简述晶闸管的导通条件和关断条件

合集下载

已经导通的晶闸管可被关断的条件

已经导通的晶闸管可被关断的条件

已经导通的晶闸管可被关断的条件
晶闸管可被关断的条件包括:
1. 控制端电流降至截止电流以下:当控制端电流达到截止电流时,晶闸管进入关断状态。

2. 断电或去除控制脉冲:当控制脉冲消失或者控制端断电时,晶闸管进入关断状态。

3. 反向电压超过封锁电压:当晶闸管的反向电压超过其封锁电压时,晶闸管进入关断状态。

需要注意的是,晶闸管在关断状态下,并不完全断开电路,而是存在一个小的封锁电流流过,因此在某些应用中可能需要添加其他措施来确保晶闸管完全关断。

电力电子复习知识点

电力电子复习知识点

电力电子复习资料一、简答题1、晶闸管导通和关断的条件是什么?解:晶闸管导通条件是:1)晶闸管阳极和阴极之间施加正向阳极电压;2)晶闸管门极和阴极之间必须加上适当的正向脉冲电压和电流。

在晶闸管导通后,门极就失去控制作用,欲使其关断,只需将流过晶闸管的电流减小到其维持电流以下,可采用阳极加反向电压、减小阳极电压或增大回路阻抗等方式。

2、有源逆变实现的条件是什么?(1)晶闸管的控制角大于90度,使整流器输出电压Ud为负(2)整流器直流侧有直流电动势,其极性必须和晶闸管导通方向一致,其幅值应大于变流器直流侧的平均电压3、什么是逆变失败,造成逆变失败的原因有哪些?如何防止逆变失败?4、电压型逆变器与电流型逆变器各有什么样的特点?答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。

③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。

直流侧电流基本无脉动,直流回路呈现高阻抗。

②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。

而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。

③当交流侧为阻感负载时需要提供无功功率,直流侧电感起缓冲无功能量的作用。

因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。

5、换流方式有哪几种?分别用于什么器件?6、画出GTO,GTR ,IGBT,MOSFET 四种电力电子器件的符号并标注各引脚名称7、单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的,两者的区别?答:区别在于是:1)、单相全波可控整流电路中变压器的二次绕组带中心抽头,结构复杂;2)、单相全波可控整流电路中只用2个晶闸管,比单相全控桥式可控整流电路少数民族个,相应地,晶闸管的门极驱动电路也少数民族个;但是在单相全波可控整流电路中,晶闸管承受的最大电压为22U 2,是单相全控桥式整流电路的确倍;3)、单相全波可控整流电路中,导电回路只含1个晶闸管,比单相桥少1个,因而也少了一次管压降。

