-=1(p ∈Q)(6)mn a m ,n ∈N +)二、指数函数(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数yx题型归纳及思路提示题型23 指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算例2.48化简并求值.(1)若a =2,b =4的值;(2)若x x-+=11223,x x x x --+-+-33222232的值;(3)设nna --=11201420142(n ∈N +),求)n a 的值.分析:利用指数运算性质解题.-=--1==.当a =2,b =4,原式===12. (2)先对所给条件作等价变形:()x x x x --+=+-=-=11122222327, ()()x xx x x x ---+=++-=⨯=33111222213618,x 2+x -2=(x +x -1)2-2=72-2=47. 故x x x x --+--==+--3322223183124723. (3)因为nna --=11201420142,所以()nna -++=11222014201412,nnnnna ---+-=-=111112014201420142014201422.所以)n a -=12014. 变式1 设2a =5b =m ,且a b+=112,则m =( ).A.B. 10C. 20D. 100解析 解法一: 2111111,55,22m m m m m m m m ba b a b b a a ==∙=⇒==⇒=+10),0(10522=>=⇒⨯=m m m 。

20届高考数学一轮复习讲义(提高版) 专题2.5 指数及指数函数(原卷版)

20届高考数学一轮复习讲义(提高版) 专题2.5 指数及指数函数(原卷版)

第五讲指数及指数函数一.根式1.根式的概念根式的概念符号表示备注如果a=x n,那么x叫做a的n次实数方根n>1且n∈N*当n为奇数时,正数的n次实数方根是一个正数,负数的n次实数方根是一个负数na0的n次实数方根是0当n为偶数时,正数的n次实数方根有两个,它们互为相反数±na负数没有偶次方根2.两个重要公式①na n=⎩⎨⎧a(n为奇数),|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0)(n为偶数);②(na)n=a(注意a必须使na有意义).二.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=na m(a>0,m,n∈N*,n>1);②正数的负分数指数幂是mna=1mna=1na m(a>0,m,n∈N*,n>1);③0的正分数指数幂是0,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a s a t=a s+t(a>0,t,s∈Q);②(a s)t=a st(a>0,t,s∈Q);③(ab)t=a t b t(a>0,b>0,t∈Q).【套路秘籍】---千里之行始于足下三.指数函数的图象与性质 (1)指数函数的定义一般地,函数y =a x(a >0,a ≠1)叫做指数函数,函数的定义域是R . (2)指数函数的图象与性质y =a x a >1 0<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1;当x <0时,0<y <1当x >0时,0<y <1;当x <0时,y >1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数考向一 指数的运算【例1】计算化简(1)(12)−1+823+(2019)0= .(2)(278)13−(30.5)2+(0.008)−23×425=______.(3)已知x 12+x −12=3,求下列各式的值: ①x +x−1;②x 2+x−2;③x 32−x−32x 12−x −12.【修炼套路】---为君聊赋《今日诗》,努力请从今日始【举一反三】 1.0.027−13−(−16)−2+2560.75+(125729)−13+(59)−1−729−16=__________.2.化简:(√3+√2)2015×(√3−√2)2016=_________________________________. 3.(0.25)12−[−2×(37)0]2×[(-2)3]43+(√2-1)-1-212=________.4.已知x +x -1=3,则3322xx的值为 .5.已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,则a -ba +b= . 6.设2x=8y +1,9y =3x -9,则x +y 的值为 .7.已知a -1a=3(a >0),则a 2+a +a -2+a -1的值为 .考向二 指数函数的判断【例2】函数f(x)=(a 2-3a +3)a x 是指数函数,则有( ) A .a =1或a =2 B .a =1 C .a =2 D .a>0且a ≠1【举一反三】1.函数y =(a 2–3a +3)⋅a x 是指数函数,则a 的值为 A .1或2 B .1 C .2 D .a >0且a ≠1的所有实数 2.函数f (x )=(2a –3)a x 是指数函数,则f (1)= A .8 B .32 C .4 D .23.函数f (x )=(m 2−m −1)a x 是指数函数,则实数m =( )【套路总结】指数函数xy a =形如,指数函数的需要同时满足①01a a >≠且②系数为1③次数为1【套路总结】指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算; (2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数; (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)A .2B .1C .3D .2或−1考向三 指数函数的单调性【例3】函数f (x )=51−|2x+4|的单调递增区间为( ) A .[−2,+∞) B .[−32,+∞)C .(−∞,−32]D .(−∞,−2]【举一反三】 1.函数f (x )=e −x 2+4x−9的单调递增区间是( )A .(−2,+∞)B .(2,+∞)C .(−∞,−2)D .(−∞,2)2.函数f (x )=4x-2x +1的单调增区间是________.3.若函数f (x )=a|2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.考向四 指数函数的定义域和值域【例4】(1)函数y =√4−2x 的定义域为_______.(2)设函数f (x )=√4−4x ,则函数f (x4)的定义域为 。

