初一数学有理数练习题(附答案)

合集下载

七年级数学《有理数》测试题及答案

七年级数学《有理数》测试题及答案

七年级数学《有理数》测试题及答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是( )A .1B .0C .2D .﹣32.2的相反数是( )A .B .C .﹣2D .23.﹣5的绝对值是( )A .5B .﹣5C .D .﹣4.﹣2的倒数是( )A .2B .﹣2C .D .﹣5.下列说法正确的是( )A .带正号的数是正数,带负号的数是负数B .一个数的相反数,不是正数,就是负数C .倒数等于本身的数有2个D .零除以任何数等于零6.在有理数中,绝对值等于它本身的数有( )A .1个B .2个C .3个D .无穷多个7.比﹣2大3的数是( )A .1B .﹣1C .﹣5D .﹣68.下列算式正确的是( )A .3﹣(﹣3)=6B .﹣(﹣3)=﹣|﹣3|C .(﹣3)2=﹣6D .﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A .0.136×1012元B .1.36×1012元C .1.36×1011元D .13.6×1011元10.近似数2.7×103是精确到( )A .十分位B .个位C .百位D .千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a= .13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b= .16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.﹣8﹣6+22﹣919.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣ +﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3| C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位 C.百位 D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a= ±4 .【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1 .【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20 .【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣ +﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣ +﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

初一有理数试题及答案

初一有理数试题及答案

初一有理数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 计算下列哪个选项的结果是负数?A. 3 + 2B. -3 - 2C. 4 × 2D. -4 ÷ 2答案:B3. 绝对值是5的数是?A. 5B. -5C. 5和-5D. 以上都不是答案:C4. 有理数-2,-1,0,1,2中,最大的数是?A. -2B. -1C. 0D. 2答案:D5. 下列哪个选项表示的是相反数?A. 5和-5B. 3和-3C. 0和-0D. 以上都是答案:D6. 计算下列哪个选项的结果是0?A. 3 - 3B. 4 + (-4)C. 2 × 0D. -2 - (-2)答案:C7. 计算下列哪个选项的结果是正数?A. -3 + 2B. -3 - 2C. -3 × 2D. -3 ÷ 2答案:A8. 计算下列哪个选项的结果是负数?A. -3 × 2B. -3 ÷ 2C. -3 + 2D. -3 - 2答案:D9. 有理数-3,-2,-1,0,1,2,3中,最小的数是?A. -3B. -2C. -1D. 0答案:A10. 下列哪个选项表示的是倒数?A. 5和1/5B. 3和3C. 0和0D. -2和-1/2答案:A二、填空题(每题3分,共30分)1. 有理数-4的相反数是______。

答案:42. 绝对值等于3的数是______。

答案:±33. 计算-2 + 3 = ______。

答案:14. 计算-5 - 3 = ______。

答案:-85. 计算-6 × 2 = ______。

答案:-126. 计算-4 ÷ 2 = ______。

答案:-27. 计算-3 + (-2) = ______。

答案:-58. 计算0 - 5 = ______。

答案:-59. 计算-2 × (-3) = ______。

七年级有理数测试卷【含答案】

七年级有理数测试卷【含答案】

七年级有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。

()2. 两个有理数相加,结果仍为有理数。

()3. 0是有理数。

()4. 两个正数相乘的结果是负数。

()5. 所有的无理数都是实数。

()三、填空题(每题1分,共5分)1. 3/4 + 2/4 = ________2. -5 -2 = ________3. 2 3 = ________4. 4/5 5/4 = ________5. | -3 | = ________四、简答题(每题2分,共10分)1. 解释什么是有理数。

2. 举例说明两个有理数相乘,结果仍为有理数。

3. 解释什么是整数。

4. 举例说明两个负数相乘的结果。

5. 解释什么是正有理数。

五、应用题(每题2分,共10分)1. 计算下列各题的值:a) 2/3 + 1/6b) -3/4 2/52. 判断下列各题的符号:a) -5 -2b) 2 33. 计算下列各题的绝对值:a) |-5|b) |2 3|六、分析题(每题5分,共10分)1. 分析两个有理数相乘,结果仍为有理数的原因。

2. 分析两个负数相乘的结果为正数的原因。

七、实践操作题(每题5分,共10分)1. 使用计算器计算下列各题的值:a) 2/3 + 1/6b) -3/4 2/52. 使用计算器计算下列各题的绝对值:a) |-5|b) |2 3|八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相乘,结果仍为有理数的性质。