晶闸管工作原理

晶闸管工作原理

晶闸管工作原理晶闸管(Thyristor)是一种具有双向导通特性的电子器件,常用于电力控制和电能变换领域。

它由四层半导体材料构成,包括两个PN结,其中一个是P型材料,另一个是N型材料。

晶闸管的工作原理可以分为四个阶段:关断状态、触发状态、导通状态和关断状态。

1. 关断状态:当晶闸管未被触发时,处于关断状态。

在这种状态下,PN结两侧的电压达到了反向击穿电压,使晶闸管处于高阻态。

此时,惟独当外部触发信号到达时,晶闸管才会进入下一个阶段。

2. 触发状态:当外部触发信号到达时,晶闸管进入触发状态。

触发信号可以是电压脉冲、电流脉冲或者光信号等。

在触发状态下,晶闸管的PN结会发生正反馈,使得晶闸管内部的电流增加。

当电流增加到一定程度时,晶闸管会进入下一个阶段。

3. 导通状态:一旦晶闸管被触发,它就会进入导通状态。

在导通状态下,晶闸管的PN结两侧的电压降低到一个很低的值,使得晶闸管能够承受较大的电流。

晶闸管的导通状态会向来保持,直到电流下降到一个很低的水平或者外部的关断信号到达。

4. 关断状态:当电流下降到一个很低的水平或者外部的关断信号到达时,晶闸管会进入关断状态。

在关断状态下,晶闸管的PN结两侧的电压恢复到初始的高阻值,晶闸管再也不导通。

晶闸管的工作原理可以通过控制触发信号的时机和持续时间来实现电力控制和电能变换。

通过改变触发信号的时机,可以控制晶闸管的导通时间,从而改变电路中的电流波形。

通过改变触发信号的持续时间,可以控制晶闸管的平均电流值,从而实现对电路的功率控制。

总结:晶闸管的工作原理是基于PN结的正反馈效应,通过触发信号的控制来实现导通和关断。

它在电力控制和电能变换领域有着广泛的应用,如交流调压、交流机电控制、逆变器等。

了解晶闸管的工作原理对于理解电力电子设备的工作原理和应用具有重要意义。

《电力电子技术(第二版)》课后习题及解答

《电力电子技术(第二版)》课后习题及解答

《电力电子技术》习题及解答第1章思考题与习题1.1晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定?答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。

导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压U A决定。

1.2晶闸管的关断条件是什么?如何实现?晶闸管处于阻断状态时其两端的电压大小由什么决定?答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流I A减小,I A下降到维持电流I H以下时,晶闸管内部建立的正反馈无法进行。

进而实现晶闸管的关断,其两端电压大小由电源电压U A决定。

1.3温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化?答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流I H会减小,正向转折电压和反向击穿电压随温度升高而减小。

1.4晶闸管的非正常导通方式有哪几种?答:非正常导通方式有:(1) I g=0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt 过高;(3) 结温过高。

1.5请简述晶闸管的关断时间定义。

答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时间。

即gr rr q t t t +=。

1.6试说明晶闸管有哪些派生器件?答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。

1.7请简述光控晶闸管的有关特征。

答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,在光的照射下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。

主要用于高压大功率场合。

1.8型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在图题1.8所示电路中是否合理,为什么?(暂不考虑电压电流裕量)图题1.8答:(a )因为H A I mA K V I <=Ω=250100,所以不合理。

电力电子技术习题解答

电力电子技术习题解答

《电力电子技术》习题及解答1晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定?答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。

导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压U A决定。

2晶闸管的关断条件是什么?如何实现?晶闸管处于阻断状态时其两端的电压大小由什么决定?答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流I A减小,I A下降到维持电流I H以下时,晶闸管内部建立的正反馈无法进行。

进而实现晶闸管的关断,其两端电压大小由电源电压U A决定。

3温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化?答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流I H会减小,正向转折电压和反向击穿电压随温度升高而减小。

4晶闸管的非正常导通方式有哪几种?答:非正常导通方式有:(1) I g=0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt过高;(3) 结温过高。

5请简述晶闸管的关断时间定义。

答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时间。

即gr rr q t t t +=。

6试说明晶闸管有哪些派生器件?答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。

7型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在图题1.8所示电路中是否合理,为什么?(暂不考虑电压电流裕量)图题1.8答:(a )因为H A I mA K V I <=Ω=250100,所以不合理。

(b) 因为A V I A 2010200=Ω=, KP100的电流额定值为100A,裕量达5倍,太大了。

(c )因为A V I A 1501150=Ω=,大于额定值,所以不合理。

电力电子简答题

电力电子简答题

1.简述晶闸管导通的条件与关断条件.答:在晶闸管阳极——阴极之间加正向电压,门极也加正向电压,产生足够的门极电流Ig,则晶闸管导通,其导通过程叫触发。

关断条件:使流过晶闸管的阳极电流小于维持电流。

实现关断的方式:1〉减小阳极电压; 2>增大负载阻抗。

3〉加反向电压2.述实现有源逆变的基本条件,并指出至少两种引起有源逆变失败的原因(7分):答:①直流侧要有电动势,其极性须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压; ②要求晶闸管的控制角α>π/2,使Ud为负值,电路工作在逆变状态原因:当出现触发脉冲丢失、晶闸管损坏或快速熔断器烧断、电源缺相等原因都会发生逆变失败。

