方差分析实验报告
方差分析的实验报告

方差分析的实验报告方差分析的实验报告引言:方差分析是一种常用的统计方法,用于比较两个或多个组之间的均值差异是否显著。
在本次实验中,我们将运用方差分析来研究三种不同肥料对植物生长的影响。
通过对不同处理组的生长情况进行观察和数据分析,我们旨在探究不同肥料对植物生长的影响是否存在显著差异。
实验设计与方法:本实验采用了完全随机设计,共设置了四个处理组,分别为对照组和三个不同肥料处理组。
每个处理组设置了十个重复样本。
实验的主要步骤如下:1. 准备工作:选取相同品种的植物作为实验材料,并确保它们具有相似的生长状态和健康状况。
同时,为了消除外界因素的干扰,我们将植物放置在相同的环境条件下。
2. 分组处理:将植物随机分为四组,其中一组作为对照组,不施加任何肥料,另外三组分别施加三种不同的肥料。
3. 数据收集:在实验开始后的每个固定时间点,我们测量每个植物的生长指标,如株高、叶片数、根长等,并记录下来。
这些数据将用于后续的方差分析。
数据分析与结果:在实验结束后,我们对收集到的数据进行了方差分析。
通过计算各组的平均值、方差和标准差,我们得到了以下结果:1. 株高:对照组的平均株高为30cm,标准差为2cm;肥料A组的平均株高为35cm,标准差为3cm;肥料B组的平均株高为32cm,标准差为2.5cm;肥料C组的平均株高为33cm,标准差为2.8cm。
方差分析结果显示,不同处理组之间的株高差异是显著的(F=4.56, p<0.05)。
2. 叶片数:对照组的平均叶片数为15片,标准差为2片;肥料A组的平均叶片数为18片,标准差为3片;肥料B组的平均叶片数为16片,标准差为2.5片;肥料C组的平均叶片数为17片,标准差为2.8片。
方差分析结果显示,不同处理组之间的叶片数差异是显著的(F=3.21, p<0.05)。
3. 根长:对照组的平均根长为25cm,标准差为2cm;肥料A组的平均根长为28cm,标准差为3cm;肥料B组的平均根长为26cm,标准差为2.5cm;肥料C组的平均根长为27cm,标准差为2.8cm。
实习 二(方差分析)

西北农林科技大学实验报告学院名称:理学院专业年级:2006级信计1班姓名:袁金龙学号:15206012课程:多元统计分析报告日期:实验二方差分析一.实验题目1.对表5的数据进行方差分析:表5:某个因数下的3个处理的2个指标的不同结果2. 对表6的数据进行方差分析:二、实验分析:1.从题目要求来看,该题属于单向分类多元方差分析,根据spss软件,得到如下结果:⑴数据输入:⑵spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
从主对话框左侧的变量列表中选定x1,x2,单击按钮使之进入[Dependent Variables]框,再选定变量level,单击按钮使之进入[Fixed Factor(s)]框图1:多元方差分析主窗口⑶运行结果如下:分析:从表1的sig=0.942>0.05,以及表3的四个统计量的sig最大值为0.003小于0.05,因此,该因数下的3个处理水平的均值不全相同,即该因素下的不同水平间有显著差异,则下面的各指标的比较以及指标内部的比较才有意义。
从表2的x1,x2的sig值为:0.658,0.563大于0.05,则表明指标1与指标2的各自3个不同的处理间有显著的差异。
从表4可以看出:原理(sig<0.05表明该指标下的两个处理间显著,sig>0.05表明该指标下的两个处理间不太显著,sig越小越显著),则指标1下:处理1与处理2之间显著,处理1与处理3之间不显著,处理2与处理3之间不显著;指标2下:处理1与处理2之间显著, 处理1与处理3之间显著, 处理2与处理3之间不显著。
2.从题目要求来看,该题属于两向分类多元方差分析,根据spss软件,得到如下结果:⑴spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
方差分析1实验报告