七年级有理数练习题集及答案(10套)

七年级有理数练习题集及答案(10套)

有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

初一数学有理数试题及答案

初一数学有理数试题及答案

有理数测试题一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。

初一有理数计算试题及答案

初一有理数计算试题及答案

初一有理数计算试题及答案试题一:有理数的加减法1. 计算:(-3) + (-5)2. 计算:7 + (-2)3. 计算:(-4) + 6试题二:有理数的乘除法1. 计算:(-2) × (-3)2. 计算:(-4) ÷ (-2)3. 计算:(-6) × 0试题三:有理数的混合运算1. 计算:[(-3) + 4] - 22. 计算:(-5) × 2 - 33. 计算:(-2) ÷ (-4) + 3试题四:有理数的比较大小1. 比较大小:-7 和 -32. 比较大小:-2 和 03. 比较大小:-5 和 -9试题五:有理数的应用题1. 一个数是 -8,另一个数比它大 3,求另一个数。

2. 一个数是 5,另一个数是它的相反数,求另一个数。

3. 一个数的一半是 -4,求这个数。

答案:试题一:1. (-3) + (-5) = -82. 7 + (-2) = 53. (-4) + 6 = 2试题二:1. (-2) × (-3) = 62. (-4) ÷ (-2) = 23. (-6) × 0 = 0试题三:1. [(-3) + 4] - 2 = 1 - 2 = -12. (-5) × 2 - 3 = -10 - 3 = -133. (-2) ÷ (-4) + 3 = 0.5 + 3 = 3.5试题四:1. -7 < -32. -2 < 03. -9 < -5试题五:1. -8 + 3 = -52. 5 的相反数是 -53. -4 × 2 = -8结束语:通过这些有理数的计算试题,同学们可以加深对有理数概念的理解,掌握加减乘除等基本运算规则,以及如何比较有理数的大小。

希望同学们能够通过练习,不断提高自己的计算能力。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案一、解答题(共50题)1、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:﹣,0,2,﹣(+3),|﹣5|,﹣1.5.2、省实验中学初一年级某班体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒)﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6这个小组女生的达标率为多少?平均成绩为多少秒?3、在数轴上表示下列各数,并把它们按照从小到大的顺序排列.1, -2, -2.5, 0,|-3|,4、小红和小明根据下图做游戏,在游戏中规定:长方形表示加,圆形表示减,结果小的获胜.列式计算,小明和小红谁为胜者?5、在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3); |﹣2|; 0; (﹣1)3; -3.5;;;.6、结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为0;(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是﹣1;(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.7、8、已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++ 的值.9、把下列各数填到相应的括号内:+203、0、+6.4、-9、、3.14、-0.1整数: { … }正有理数:{ … }负分数: { … }非负整数:{ … }10、在数轴上表示下列各数,并用“ ”号把它们连接起来.,,,1 , 0 ,11、若a, b互为相反数,c,d互为倒数,|m|=2,求a+b+m2﹣3cd的值.12、若a>0,b>0,且,则a>b;若a<0,b<0,且,则a<b.以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较与的大小.13、用四舍五入法按下列要求取各数的近似数.(1)某次地震中,约伤亡10000人;(保留两个有效数字)(2)生物学家发现一种毒的长度约为0.0000430mm.(保留两个有效数字)14、在数轴上表示出下列各数,并把这些数用“>”号连接起来:﹣3.5,2 ,﹣1,415、已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,求2ab﹣m2的值.16、已知:有理数m到原点的距离为4个单位,a,b互为相反数,且都不为零,c,d 互为倒数.求:2a+2b+(-3cd)+|m|的值.17、在数轴上画出表示下列各数的点,并把它们按从小到大的顺序用“<”连接起来:﹣3,3.5,0,﹣,﹣4,1.5.18、经过30多年的观测,人们发现冥王星的直径只有2.3×106米,比月球还要小,因此2006年8月24日在在捷克首都布拉格举行的国际天文学联合会第26届大会上,根据新定义,冥王星被排在行星行列之外,而将其列入“矮行星”.若银河系密集部分的直径是十万光年,用科学记数法表示冥王星与银河系密集部分直径的比值.(结果保留两位有效数字)19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数.求的值.20、将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.21、某公园的成人票价是15元,儿童买半票,甲旅行团有x(名)成年人和y (名)儿童,乙旅行团的成人数是甲旅行团的2倍,儿童数比甲旅行团的2倍少8人.这两个旅行团的门票费用总和各是多少?22、写出下列各数的相反数,并将这些数连同他们的相反数在数轴上表示出来.+3,-1.5,0,23、把下列各数在数轴上表示出来,并用“ ”号把这些数连接起来.24、在数轴上画出表示下列各数的点,并把它们用“ ”连接起来. ,0,,|-3|,-(-3.5).25、一架直升飞机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以 12米/秒的速度下降120秒,这时的直升飞机所在的高度是多少?26、某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m、n,且是最简真分数,那么形如的数一共有多少个不同的有理数?”27、已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.28、有一个水库某天8:00的水位为(以警戒线为基准,记高于警戒线的水位为正),在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:):.经这6次水位升降后,水库的水位超过警戒线了吗?29、已知实数a,b,c在数轴上的位置如图,且,化简30、小希准备在6年后考上大学时,用15000元给父母买一份礼物表示感谢,决定现在把零花钱存入银行下面有两种储蓄方案:①直接存一个6年期.(6年期年利率为)②先存一个3年期,3年后本金与利息的和再自动转存一个3年期.(3年期年利率为)你认为按哪种储蓄方案开始存入的本金比较少?请通过计算说明理由.31、若a、b互为相反数,c、d互为倒数,m的绝对值等于2,计算m﹣(a+b)2﹣(cd)3的值.32、如图所示,某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在同一条直线上,该公司的接送车打算在此间设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在哪个区?33、把下列各数在数轴上表示出来,并用“>”号把它们连接起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学有理数练习题(附答案)
初一数学有理数练习题(附答案)
查字典数学网小编为大家整理了初一数学有理数练习题(附答案),希望能对大家的学习带来帮助!
七年级数学有理数练习
一、判断
1、自然数是整数。

