高一第5讲 指数与指数函数(J教师版)
高一数学《指数函数》优秀教案(优秀5篇)

高一数学《指数函数》优秀教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!高一数学《指数函数》优秀教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
2022版高考数学一轮复习第3章函数第5讲指数与指数函数课件

(2)指数函数的图象与性质:
a>1
0<a<1
图象
第七页,编辑于星期六:四点 六分。
定义域 值域
性质
a>1
0<a<1
①___R_____ ②_(_0_,__+__∞_)
③过定点___(0_,_1_) __,即x=0时,y=1
④当x>0时,__y_>__1__;
⑤当x<0时,___y>__1__;
当x<0时,_0_<__y_<_1_
×-25
×23
-32313
-1=52-32-1=0.
(2)原式=
1
a3
1
a3
1
a3
3-2b31
3
2+a31
1
·2b3
+2b13
1
a3 ÷
2
1
-2b3 a
2 1
·a·a3
1
1
2
1
a2
·a3
5
5
1
=a3
1
a3
1
-2b3
·1 a3
a
1
-2b3
·a61
1
=a3
a6
2
·a·a3
=a2.
第二十二页,编辑于星期六:四点 六分。
当x>0时,_0_<__y<__1_
⑥在(-∞,+∞)内是 __增_____函数
⑦在(-∞,+∞)内是 ___减____函数
第八页,编辑于星期六:四点 六分。
【特别提醒】 1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且 结果不能同时含有根号和分数指数幂,也不能既含有分母又含有负指 数. 2.指数函数y=ax(a>0,a≠1)的图像和性质跟a的取值有关,要特 别注意区分a>1或0<a<1.
高一数学指数函数ppt课件

图像法
运算性质法
利用指数函数的运算性质,如乘法公 式和指数法则,推导出奇偶性的判断 方法。例如,若f(x)和g(x)都是奇函数, 则f(x)*g(x)也是奇函数。
通过观察指数函数的图像,判断其是 否关于原点对称或关于y轴对称,从而 确定函数的奇偶性。
06 典型例题解析与 课堂互动环节
典型例题选讲及思路点拨
指数函数的图像关于y轴对称。
当a>1时,函数在定义域内单调递增,图 像上升;当0<a<1时,函数在定义域内单 调递减,图像下降。
指数函数图像特点 函数图像过定点(0,1)。
指数函数性质探讨
指数函数的单调性
01
当a>1时,函数在R上单调递增;当0<a<1时,函数在R上单调
递减。
指数函数的周期性
02
指数函数不是周期函数。
应用举例
$3^4 = (frac{3}{2})^4 times 2^4$
对数转换
当底数不同且难以直接 计算时,可通过对数转 换为相同底数进行计算。
应用举例
比较 $7^{10}$ 和 $10^7$ 的大小,可转 换为比较 $10 times
log7$ 和 $7 times log10$。
复杂表达式化简技巧
利用指数函数构建可持续增长模型,可以预测未来经济发展的趋势和可能遇到的问 题,帮助学生了解经济增长的复杂性和不确定性。
05 指数函数图像变 换与性质变化规 律
平移、伸缩变换对图像影响
平移变换
指数函数图像沿x轴或y轴平移,不改 变函数的形状和周期性,只改变函数 的位置。
伸缩变换
通过改变函数的参数,实现对指数函 数图像的横向或纵向伸缩,从而改变 函数的周期和振幅。
指数函数的说课稿(通用7篇)

指数函数的说课稿指数函数的说课稿(通用7篇)作为一名教学工作者,时常需要编写说课稿,是说课取得成功的前提。
说课稿要怎么写呢?下面是小编整理的指数函数的说课稿,希望对大家有所帮助。
指数函数的说课稿篇1一、说教材分析1、《指数函数》在教材中的地位、作用和特点2、教学目标、重点和难点(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题。
(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法;②培养学生观察、联想、类比、猜测、归一、教材分析。
1、《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。
通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、借贷利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2、教学目标、重点和难点通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
指数函数教案

第5讲指数与指数函数[考纲解读] 1.理解有理指数幂的含义,掌握指数幂的运算,并能通过具体实例了解实数指数幂的意义.2.理解指数函数的概念,理解指数函数的单调性并掌握指数函数的图象及其通过的特殊点.(重点、难点)3.通过具体实例,了解指数函数模型的实际背景,并体会指数函数是一类重要的函数模型.[考向预测]从近三年高考情况来看,本讲是高考中的命题热点.预测2020年高考主要与函数的图象、最值、比较大小、指数函数图象过定点为命题方向;也有可能与其他知识相结合进行考查.1.根式2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a mn=na m(a>0,m,n∈N*且n>1).②正数的负分数指数幂:a-mn=1amn=1na m(a>0,m,n∈N*且n>1).③0的正分数指数幂等于□010;0的负分数指数幂□02没有意义.(2)有理数指数幂的性质①a r a s=□03a+(a>0,r,s∈Q);②(a r)s=□04a(a>0,r,s∈Q);③(ab)r=□05a b(a>0,b>0,r∈Q).3.指数函数的图象与性质题型一指数幂的化简与求值1.求值:(0.064)-13-⎝⎛⎭⎪⎫-590+[(-2)3]-43+16-0.75+(0.01)12=________.3.若x12+x-12=3,则x32+x-32+2x2+x-2+3的值为________.题型 二 指数函数的图象及应用1.(2018·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x -1D .y =log 2(2x )2.(2018·青岛模拟)函数f (x )=21-x 的大致图象为()条件探究1 举例说明2中函数改为f (x )=2|x -1|,其图象是()条件探究2 举例说明2中函数改为y =21-x +m ,若此函数的图象不经过第一象限,则m 的取值范围如何?题型 三 指数函数的性质及其应用角度1 比较指数幂的大小 1.设a =40.8,b =80.46,c =⎝ ⎛⎭⎪⎫12-1.