运动控制 知识
运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
运动技能的学习与控制知识分享

运动技能的学习与控制《运动技能学习与控制》(一)Unit One 动作技能和运动能力概述Chapter One 动作机能的分类人类的各种行为活动都可以统称为动作技能。
技能(skill):1.为实现特定目标而操作的动作或任务;2.以操作质量为表征。
运动技能(motor skill):指有特定操作目标,涉及自主身体或肢体运动的技能。
动作(action):由身体和/或肢体运动产生的指向目标的运动。
【疑】百度——身体:指人或动物的整个生理组织,有时特指驱干和四肢。
既然身体包括四肢,关于动作的解释不就可以直接定义为由身体运动产生的指向目标的运动嘛。
也许是翻译的问题,body和limb的意思还是不一样的,原因也许就在这吧。
运动(movement):构成动作或运动技能的肢体或肢体联合的行为特征。
一维分类系统通常我们根据技能间的相似特征来对动作技能进行分类。
最常见的方法是根据技能的共同特征将技能进行归类。
每一种共同特征包含两个范畴(注意并非二元范畴),用一个连续区间的两端来表示。
【疑】两个范畴和二元范畴有何不同呢?1.参与操作的技能肌肉系统的大小:大、小肌肉群2.动作开始和结束的特征:连续动作技能--任意动作开始和结束;重复性活动分立技能--指定动作开始和结束;单一性活动3.环境背景的稳定性:开放性动作技能--支撑面、操作对象和/或操作中处于运动状态的其他人封闭性动作技能--支撑面、操作对象和/或操作中处于静止状态的其他人【疑】有绝对的封闭性动作技能吗?日常生活中绝大部分都是开放性动作技能。
大肌肉群动作技能(gross motor skill):指需要大肌肉系统参与工作才能实现操作目标的动作技能。
小肌肉群动作技能(fine motor skill):指需要小肌肉群参与动作控制才能实现操作目标的动作技能;包括手眼协调动作和高度精确性的手指、手腕动作。
分立动作技能(discrete motor skill):指具有明显开始和结束界限的运动技能,一般由简单动作构成。
运动控制技术高职教材

运动控制技术是高职教材中的一门重要课程,它涉及到机械、电子、计算机等多个领域的知识。
通过学习运动控制技术,学生可以掌握如何对各种机械运动进行精确控制,从而实现自动化生产。
随着工业自动化的不断发展,运动控制技术在生产和制造领域的应用越来越广泛。
从数控机床、机器人到自动化生产线,运动控制技术都是实现高效、精准和智能化的关键。
因此,对于高职学生来说,学习运动控制技术是十分必要的。
在高职教材中,运动控制技术课程通常包括以下几个方面的内容:
1. 运动控制基础知识:介绍运动控制的基本概念、原理和应用领域。
2. 运动控制器:介绍运动控制器的基本原理、组成和分类,以及如何选择合适的运动控制器。
3. 运动控制算法:介绍各种常用的运动控制算法,如PID控制、模糊控制等,以及如何选择和应用这些算法。
4. 电机及其控制:介绍各种电机的工作原理、性能特点和控制系统,以及如何选择合适的电机和控制系统。
5. 系统集成与优化:介绍如何将各个部分集成在一起,实现整个系统的协调运行,并进行优化和改进。
通过学习这门课程,学生可以了解和掌握运动控制技术的核心知识和技能,为未来的职业发展打下坚实的基础。
同时,这门课程还可以帮助学生提高自身的综合素质和创新能力,培养出更多适应社会发展需要的高素质技能人才。
运动控制原理与实践