当逆变角太小时,也会发生逆变失败.不能实现有源逆变的电路有:半控桥电路,带续流二极管的电路。

3.什么是逆变失败?失败的后果?形成失败的原因答:逆变失败指的是:逆变过程中因某种原因使换流失败,该关断的器件未关断,该导通的器件未导通。

从而使逆变桥进入整流状态,造成两电源顺向联接,形成短路.逆变失败后果是严重的,会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件.产生逆变失败的原因:一是逆变角太小;二是出现触发脉冲丢失;三是主电路器件损坏;四是电源缺相等。

在电路结构上,电感性负载电路,每个开关管必须反向并联续流二级管17、简述对触发电路的三点要求。

答:1)触发电路输出的脉冲应具有足够大的功率;2)触发电路必须满足主电路的移相要求;3)触发电路必须与主电路保持同步.18。

对于正弦脉冲宽度调制(SPWM),什么是调制信号?什么是载波信号?何谓调制比?答:在正弦脉冲宽度调制(SPWM)中,把希望输出的波形称作调制信号;而对它进行调制的三角波或锯齿波称为载波信号;载波频率fs与调制信号频率f1之比,N= fs / f1称为载波比。

21.试说明SPWM控制的基本原理.答:PWM控制技术是控制半导体开关元件的导通和关断时间比,即调节脉冲宽度的或周期来控制输出电压的一种控制技术。

电力电子简答

电力电子简答

答:电力电子变流技术现在一般都应用在可控整流、有源逆变、交流调压、逆变器(变频器)、直流斩波和无触点功率静态开关等几个方面。

1、晶闸管的正常导通条件是什么?晶闸管的关断条件是什么?如何实现?答:当晶闸管阳极上加有正向电压的同时,在门极上施加适当的触发电压,晶闸管就正常导通;当晶闸管的阳极电流小于维持电流时,就关断。

只要让加在晶闸管两端的阳极电压减小到零或让其反向,就可以让晶闸管关断。

2、对晶闸管的触发电路有哪些要求?答:为了让晶闸管变流器准确无误地工作要求触发电路送出的触发信号应有足够大的电压和功率;门极正向偏压愈小愈好;触发脉冲的前沿要陡、宽度应满足要求;要能满足主电路移相范围的要求;触发脉冲必须与晶闸管的阳极电压取得同步。

3、正确使用晶闸管应该注意哪些事项?答:由于晶闸管的过电流、过电压承受能力比一般电机电器产品要小的多,使用中除了要采取必要的过电流、过电压等保护措施外,在选择晶闸管额定电压、电流时还应留有足够的安全余量。

另外,使用中的晶闸管时还应严格遵守规定要求。

此外,还要定期对设备进行维护,如清除灰尘、拧紧接触螺钉等。

严禁用兆欧表检查晶闸管的绝缘情况。

4、晶闸管整流电路中的脉冲变压器有什么作用?答:在晶闸管的触发电路采用脉冲变压器输出,可降低脉冲电压,增大输出的触发电流,还可以使触发电路与主电路在电气上隔离,既安全又可防止干扰,而且还可以通过脉冲变压器多个二次绕组进行脉冲分配,达到同时触发多个晶闸管的目地。

5、一般在电路中采用哪些措施来防止晶闸管产生误触发?答:为了防止晶闸管误导通,①晶闸管门极回路的导线应采用金属屏蔽线,而且金属屏蔽层应接“地”;②控制电路的走线应远离主电路,同时尽可能避开会产生干扰的器件;③触发电路的电源应采用静电屏蔽变压器。

同步变压器也应采用有静电屏蔽的,必要时在同步电压输入端加阻容滤波移相环节,以消除电网高频干扰;④应选用触发电流稍大的晶闸管;⑤在晶闸管的门极与阴极之间并接0.01μF~0.1μF的小电容,可以有效地吸收高频干扰;⑥采用触发电流大的晶闸管。