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a 角度2 解指数方程或不等式2.(2018·福州模拟)已知实数a ≠1,函数f (x )=⎩⎨⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.角度3 探究指数型函数的性质4.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.1.比较幂值大小的常见类型及解决方法2.利用指数函数的性质解简单的指数方程或不等式的方法先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.如举例说明3. 3.两类复合函数的最值(或值域)问题(1)形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.(2)形如y =a f (x )(a >0,且a ≠1)型函数最值问题,可令t =f (x ),则y =a t ,先由x 的取值范围求t 的取值范围,再求y =a t 的最值.如举例说明4.4.对于形如y =a f (x )的函数的单调性(1)若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间; (2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.如举例说明4(1).课后反思:。
第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。
2018年高考数学文一轮复习文档:第二章 基本初等函数

第5讲 指数与指数函数, )1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a mn=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编 化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5D .3B 因为x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9, 所以x 2+x -2=7. 3.函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a3x +1>a-2x,则x 的取值范围为________.因为a >1,所以y =a x为增函数, 又a3x +1>a-2x,所以3x +1>-2x ,即x >-15.⎝ ⎛⎭⎪⎫-15,+∞ 5.若指数函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b-3210a 32b -32=85.指数函数的图象及应用(1)函数f (x )=ax -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x-1|=k 有一解,则k 的取值范围为________. 【解析】 (1)由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=1-e |x |的图象大致是( )A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即 0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.⎝⎛⎭⎪⎫0,12指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质;(4)求解指数型函数中参数的取值范围.(1)(2016·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(2)(2017·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x -2)>0的解集为________. 【解析】 (1)因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a=21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x-4.所以f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0 或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}. 【答案】 (1)A (2)12(3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <aC 因为指数函数y =0.6x在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C.角度二 解简单的指数方程或不等式 2.(2015·高考江苏卷)不等式2x 2-x<4的解集为________.因为2x 2-x<4,所以2x 2-x<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质3.(2017·太原模拟)函数y =2x -2-x是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 、D.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a<1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b=-32.-32, )——利用换元法求解指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数f (x )=2a ·4x-2x-1.(1)当a =1时,求函数f (x )在x ∈上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1, 令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上, 对称轴m =14a >0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., )1.化简(a 23·b -1)-12·a -12·b 136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a. 2.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .B .C .D . 