岩石力学ppt课件第三章 岩体力学性质

合集下载

精品课程《岩石力学》ppt课件(全)

精品课程《岩石力学》ppt课件(全)

具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.

岩石的基本物理力学质PPT

岩石的基本物理力学质PPT

一、岩石的密度
❖ 1、颗粒密度(ρs)
ρs= ms/Vs
❖ 2、块体密度(ρ)
ρ=m/V
❖ 注意: (1)ρs与ρ的区别 (ρs>ρ) (2)ρs与ρ的单位 (g/cm3 kN/m3) (3)测试方法(ρs---比重瓶法;ρ--量积法)
密度(ρ)和重度(γ): 单位体积的岩石的质量称为岩石的密度。单位体积的
式中:W――天然状态下岩石试件的质量(g;) V——岩石试件的体积(cm3); g——重力加速度。
2、干密度(ρd)和干重度(γd )
干密度是指岩石孔隙中的液体全部被蒸发后单位体积 岩石的质量,相应的重度即为干重度。
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
nl
Vnl 100% V
(4)总开空隙率(孔隙率)n0: 即岩石试件内开型空隙的 总体积(Vn0)占试件总体积(V)的百分比。
n0
Vn0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vnc)占 试件总体积(V)的百分比。
nc
Vnc 100% V
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与 岩石试件内固体矿物颗粒的体积(Vs)之比。
sin
2
(
1
3 )2 2
2
( 1
3 )2 2
2 岩石的强度特性
工程师对材料提出两个问题
1 最大承载力——许用应力[ ] ?
2 最大允许变形--许用应变[ ]?
本节讨论[ ]问题
强度:材料受力时抵抗破坏的能力。Strength of rock

《岩石力学》课件(完整版)-第三章岩石动力学基础

《岩石力学》课件(完整版)-第三章岩石动力学基础

能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。

最新岩块的物理力学性质PPT课件

最新岩块的物理力学性质PPT课件

(h/ D)
温度、湿度
含水量越高,强度越低;温度越高,强度越低。
端面条件端面效应



变 形
层理结构强度各向异性





二、单轴抗拉强度σt
1.定义:单向拉伸条件下,岩块能承受的最大拉应力,简称抗拉 强度。
2.意义:衡量岩体力学性质的重要指标

用来建立岩石强度判据,确定强度包络线

选择建筑石材不可缺少的参数
1~9 0.2~0.35
3)其他变形参数

•剪切模量(G)
G E 2 (1 )
块 的
•拉梅常数(λ)
E
( 1 )( 1 2 )


•体积模量(KV)
E K V 3 (1 2 )


•弹性抗力系数(K) K E

(1 ) R o


3. 峰值后岩块的变形特征
塑性 大的 岩石
几种岩石的吸水性指标值
二、岩石的软化性
岩石浸水饱和后强度降低的性质
软化系数(KR):岩石试件的饱和抗压强度(σcw)与干抗压 强度(σc)的比值
KR
cw c
岩石中含有较多亲水性和可溶性矿物,含大开空隙 较多时,岩石的软化性较强,软化系数较小。(软 化性与岩石矿物成分及空隙性有关)
KR>0.75,岩石软化性弱,抗冻性和抗风化能力强; KR<0.75,岩石软化性较强,工程地质性质较差。