2020版高考数学浙江专用新精准大一轮精讲通用版课件:第二章 第5讲 指数与指数函数

2020版高考数学浙江专用新精准大一轮精讲通用版课件:第二章 第5讲 指数与指数函数

-32 -32
=85.
指数函数的图象及应用 (1)函数 f(x)=21-x 的大致图象为( )
(2)函数 f(x)=|ax+b|(a>0,a≠1,b∈R)的图象如图所示,则 a +b 的取值范围是________.
(3)若方程|3x-1|=k 有一解,则 k 的取值范围为________.
【解析】 (1)函数 f(x)=21-x=2×12x,单调递减且过点(0, 2),选项 A 中的图象符合要求. (2)因为根据图象得 a>1,f(12)=0,b<0. 所以 a+b=0,所以 a+b=a- a>1- 1=0.
(3) 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个 单位后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴上方得到 的,函数图象如图所示.
当 k=0 或 k≥1 时,直线 y=k 与函数 y=|3x-1|的图象有唯一 的交点,所以方程有一解. 【答案】 (1)A (2)(0,+∞) (3){0}∪[1,+∞)
作出直线 x=1,分别与四个图象自上而下交于点 A(1,a),B(1, b),C(1,c),D(1,d),得到底数的大小关系是:a>b>1>c >d>0.根据 y 轴右侧的图象,也可以利用口诀:“底大图高” 来记忆.
判断正误(正确的打“√”,错误的打“×”)
(1)n an=(n a)n=a.( × )
(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数 的定义域、值域、单调性等相关性质,其次要明确复合函数的 构成,涉及值域、单调区间、最值等问题时,都要借助“同增 异减”这一性质分析判断,最终将问题归结为内层函数相关的 问题加以解决. [提醒] 在研究指数型函数单调性时,当底数与“1”的大小关系 不明确时,要分类讨论.