晶闸管开关电路原理

晶闸管开关电路原理

晶闸管开关电路原理
晶闸管开关电路的原理是利用晶闸管的特性实现开关功能。

晶闸管是一种具有双向导电性的电子器件,通常由四个层状结构组成。

在正常工作状态下,晶闸管处于关断状态,两个 PN 结之间的
耗尽层阻止电流流动。

当接入一个适当的阳极电压时,晶闸管的 PN 结会极化,进入导通状态。

要使晶闸管导通,需要满足以下条件:
1. 阳极电压(Vak)达到导通电压(Vgt):晶闸管的导通电
压是指当晶闸管处于关断状态时,需要施加在阳极和阴极之间的电压,使其开始导通。

2. 电压施加在晶闸管的正向极性:当阳极电压施加在阴极上时,使得结 J2-J3 处于正向偏置状态,从而形成导电通道。

3. 施加一个触发脉冲:晶闸管的触发是通过施加一个电压脉冲在门极(G)和阴极(K)之间实现的。

触发脉冲可以是一个
正脉冲或者是从阴极向门极施加一个负脉冲。

当晶闸管导通后,只要阳极电流处于正常工作区间,晶闸管将一直保持导通状态。

要使晶闸管停止导通,需通过强制断开电路或者降低阳极电流到零来实现。

晶闸管开关电路可以用于控制高功率负载的开关,如大功率马达、发电机等。

其主要优点是控制简单、可靠性高,缺点则是开关速度较慢,导通电压较高,仅适用于交流电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述晶闸管的导通条件和关断条件晶闸管是一种电子元件,具有双向控制功率的能力。

它可以实现从关断到导通的转换,并能在导通状态下持续传导电流。

晶闸管的导通条件和关断条件是晶闸管正常工作需要满足的条件。

晶闸管的导通条件:
1. Anode-Positive Triggering(正向触发):晶闸管的阳极端口与附加触发电路相连,并且触发信号的电压超过正向触发电压(通常为低电压)。

当此条件满足时,晶闸管就可以导通了。

2. Anode-Gate Positive Triggering(阳极-栅极正向触发):阳极端口和栅极端口同时从正向电压触发,晶闸管将导通。

这种触发方式需要较高的触发电压。

3. Cathode-Positive Triggering(阴极端口正向触发):阴极端口与触发电路相连,触发电压向阴极电压的方向变化。

当触发电压超过正向触发电压时,晶闸管就导通了。

4. Dv/Dt Triggering(斜率触发):这是一种特殊的触发方式,它通过改变晶闸管两端的电压斜率来触发导通。

当电压的变化率超过一定阈值时,晶闸管会导通。

这种触发方式通常用于高压应用。

晶闸管的关断条件:
1. Anode-Cathode Current下降到维持电流(Hold Current)以下:晶闸管需要维持一定的电流流过,以保持导通状态。

当通过晶闸管的电流下降到维持电流以下时,晶闸管会关断。

2. Anode-Cathode Voltage(阳极-阴极电压)下降到维持电压以下:晶闸管需要维持一定的电压在其两端,以保持导通状态。

当电压下降到维持电压以下时,晶闸管会关断。

这是最常见的关断条件。

3. Gate-Cathode Voltage(栅极-阴极电压)下降到零:当栅极与阴极之间的电压下降到零时,晶闸管会关断。

需要注意的是,晶闸管的关断不像导通那样是瞬时的,需要一定的时间来完成关断过程。

这是由于电荷在晶闸管中的累积和延迟效应所引起的。

总结起来,晶闸管的导通条件是触发信号的电压超过一定的阈值,而关断条件是通过控制电压或电流下降到一定的阈值。

这些条件的满
足与否将直接影响晶闸管的正常工作和电流的传导。

相关文档
最新文档