性 质
三、岩石的蠕变性质
在外部条件不变的情况下,岩石的变形或应力随时间而变化
岩 的现象叫流变,主要包括蠕变、松弛。

岩石基本物理力学性质PPT课件

岩石基本物理力学性质PPT课件

岩石的变形指标
E
弹模
含或水E率t
d d
泊松比
含水 x率 y
剪切模量:G E
2(1 )
拉梅常数:
E
(1 )(1 2)
E
体积模量: Kv 3(1 2)
23
第243页/共36页
1.5 影响岩石力学性质的主要因素
• 围压 •水 • 温度 • 加载速度(应变率)
24
第254页/共36页
围压对岩石力学性质的影响
岩块 非连续面
联合作用
岩体特性
岩块研究 成果丰硕
理论背景 试验基础
采样 试验设备
2
第32页/共36页
课程章节调整
岩石物理力学性质 岩石的本构模型与强度理论 岩体力学性质 地应力 三大岩石工程--洞、坡、基
3
第43页/共36页
岩石的物理性质(Physical Properties of rocks)
砂岩
4~25
玄武岩 10~30 闪长岩 10~25
砾岩
2~15
石英岩 大理岩 白云岩
10~30 7~20 15~25
安山岩 片麻岩 板岩
10~20 5~20 7~15
灰岩
千枚岩、 片岩
5~20 1~10
Rt
1 25
~
1 4
Rc
13
第143页/共36页
岩石的抗剪强度
基本概念—正应力条件下施加剪切力,岩石能抵 抗的最大剪力
D点以后:破裂后阶段
典型的应力-应变曲线 第221页/共36页
21
岩石变形性质-体积变形
岩石的扩容
岩石在荷载作用下发生破坏之前产生体积膨胀大于体积压缩的非线性体积变形

岩体力学-岩体的力学特性.PPT

岩体力学-岩体的力学特性.PPT

Xe变化在0-1之间变化; Xe值愈大说明结构面的连续 性愈好; 当Xe=1时,结构面完全贯通。 当Xe=0时,岩体完整。
9
迹长:在岩体中沿结构面延展 迹线的长度。
岩体按切割度Xe的分类表 用结构面的迹长来描述和评 价结构面的连续性,并制订 了相应的分级标准 名称 切割度Xe
国际岩石力学学会(ISRM,1978)建议
III 级
IV 级
划分II类岩体结构 的基本依据 是岩体力学性质和 结构效应基础 坚硬结构面 破坏岩体的完整性, 与其他结构面形成 不同类型边坡破坏 方式。 16
结构面分级-4
级序 分级依据 地质类型 力学属性 影响岩体稳定性
分布随机,降低岩 块强度,是岩块力 学性质效应基础。 硬性结构面 若十分密集,又因 风化,形成松散介 质。
1.结构体的相对大小 2.结构体的块度 3.结构体的形状 板状结构体,柱状结构体,锥状结构体
19
2.2 岩体静力学特性:
包括剪切变形和抗剪强度,以及法向变形;以剪切试验为研 究手段。 不连续面在剪切试验,包括室内剪切试验和现场剪切试验, 试验装置和简图 填充物对结构面抗剪强度的影响 1 夹层厚度:随着厚度的增加迅速降低,与法向应力的 大小有关 2 矿物颗粒:随着颗粒直径增大而增大,超过30mm,变 化不大 3 含水量:含水量增大导致抗剪强度大幅度降低
K=n/L , d’ =1/K=L/n 线密度Kd:若取样线垂直结构面,则裂隙度被称为线密度。 间距d:同一组结构面法线方向上结构面平均距离。 Kd=n/L , d =1/Kd=L/n
11
多组结构面裂隙度K的计算: Ka=1/max =cosξa/da Kb=1/mbx =ቤተ መጻሕፍቲ ባይዱosξb/db · · · · · · , Kn=1/mnx =cosξn/dn K=Ka+Kb+· · · +Kn

《岩石力学性质》PPT课件

《岩石力学性质》PPT课件
▪ 但由于有了侧向压力,其加载上时的端部效应比单轴加载 时要轻微得多。
▪ 应力状态: σ1>σ2=σ3
精选ppt
26
▪ 三轴压缩试验加载示意图
▪ 真三轴
▪ σ1>σ2> σ3
▪ 假三轴
▪ σ1>σ2=σ3
精选ppt
27
▪ 3)假三轴试验装置图:
▪ 由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
线与σ轴夹角为内摩擦角,外切线及其延长线与τ
轴相交之截距即为C。
▪ 实践中采用第一种方法的人数多。
精选ppt
31
精选ppt
20
▪ 5) Hoek直剪仪试验装置
精选ppt
21
▪ 6)角模压剪试验及受力分析示意图
▪ 在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
精选ppt
22
▪ 7)限制性剪切强度试验结果及其分析
▪ ①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。
▪ a.直线形:τ轴的截距称为岩石的粘结力(或称内
聚力),记为C(MPa),与σ轴的夹角称为岩
石的内摩擦角,记为φ(度)。
▪ b.曲线形:
▪ ①一种方法是将包络线和τ轴的截距定为C,将包
络线与τ轴相交点的包络线外切线与σ轴夹角定为
内摩擦角。
▪ ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切
▪ 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。