2020高考数学一轮复习第2章函数的概念与基本初等函数第5讲指数与指数函数分层演练文-精装版

2020高考数学一轮复习第2章函数的概念与基本初等函数第5讲指数与指数函数分层演练文-精装版

教学资料范本2020高考数学一轮复习第2章函数的概念与基本初等函数第5讲指数与指数函数分层演练文-精装版编辑:__________________时间:__________________【精选】20xx 最新高考数学一轮复习第2章函数的概念与基本初等函数第5讲指数与指数函数分层演练文一、选择题1.函数f(x)=1-e|x|的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f(x)=1-e|x|是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.化简4a·b-÷的结果为( ) .-A 8a b .-BC .-D .-6ab 23--b -a 原式=C.解析:选 =-6ab -1=-,故选C.3.已知实数a ,b 满足等式=,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b.其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个 解析:选B.函数y1=与y2=的图象如图所示.由=得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立.4.若函数f(x)=a|2x -4|(a>0,a ≠1),满足f(1)=,则f(x)的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2] 解析:选B.由f(1)=得a2=,所以a =或a =-(舍去),即f(x)=.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减,故选B.5.设a =1.90.9,b =0.91.9,c =0.99.1,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b 解析:选A.因为函数y =0.9x 在R 上是减函数,所以0.91.9>0.99.1,且0.91.9<0.90=1.即c <b <1.又函数y=1.9x在R上是增函数.所以1.90.9>1.90=1即a>1.所以a>b>c.故选A. 6.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( ) B.(-1,0)A.(-∞,-1)C.(0,1) D.(1,+∞)解析:选C.因为f(x)为奇函数,所以f(-x)=-f(x),即=-,整理得(a-1)(2x+1)=0,所以a=1,所以f(x)>3即为>3,当x>0时,2x-1>0,所以2x+1>3·2x-3,解得0<x<1;当x<0时,2x-1<0,所以2x+1<3·2x-3,无解.所以x的取值范围为(0,1).二、填空题7.函数y=的值域是________.解析:因为4x>0,所以16-4x<16,所以0≤16-4x<16,即0≤y<4.答案:[0,4) 8.若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a=________.解析:当a>1时,f(x)=ax-1在[0,2]上为增函数,则a2-1=2,所以a=±,又因为a>1,所以a=.当0<a<1时,f(x)=ax-1在[0,2]上为减函数,又因为f(0)=0≠2,所以0<a<1不成立.综上可知,a=.答案:3 9.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于________.解析:因为f(x)=2|x-a|,所以f(x)的图象关于x=a对称.又由f(1+x)=f(1-x),知f(x)的图象关于直线x=1对称,故a=1,且f(x)的增区间是[1,+∞),由函数f(x)在[m,+∞)上单调递增,知[m,+∞)⊆[1,+∞),所以m≥1,故m的最小值为1.答案:110.已知函数y =ax +b(a>0,且a ≠1,b>0)的图象经过点P(1,3),如图所示,则+的最小值为________,此时a ,b 的值分别为________.解析:由函数y =ax +b(a>0且a≠1,b>0)的图象经过点P(1,3),得a +b =3,所以+=1,又a>1,则+=(+)=2+++≥+2=,当且仅当=,即a =,b =时取等号,所以+的最小值为.23,答案: 三、解答题11.已知函数f(x)=b ·ax(其中a ,b 为常量,且a>0,a ≠1)的图象经过点A(1,6),B(3,24).若不等式+-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:把A(1,6),B(3,24)代入f(x)=b·ax,⎩⎨⎧6=ab ,24=b·a3,得 ⎩⎨⎧a =2,b =3.,解得≠1a ,且a>0结合 所以f(x)=3·2x.要使+≥m 在x∈(-∞,1]上恒成立,只需保证函数y =+在(-∞,1]上的最小值不小于m 即可.因为函数y =+在(-∞,1]上为减函数,所以当x =1时,y =+有最小值.所以只需m≤即可.即m 的取值范围为.12.已知函数f(x)=.(1)若a =-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a 的值.解:(1)当a =-1时,f(x)=,令g(x)=-x2-4x +3,由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =在R 上单调递减,所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g(x)=ax2-4x +3,f(x)=,由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有解得a =1,即当f(x)有最大值3时,a 的值为1.。

高考数学2020届一轮复习专题速递《指数与指数函数》

高考数学2020届一轮复习专题速递《指数与指数函数》

)
3 a·
a2
1
5
7
3
A.a2
B.a6
C.a6
D.a2
解析 由题意得 答案 C
a2
11 7
= a2-2-3= a6.
32 a· a
x
5.(2017 北·京卷 )已知函数
f(x)= 3x-
1 3
,则 f(x)(
)
A.是偶函数,且在 R 上是增函数 B.是奇函数,且在 R 上是增函数 C.是偶函数,且在 R 上是减函数 D.是奇函数,且在 R 上是减函数
a b.
ab2a-3b3
规律方法 1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利
用法则计算,但应注意: (1)必须同底数幂相乘,指数才能相加; (2)运算的先后顺
序.
2.当底数是负数时,先确定符号,再把底数化为正数 .
3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数 .
第 5 节 指数与指数函数
最新考纲 1.了解指数函数模型的实际背景; 2.理解有理指数幂的含义, 了解实数
指数幂的意义,掌握幂的运算; 3.理解指数函数的概念及其单调性,掌握指数函 11
数图像通过的特殊点,会画底数为 2,3,10, 2, 3的指数函数的图像; 4.体会指 数函数是一类重要的函数模型 .
解析 函数 f(x)的定义域为 R,
f(-x)=3-x-
1 3
-x