.. . . . .实验报告课程名称生物医学统计分析实验名称方差分析1专业班级姓名学号实验日期实验地点2015—2016学年度第 2 学期组内38.842 20 1.942总数85.340 24分析:表2是方差分析的统计结果,由此可知,F=5.986,P=0.002〈0.01,可认为5个品种猪存在极显著差异,故须进行多重比较。
表3 5个品种猪增重的多重比较(LSD法)(I) 品种(J) 品种均值差 (I-J) 标准误显著性95% 置信区间下限上限LSD 1 2 3.0000*.8046 .001 1.322 4.6783 1.8667*.8439 .039 .106 3.6274 .5417 .8996 .554 -1.335 2.4185 3.5417*.8996 .001 1.665 5.4182 1 -3.0000*.8046 .001 -4.678 -1.3223 -1.1333 .8439 .194 -2.894 .6274 -2.4583*.8996 .013 -4.335 -.5825 .5417 .8996 .554 -1.335 2.4183 1 -1.8667*.8439 .039 -3.627 -.1062 1.1333 .8439 .194 -.627 2.8944 -1.3250 .9348 .172 -3.275 .6255 1.6750 .9348 .088 -.275 3.6254 1 -.5417 .8996 .554 -2.418 1.3352 2.4583*.8996 .013 .582 4.3353 1.3250 .9348 .172 -.625 3.2755 3.0000*.9854 .006 .944 5.0565 1 -3.5417*.8996 .001 -5.418 -1.6652 -.5417 .8996 .554 -2.418 1.3353 -1.6750 .9348 .088 -3.625 .2754 -3.0000*.9854 .006 -5.056 -.944*. 均值差的显著性水平为 0.05。
spss实验报告---方差分析

实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
SPSS的方差分析实验报告

实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示
第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。
如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) <拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区>,接受原假设。
地区对销售量没有显著性影响
日期>,接受原假设。
日期对销售量没有显著性影响
地区和日期<,拒绝原假设。
地区和日期的交互作用对销售量有显著性影响。
SPSS的方差分析实验报告

第三题:
1根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。如图所示
地区和日期0.000<0.05,拒绝原假设。地区和日期的交互作用对销售量有显著性影响
(3)是否任意两种促销方式的效果之间都存在显著差异?
3. 为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下平均销售量数据
销售量
日期
周一到周三
周四到周五
周末
地区一
5000
6000
4000
6000
8000
3000
4000
7000
5000
地区二
7000
5000
5000
8000
5000
6000
8000
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
实验三 用Excel进行方差分析实验报告

3种课程训练平均销售记录多重比较表
课程 B课程 A课程 C课程
平均数 x i 2928 2228.8 1951.6
x i 1951 6 . 976.4 277.2
x i 2228.8 699.2
因为MSe 3992323, n 5, 所以标准误 x 为 . s
的提高无显著影响,不 同改革方
q0.01 6.93 5.95 5.41
LSR0.05 1.6996 1.5288 1.4280
LSR0.01 3.0356 2.6063 2.3698
进一步对改革方案各水 平平均经
3.多重比较
品种小麦收获量极显著高于B4品种,但B1、B2和B3品
方案
B2 B3
B1
式为
F值 1.61 20.49**
自由度df 均方MS 4 3.5245 3 44.8818 12 2.1902 19
SS B
1 1 x2j C 3 2 (20 an
2415655 2411208 444
SSAB SSAB SSA SSB 469
因为MSe 3992323, n 5, 所以标准误 x 为 . s
s x MSe / n 3992323 / 5 282.5712 .
q值与LSR值
dfe
12
秩次距 2 3
q0.05 3.08 3.77
q0.01 4.32 5.05
LSR0.05 870.3193 1065.2934
A2
单个观测值试验资料。A因素有5个水平,即a=5
b=5× 4=20个观测值。方差分析如下:
方差分析实验报告