第3章岩石变形物理学(3)-岩石力学性质

第3章岩石变形物理学(3)-岩石力学性质

地壳岩石严格讲也是一种粘弹性体,只不过不像蛋 清那样明显,这主要是它的流动需要在长时间载荷 下表现出来。对于固体或流体而言,温度越高,粘 度越低,反映易流动性越大。
地壳及地幔岩石具有非常缓慢的流动性。因而粘度 是衡量地球动力学的一个重要参数。
人们把物体具有的这些力学性质概括为物质的流变 性(rheological properties),并形成一门新兴学科 -流变学(rheology)。流变学是研究固体物质流 动的科学。
岩石力学性质-是指在应力和应变作用下,岩石发 生塑性变形(褶皱)或脆性变形(破裂)的条件;
岩石力学性质是约束岩石变形和构造几何特征的重 要条件。例如,同样的压应力作用在不同岩层的力 学表象明显不同:在柔性岩层中形成褶皱构造;在 相对硬岩层中形成断裂构造;在软硬相间岩层中形 成香肠构造
影响岩石力学性质的因素
X是活化了的化合物。 水弱化作用结果表现: 产生大量扩张应变,诱发裂纹尖端高应力; Si-O共价键被H-O代替,加速岩石塑性变形; H-O键加速热力学的反应; H2O含量增加,降低岩石熔点,加速熔体形成;
时间影响因素(5)
与实验室岩石力学研究不同,地质条件的岩石变形 时间很长,一个造山带变形要经历几百万年才完成。
岩石变形机制通常有三种: (1)碎裂作用(cataclasis) (2)晶内塑性(intracrystalline plasticity) (3)晶内扩散流动(flow by diffusive mass transfer)
脆-韧性转化-从宏观表象上描述 脆-塑性转化-从微观机制上描述 脆-塑(韧)性转换域是一个十分重要的
应力
理想粘性材料的力学行为
应力
σy
理想塑性材料的力学行为
弹塑性变形—指物体同时具有弹性和塑性的性能。 在弹塑性变形中,有一部分是弹性,其余部分为 塑性变形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分维数
§3.5 岩体的变形性质
法向变形特征 岩体的变形 剪切变形特征 各向异性变形特性
(一)法向变形特征:
承压板法、 1. 法向变形试验: 钻孔变形法、 狭缝法、
1)承压板法
选具有代表性的试验地点 清除浮石,平整岩面 逐级一次循环法加压 岩体变形模量Em和弹性模量Eme公式:
2 pD(1 m ) Em (MPa)
缺点:涉及的岩体体积小,代表性差。
厚壁圆筒理论
3)狭缝法:
假设在岩体中取一平直断 面,总截面积为A,其中 被节理面切割的面积为a; 则切割度为
Xe
a A
多处不连续切割叠加:
a
a
i 1
n
i
§3.4 结构面的力学性质 (一)法向变形
变形 性质
法向变形
切向变形
强度性质
1.变形特性
在法向荷载作用下,结构面间隙呈非线性减 小,应力与法向变形呈指数关系。(原因)
成因及类型
构造结构面
节理
劈理
次生结构面
§3.3.2结构面的自然特征
薄膜充填(2mm以下)
数十厘米至数米)
平直型 2. 几何形态特征
凹凸度
(量化指标)
波浪型 锯齿型 台阶型
起伏度(起伏角i) 粗糙度(五级)
产状(即方位)及其变化 延展性 3. 空间分布特征
c tg
i
影响抗剪强度的三个基本因素:

法向力 σn 粗糙度 JRC 结构面强度 JCS
结构面抗剪强度公式(Barton和choubey, 1977):
JCS n t an JRC lg b n
粗糙度 JRC (目测)
Eme
(J. Boussineq) 2 pD(1 m ) (MPa) e
p-承受板单位面积上的压力(MPa); D-承压板直径或边长(cm); ∆、 ∆ e-相应于p下的岩体总变形和弹性变形 (cm); ω-与承压板形状与刚度有关的系数,对圆形 板=0.785;方形板=0.886; μm-岩体的泊松比。
K n0 δ max σ n K n K n0 K δ n0 max
2
(Goodman,1974)
Kn0-结构面的初始刚度 Kn-法向变形刚度
趋势:σn ↑ ,Kn ↑
当荷载去除时,将引起明显的后滞和非弹 性效应。
2. 闭合变形量计算:
Goodman方法: (1)基本假设
2)钻孔变形法
岩体的变形模量(Em) 计算公式:
Em dp (1 m ) U-径向变形 U μ -岩体的泊松比;
m
优点(相对于承压板法来说):


对岩体扰动较小; 可在地下水位以下和相当深的部位进行; 试验方向基本不受限制,试验压力大; 可以同时测量几个方向的变形,便于研究 各向异性;
第三章 岩体的力学特性

本章内容 3.1 概述 3.2 岩体结构基本类型; 3.3 岩体的结构面及其自然特征; 3.4 结构面的力学性质 3.5 岩体的变形性质 3.6 岩体的强度特性 3.7 岩体的水力学性质 3.8 岩体质量评价及其分类

基本要求
了解岩体结构的基本类型,理解岩体结构面特征; 掌握结构面的力学性质及岩体的变形性质; 理解岩体的强度特性,了解岩体的水力学性质; 掌握岩体质量评价及其分类方法;
通常有两种形式:A)粗糙(或非充填)结构面剪切 变形曲线;B)平坦(或有充填物)的结构面
Kt
t
区别及原因
见下页力学模型
法向力不足够大 沿凸台斜面滑动 剪胀(或扩容)
法向力足够大 沿凸台剪断 不产生明显剪胀
结构面的剪切变形: 与岩石强度、结构面粗糙性和法向力有关
(三)抗剪强度
服从库仑准则:
按裂隙度分类
K=100~1000/m 糜棱节理
b.两组节理
K K1 K 2 1 1 cos a cosb ma mb da db
ma: 沿取样线节理平均间距; da: 节理垂直间距; c.多组节理
K
i 1
n
cos i di
两组节理的裂隙度计算图
(2)切割度 Xe:节理在岩体内的贯通程度。
设取样线长度为l ,在l上 出现的节理条数为n,则
实例: k=4/20=0.2/m d=1/k=5m
K n

20m
l
节理之间的平均间距为 l 1 d n K
按间距分类
d>180cm 整体结构 d=30~180 块状结构 d<30 破裂结构 d<6.5 极破裂结构 K=0~1/m K=1~10/m K=10~100/m 疏节理 密节理 很密节理
①节理无抗拉强度 ② 极限闭合量δmax <e(节理的厚度)
(2)状态方程
n 0 n A( )t 0 max n
0
-原始应力,由测量时的初始条件决定;
δn, δmax-结构面闭合量,最大闭合量;
A, t-回归参数,与结构面几何特征、岩石力学性质有关。
(二)节理的切向变形
影响岩体力学性质的基本因素: 结构体(岩石)力学性质、结构面力学性质、岩体 结构力学效应和环境因素(特别是水和地应力的作用)
§3.2岩体结构的基本类型 (地质学、复习、了解)
§3.3岩体中的结构面及自然特征
§3.3.1结构面类型(自学、了解、提问) 火成结构面
原生结构面
沉积结构面
变质结构面 断层
第三章 岩体的力学性质
主要内容





第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
概述 岩体结构的基本类型 岩体的结构面及其自然特征 结构面的力学性质 岩体的变形性质 岩体的强度特性 岩体的水力学性质 岩体质量评价及其分类
§3.1
概述
岩体=结构面(弱面)+结构体(岩石块体) 结构面:断层、褶皱、节理……统称
密集程度
组合关系
结构面的产状及其变化:结构面的走向与倾向及其变化 结构面的延展性:结构面在某一方向上的连续性或结构 面连续段长短的程度。 分为非贯通性的、半贯通性及贯通性的结构面
结构面的密集程度
裂隙度 K
切割度 Xe
(1)裂隙度K :同一组结构面沿法线方向单位长度上的节理数量
a.单组节理(具有同一走向)
相关文档
最新文档