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x-1a(a >0,a ≠1)的图象可能是()D 当a >1时函数单调递增,且函数图象过点⎝ ⎛⎭⎪⎫0,1-1a ,因为0<1-1a<1,故A ,B均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝ ⎛⎭⎪⎫0,1-1a ,因为1-1a<0,所以选D.4.(2017·德州模拟)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD 因为y =⎝ ⎛⎭⎪⎫25x为减函数,所以b <c ,又因为y =x 25在(0,+∞)上为增函数,所以a >c , 所以b <c <a ,故选D.5.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1). 6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在上递增,在,则实数a =________. 当a >1时,f (x )=a x-1在上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x-1在上为减函数, 又因为f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3.38.已知函数f (x )=e x-e -xe x +e -x ,若f (a )=-12,则f (-a )=________.因为f (x )=e x -e -xe x +e -x ,f (a )=-12,所以e a -e -ae a +e -a =-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.129.(2017·济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).(0,1)∪(2,+∞)10.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e. e11.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3, 结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎥⎤-∞,56.12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 14.已知定义在R 上的函数f (x )=2x-12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈恒成立,求实数m 的取值范围. (1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x =-12,因为2x>0,所以x =1.(2)当t ∈时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),因为22t-1>0, 所以m ≥-(22t+1), 因为t ∈,所以-(22t+1)∈, 故实数m 的取值范围是[-5,+∞).。
第5讲 指数与指数函数(教案)

指数与指数函数教学目标:掌握指数运算(高考要求A )及指数函数的有关概念(高考要求B ). 教学重难点:熟悉指数运算,掌握指数函数图像性质及其应用。
教学过程: 一.知识要点: 1.指数运算(1) 根式的定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n =,则x 称a 的n 次方根()1*∈>N n n 且, ① 当n 为奇数时,n a 的次方根记作n a ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。
(2)根式性质:①a a n n =)(;②当n 为奇数时,a a n n =;③当n(0)||(0)a a a a a ≥⎧==⎨-<⎩。
(3)幂运算法则:①∈⋅⋅⋅=n a a a a n ( N *) ②)0(10≠=a a ;n 个 ③∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N *且)1>n 。
(4)幂运算性质: ①r a a a a sr s r ,0(>=⋅+、∈s Q );②r a a a s r s r ,0()(>=⋅、∈s Q ); ③∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。
(注)上述性质对r 、∈s R 均适用。
2.指数函数:(1) 指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ;函数的值域为),0(+∞; (2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限;②当10<<a 时函数为减函数,当1>a 时函数为增函数。
③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2
1 4
3 2
1 2
1 2
题型二
例3
指数函数的图象及应用
1 a, a a (1)若 a<0,则 2 ,( ) 0.2 的大小顺序是________. 2
x
2 1 , , 3,π},则图 2 2 象 C1、C2、C3、C4 对应的函数的底数依次是______、________、________、________. (2)下图的曲线 C1、C2、C3、C4 是指数函数 y=a 的图象,而 a∈{
2
例2
已知 10 3 1
1 2
1 3
3 2 - 4
=
1 3
4 4 ( 10 )( 10 ) =(2 2 )( 16 3) = 解:原式= 2
1 4
课堂小结:指数幂的化简与求值的原则及结果要求 1.化简原则:(1)化负指数为正指数;(2)化根式为分数指数幂;(3)化小数为分数; (4)注意运算的先后顺序. 2.结果要求:(1)若题目以根式形式给出,则结果用根式表示;(2)若题目以分数指数幂的 形式给出,则结果用分数指数幂表示;(3)结果不能同时含有根号和分数指数幂,也不能既
a 1 a 答:∵f(x) 是 R 上的单调递增函数,∴ 4 0 ,解得 4 a 8 ,选 C. 2 a 4 2 a 2 2 x2 2 x (2)函数 y ( ) 的单调减区间为 5 答: 2, 1 .
课堂练习 5:若函数 f(x)= 2 围。 答: -, 4 . 例 7(奇偶性) 已知函数 f(x)=
x x
课堂练习 4: ( 2011 湖 南 高 考 题 ) 已 知 函 数 f ( x) e 1, g ( x) x 4x 3, 若 有
x 2
f (a) g (b), 则 b 的取值范围为
-5-/8
高一数学上第 5 讲
A.