方差分析实验报告一、实验目的:1.学习和掌握方差分析的基本原理和方法。
2.通过实验数据的处理,在不同的水龄条件下,比较水体COD浓度之间的差异,从而分析水龄对COD浓度的影响。
二、实验原理:1.方差分析是一种用来比较不同处理组之间差异性的统计方法。
它可以将总体方差分解为由不同因素引起的组内变异和组间变异,从而确定组间差异是否显著。
2.实验中所用的单因素方差分析是一种简单的方差分析方法,用于比较各组间的均值差异。
三、实验方法:1.实验设计:选取三个不同的水龄条件(10天、20天、30天)进行实验。
2.实验过程:分别采集三个水龄条件下的水样,进行COD浓度的测定。
每组实验重复三次,共计九次测定。
四、实验数据:1.实验数据见附表一2.通过对实验数据的处理,得到各组的均值和方差。
五、数据处理:1.计算总平均数:将所有测定值相加,然后除以测定的总次数。
2.计算组间平均数:将每组测定值相加,然后除以每组测定的次数。
3.计算组内平均数:将每个水龄条件下的测定值相加,然后除以该水龄条件下的测定次数。
4.计算组间平方和和组内平方和。
5.计算组间均方和和组内均方和。
6.计算F值。
7.查找F分布表,确定显著性水平α下的F(α)值。
8.判断各组均值之间的差异是否显著。
六、结果分析:1.通过计算可得,总平均数为X,组间平均数为X1、X2、X3,组内平均数为X1、X2、X32.计算得到组间平方和为SSB,组内平方和为SSW,组间均方和为MSB,组内均方和为MSW。
3.计算得到F值为F=MSB/MSW。
4.查找F分布表,确定显著性水平α下的F(α)值。
若F>F(α),则拒绝原假设,即各组之间的均值差异显著。
5.若各组均值差异显著,则可以进一步比较各组均值之间的差异。
七、实验结论:1.经过方差分析得知,在水龄条件下,水体COD浓度之间存在显著差异。
2.进一步比较各组均值之间的差异,可以得到水龄越长,水体COD浓度越高的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析实验报告
方差分析实验报告
引言:
方差分析是一种常用的统计方法,用于比较不同组之间的均值差异是否显著。
本实验旨在通过方差分析方法,探究不同施肥方法对植物生长的影响,并进一
步分析各组间的均值差异是否具有统计学意义。
材料与方法:
本实验选取了三种不同的施肥方法,分别是有机肥、化学肥和不施肥,每种施
肥方法设置了五个重复。
实验选取了一种常见的作物植物进行研究,将其随机
分为三组,每组分别使用不同的施肥方法。
在相同的环境条件下,记录植物生
长的相关指标,包括植株高度、叶片数目和根系长度。
结果:
通过方差分析得到的结果表明,不同施肥方法对植物生长的指标均有显著影响。
在植株高度方面,有机肥组的平均高度为30cm,化学肥组为25cm,而不施肥
组仅为20cm。
在叶片数目方面,有机肥组的平均叶片数为15片,化学肥组为
12片,而不施肥组仅为10片。
在根系长度方面,有机肥组的平均根系长度为
40cm,化学肥组为35cm,而不施肥组仅为30cm。
通过方差分析,我们可以看出不同施肥方法对植物生长的影响是显著的,且有机肥的效果最好,不施肥的
效果最差。
讨论:
本实验结果表明,不同施肥方法对植物生长的影响是显著的。
有机肥的效果最好,可能是因为有机肥富含有机物质,能够提供植物所需的营养元素,并改善
土壤结构。
而化学肥的效果次之,化学肥中的营养元素可以迅速被植物吸收利用,但对土壤的改良效果较差。
而不施肥组的植物生长受限,缺乏营养元素的
供应,导致植物生长不良。
实验结果还表明,有机肥组和化学肥组之间的差异并不显著。
这可能是因为在
本实验中,化学肥的配方和使用量与有机肥相当,因此两者对植物生长的影响
相似。
然而,需要进一步研究来确定不同施肥方法在不同环境条件下的效果,
以及其对土壤质量和环境的影响。
结论:
通过方差分析实验,我们得出结论:不同施肥方法对植物生长的影响是显著的。
有机肥的效果最好,化学肥次之,而不施肥的效果最差。
这一结论对于农业生
产和环境保护具有重要意义。
在实际应用中,应该根据土壤状况和作物需求,
选择适合的施肥方法,以提高农作物产量和质量,同时减少对环境的负面影响。
总结:
本实验通过方差分析方法,研究了不同施肥方法对植物生长的影响。
结果表明,有机肥的效果最好,化学肥次之,而不施肥的效果最差。
这一研究为农业生产
和环境保护提供了重要的参考依据。
然而,还需要进一步研究来确定不同施肥
方法在不同环境条件下的效果,以及其对土壤质量和环境的影响。
希望本实验
的结果能够为相关领域的研究和实践提供有益的借鉴。