1 3
x
-3x=- f(x),
∴函数 f(x)是奇函数 .
x
又 y= 3x 在 R 上是增函数,函数
1 y= 3
在 R 上是减函数,
∴函数
f(x)=3x-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第5讲 指数与指数函数
一、知识梳理
1.根式
(1)根式的概念
①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N +..n
a 叫做根式,这里n
叫做根指数,a 叫做被开方数.
②a 的n 次方根的表示:
x n =a ⇒⎩
⎪⎨⎪⎧x =n a ,当n 为奇数且n ∈N +.,n >1时,
x =±n a ,当n 为偶数且n ∈N +
.时.
(2)根式的性质
2
①(
n
a )n =a (n ∈N +.,且n >1);
②n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,
-a ,a <0,
n 为偶数.
2.有理数指数幂
(1)幂的有关概念
①正分数指数幂:a m
n =
n
a m (a >0,m ,n ∈N +.,且n >1);
②负分数指数幂:a -m
n =
1
a m n

1
n
a m
(a >0,m ,n ∈N +.,且n >1);
③0的正分数指数幂等于0,0的负分数指数幂无意义.
(2)有理数指数幂的运算性质
①a r a s =a r +s (a >0,r ,s ∈Q );
②(a r )s =a rs (a >0,r ,s ∈Q );
③(ab )r =a r b r (a >0,b >0,r ∈Q ).
3.指数函数的图象与性质
y =a x (a >0且a ≠1) a >1 0<a <1
图象
定义域R
值域(0,+∞)
性质
过定点(0,1)
当x>0时,y>1;当x<0时,
0<y<1
当x>0时,0<y<1;
当x<0时,y>1
在R上是增函数在R上是减函数
1.指数函数图象的画法
画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),





-1,
1
a.
2.
指数函数的图象与底数大小的比较
如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与
3
1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=a x(a>0,a≠1)的图象越高,底数越大.
3.指数函数y=a x(a>0,且a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究.
二、教材衍化
1.化简4
16x8y4
(x<0,y<0)=________.
解析:因为x<0,y<0,所以416x8y4=(16x8·y4)
1
4=(16)
1
4·(x8)
1
4·(y4)
1
4=2x2|y|=-2x2y. 答案:-2x2y
2.函数y=2x与y=2-x的图象关于________对称.
解析:作出y=2x与y=2-x=




⎫1
2
x
的图象(图略),观察可知其关于y轴对称.
答案:y轴
3.已知函数f(x)=a x-2+2(a>0且a≠1)的图象恒过定点A,则A的坐标为________.解析:令x-2=0,则x=2,f(2)=3,即A的坐标为(2,3).
答案:(2,3)
一、思考辨析
4
旗开得胜
5
判断正误(正确的打“√”,错误的打“×”)
(1)
n
a n =(
n
a )n =a .( )
(2)(-1)24=(-1)1
2=-1.( )
(3)函数y =a -x 是R 上的增函数.( )
(4)函数y =ax 2+1(a >1)的值域是(0,+∞).( )
(5)函数y =2x -1是指数函数.( )
(6)若a m <a n (a >0,且a ≠1),则m <n .( )
答案:(1)× (2)× (3)× (4)× (5)× (6)×
二、易错纠偏
常见误区|
K(1)忽略n 的范围导致式子
n
a n (a ∈R )化简出错;
(2)不能正确理解指数函数的概念致错;
(3)指数函数问题时刻注意底数的两种情况;
(4)复合函数问题容易忽略指数函数的值域致错.
1.计算
3
(1+2)3+
4
(1-2)4=________.。

相关文档
最新文档