[2 2, 2 2]
B.
(2 2, 2 2)
x
1 a a a 当 a<0 时,有 0.2 >( ) >2 . 2 1 a a 2 1 a 答案 0.2 >( ) >2 (2) : , ,π, 3。 2 2 2 x (3)函数 y=a +b-1 的图象经过第二、 三、 四象限, 大致图象如图. 所以函数必为减函数. 故 0 0<a<1.又当 x=0 时,y<0,即 a +b-1<0,∴b<0.
-1-/8
高一数学上第 5 讲
第 5 讲 指数与指数函数(教师版)
一.学习目标:
(1)通过具体实例(如细胞的分裂,考古中所用的 C 的衰减,药物在人体内残留量的 变化等) ,了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象, 探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
3 x
1( a 0且a 1 )过定点
x
2 例 5(有界性)(1)求函数 y= x 的定义域和值域. 2 +1 2 1 解:因为 2 +1>0 恒成立,所以定义域为 R,又 y= x =1- x , 2 +1 2 +1 1 1 x 而 2 >0,所以 0< x <1,则-1<- x <0,得 0<y<1,即值域为(0,1). 2 +1 2 +1 -|x+1| -|x+1| *(2)若关于 x 的方程 25 -4·5 -m=0 有实根,则实数 m 的取值范围是________. -|x+1| 2 2 2 解析:令 t=5 知 t -4t=m,则有 m=t -4t=(t-2) -4.∵t∈(0,1], ∴m∈[-3,0).
C.
[1,3]
D.
(1,3)
答:B
a x ( x 1) 例 6(单调性)(1)若 f ( x) 是 R 上的单调递增函数,则 a 的取值范围 a (4 ) x 2( x 1) 2 为 (A) (1, ) (B) (4,8) (C) [4,8) (D) (1,8)
n
*
a(a 0) 。 a ( a 0 )
0
n个 3) a
p
1 ( p Q,4) a n n a m (a 0, m 、 n N* 且 n 1) 。 p a
r s r s r s r s ;2) (a ) a (a 0, r 、 s Q) ; (a 0, r 、 s Q)
(3)若函数 y=a +b-1 (a>0 且 a≠1)的图象经过第二、三、四象限,则 a、b 的取值范围是 __________. x (4)方程 2 =2-x 的解的个数是________. 1 x 解析 (1) 分别作出函数 y=2 , y=( )x 和 y=0.2x 的图象, 如图所示, 从图象可以看出, 2
n 次方根。即若 x n a ,则 x 称 a 的 n 次方根 n 1且n N ) ,
1)当 n 为奇数时, a的n 次方根记作 n a ;2)当 n 为偶数时,负数 a 没有 n 次方根,而正 数 a 有两个 n 次方根且互为相反数,记作 n a (a 0) 。 ②性质:1) (n a ) n a ;2)当 n 为奇数时, n a n a ; 3)当 n 为偶数时, n a | a | (2) .幂的有关概念 ①规定:1) a a a a(n N ;2) a 1(a 0) ;
-3-/8
高一数学上第 5 讲
有分母又有负指数幂. 3 3 3 4 4 2 课堂练习 1: (1)下列等式 6a =2a; -2= 6 (2) ;-3 2= 4 ( 3) 2 中一定成立 的有( )A.0 个 B.1 个 C.2 个 D.3 个 3 3 3 3 3 6 2 3 2 解析: 6a = 6a≠2a; -2=- 2<0, 6 (2) = 2 = 2>0, 3 4 4 4 4 2 ∴ -2≠ 6 (2) .,-3 2<0, 4 ( 3) 2 >0,∴-3 2≠ 4 ( 3) 2 .答:A (2)若 x>0,则 (2 x 3 )(2 x 3 ) 4 x ( x x ) =_____.答:23
37 0 -3π + . 48
a b a b a b
1 6 5 6
1 3
=a
1 1 1 3 2 6
·b
1 1 5 2 3 6
1 = .