﹝﹞
2、有理数包括正数和负数。

﹝﹞
3、有理数只有正数和负数。

﹝﹞
4、零是自然数。

﹝﹞
5、正整数包括零和自然数。

﹝﹞
6、正整数是自然数,﹝﹞
7、任何分数都是有理数。

﹝﹞
8、没有最大的有理数。

﹝﹞
9、有最小的有理数。

﹝﹞
二、填空
1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8 点的气温为。

2 、如果零上28度记作280C,那么零下5度记作
3、若上升10m记作10m,那么-3m表示
4、比海平面低20m的地方,它的高度记作海拔
三、选择题
5、在-3,-1 ,0,- ,2019各数中,是正数的有( )
A、0个
B、1个
C、2个
D、3个
6、下列既不是正数又不是负数的是( )
A、-1
B、+3
C、0.12
D、0
7、飞机上升-30米,实际上就是( )
A、上升30米
B、下降30米
C、下降- 30米
D、先上升30米,再下降30米。

8、下列说法正确的是( )
A、整数就是正整数和负整数
B、分数包括正分数、负分数
C、正有理数和负有理数组成全体有理数
D、一个数不是正数就是负数。

9、下列一定是有理数的是( )
A、B、a C、a+2 D、
四、把下列各数填在表示集合的相应大括号中:
+6,-8,-0.4,25,0,- ,9. 15,1
整数集合﹛﹜
分数集合﹛﹜
非负数集合﹛﹜
正数集合﹛﹜
负数集合﹛﹜
五、解答题
1 、博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了
一台空调,又该怎样记录这笔支出呢?
2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌
情况如下表:单位:元
日期周二周三周四周五
开盘+0.16 +0. 25 +0.78 +2.12
收盘-0.23 -1.32 -0.67 -0. 65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
3、春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.
六、探究创新
1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )
A、0.03
B、0.02
C、30.03
D、29.98
2、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?
3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?
参考答案:
一、1、2、3、4、5、6、7、8、9、
二、1、-1℃ 2、- 5度3、下降3m 4、20m
三、5、B 6、D 7、B 8、B 9、D
四、略
五、1、收入4800元记作+4800元
要练说,得练听。

听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。

当我发现有的幼儿不专心听别人发言时,就随时表扬那些静
听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。

平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

2、3略
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小
学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

六、1、C 2、乙潜水员离海平面比较近,近22 米。

3、一月份超额完成计划-50t ,二月份超额完成计划0t ,三月份超额完成计划100t 。

相关文档
最新文档