a
2 1 64 3 -3+37=5+100+ 9 -3+37=100. (2)原式= + + 0.1 27 48 3 16 48 9 1 25 2
1-x
1 2
答: (-1,0)
题型三
指数函数的性质及应用
x+1
例 4(定点性)已知不论 a 为何正实数,y=a -2 的图象恒过定点,则这个定点的坐标是 ________. x x+1 解析 因为指数函数 y=a (a>0,a≠1)的图象恒过定点(0,1),而函数 y=a -2 的图象可 x 由 y=a (a>0,a≠1)的图象向左平移 1 个单位后,再向下平移 2 个单位而得到,于是,定点 x+1 (0,1)→(-1,1)→(-1,-1).所以函数 y=a -2 的图象恒过定点(-1,-1). 答案 (-1,-1) 课堂练习 3:函数 f(x)= 2a 答: (3,3)
14
二.重点难点:
重点:①指数幂的运算法则.②指数函数的概念、图象与性质. 难点:①根式与分数指数幂的运算.②a>1 与 0<a<1 时,指数函数图象、性质的区别. ③指数函数图象与性质的应用和简单指数方程、不等式的求解.
三.知识梳理:
(一)根式的概念:①定义:若一个数的 n 次方等于 a(n 1, 且n N ) ,则这个数称 a 的
1)指数函数的图象都经过点(0,1) ,且图象都在第一、二象限; 2)指数函数都以 x 轴为渐近线(当 0 a 1 时,图象向左无限接近 x 轴,当 a 1 时,图 象向右无限接近 x 轴) ; 3)对于相同的 a(a 0, 且a 1) ,函数 y a x 与y a x 的图象关于 y 轴对称。
四.典例剖析
题型一
(a b ) a b
6 2 3 1 1 2 1 2 1 3
指数式的计算
例 1,化简下列各式(其中各字母均为正数). (1) ;
2 3
ab5
10 70.5 -2 (2)2 +0.1 + 2 9 27
解:(1)原式=
1 3 1 2 1 2
xax
x a ,x>0 xax 解:函数定义域为{x|x∈R,x≠0},且 y= = x |x| -a ,x<0
.当 x>0 时,函数是一个指数
函数,因为 0<a<1,所以函数在(0,+∞)上是减函数;当 x<0 时,函数图象与指数函数 y x =a (x<0,0<a<1)的图象关于 x 轴对称,函数在(-∞,0)上是增函数,故填④. (2)若函数 y ( ) m 的图象与 x 轴有公共点,求 m 的取值范围。
2x-m
(m 为常数)在区间 2, + 上是增函数,求 m 的取值范
x 1 +1·x3(a>0 且 a≠1). a -1 2
(1)求函数 f(x)的定义域;(2)讨论函数 f(x)的奇偶性; .(3)若 f(x)>0 在定义域上恒成 立.求 a 的取值范围。 x x 解 (1)由于 a -1≠0,且 a ≠1,所以 x≠0.∴函数 f(x)的定义域为{x|x∈R,且 x≠0}. x 1 1 a x+1(-x)3 3 (2)对于定义域内任意 x,有 f(-x)= -x + (-x) = a -1 2 1-a 2 1 1 1 3 1 3 =-1- x + (-x) = x + x =f(x),∴f(x)是偶函数. a -1 2 a -1 2 1 1 x x (3)当 a>1 时,对 x>0,由指数函数的性质知 a >1,∴a -1>0, x + >0. a -1 2 1 1 3 3 又 x>0 时,x >0,∴x x + >0,即当 x>0 时,f(x)>0.又由(2)知 f(x)为偶函数, a -1 2 即 f(-x)=f(x),则当 x<0 时,-x>0,有 f(-x)=f(x)>0 成立. 综上可知,当 a>1 时,f(x)>0 在定义域上恒成立. -x e a *练习 6:设 f(x)= + -x是定义在 R 上的函数.:(1)f(x)可能是奇函数吗? a e (2)若 f(x)是偶函数,求 a 的值并讨论其在(0,+∞)的单调性. -x x a e a e 解 (1)假设 f(x)是奇函数, 由于定义域为 R, ∴f(-x)=-f(x), 即 + x=- + -x, a e a e 1 1 x -x 2 整理得a+ (e +e )=0,即 a+ =0,即 a +1=0 显然无解.∴f(x)不可能是奇函数.