运动控制原理与实践运动控制是现代工业自动化领域中的重要组成部分,它涉及到机械、电子、计算机等多个学科的知识。
在工业生产中,运动控制系统可以实现对机械设备的精准控制,提高生产效率,降低成本,保证产品质量。
本文将介绍运动控制的基本原理和实践应用,希望能为相关领域的从业者提供一些帮助。
首先,我们来了解一下运动控制的基本原理。
运动控制系统通常由传感器、执行器、控制器和通信网络组成。
传感器用于感知机械设备的位置、速度、力度等信息,将这些信息转化为电信号传输给控制器;控制器根据传感器反馈的信息,通过算法计算出控制信号,再通过通信网络传输给执行器,执行器根据控制信号驱动机械设备进行相应的运动。
在这个过程中,控制器起着核心作用,它需要实时地处理传感器反馈的信息,并根据预先设定的控制策略生成合适的控制信号,以实现对机械设备的精准控制。
在实践应用中,运动控制系统广泛应用于各种机械设备中,比如数控机床、工业机器人、自动化生产线等。
以数控机床为例,通过运动控制系统可以实现对刀具的精确控制,实现复杂零件的加工;在工业机器人中,运动控制系统可以实现对机器人臂的灵活控制,完成各种复杂的操作任务;在自动化生产线中,运动控制系统可以实现对输送带、装配机、包装机等设备的协调运动,实现自动化生产。
可以说,运动控制系统已经成为现代工业生产中不可或缺的一部分。
除了工业领域,运动控制系统在其他领域也有着广泛的应用。
比如在航空航天领域,飞行器的姿态控制、导航控制等都离不开运动控制系统的支持;在医疗器械领域,影像设备、手术机器人等都需要运动控制系统来实现精准的运动控制。
可以说,运动控制系统已经渗透到了现代社会的方方面面。
总的来说,运动控制原理的理解和实践应用对于工程技术人员来说是非常重要的。
希望通过本文的介绍,读者能对运动控制有一个初步的了解,同时也能在实际工作中运用这些知识,提高工作效率,促进工业自动化的发展。
相信随着科技的不断进步,运动控制技术将会在更多领域得到应用,为人类社会带来更多的便利和发展机遇。
机械运动控制基础

机械运动控制基础机械运动控制是指通过一系列的机械装置和控制系统来实现对机械设备或系统的运动状态进行控制的技术。
它在工业生产和机械运作中起到了至关重要的作用。
本文将介绍机械运动控制的基础知识和应用。
一、机械运动控制的分类机械运动控制按照不同的控制方式可以分为开环控制和闭环控制两种形式。
1. 开环控制开环控制是指根据预设的输入信号来控制机械运动设备,但无法对输出信号进行实时的反馈和调整。
在该控制方式下,系统对外界干扰和内部扰动的适应性较差,容易造成误差累积,但成本相对较低。
2. 闭环控制闭环控制是指通过传感器或测量装置对输出信号进行实时采集和反馈,再与预设值进行比较,通过控制算法调整输入信号来实现对机械运动设备的精确控制。
闭环控制具有较高的准确性和稳定性,能够适应外界环境的变化和内部扰动,但成本较高。
二、机械运动控制的原理1. 位置控制位置控制是指通过对电机或其他执行机构施加适当的输入信号,使其按照预定的轨迹和速度从一个位置运动到另一个位置。
这种控制方式常用于机械臂、印刷机等需要精确定位的设备中。
2. 速度控制速度控制是指通过对电机或执行机构施加适当的输入信号,使其按照预设的速度进行运动。
这种控制方式常用于需要实现匀速或变速运动的设备中,如输送带、车辆等。
3. 力控制力控制是指通过对机械设备施加适当的输入信号,使其按照预设的力或压力进行工作。
这种控制方式常用于需要对工作物体施加特定力或实现精确力控制的设备中,如机动装置、夹具等。
三、机械运动控制的应用1. 工业生产机械运动控制在工业生产中广泛应用。
例如,自动化生产线通过对传送带、机械臂等运动设备的控制,实现对产品的自动组装、包装和检测。
这不仅提高了生产效率,还确保了产品的质量和稳定性。
2. 交通运输交通运输领域也离不开机械运动控制技术。
例如,电梯、自动扶梯等垂直运输设备通过对电机的控制,准确控制运动状态和运行速度。
同时,汽车、火车等交通工具也使用机械运动控制系统来实现精确的加速、减速和转向。
罗克韦尔自动化运动控制基础知识说明书

课程安排第 1 天• 定义运动控制• 识别运动控制系统部件及功能 • 应用基本运动控制概念 • 识别数字伺服运动控制器的部件 •识别伺服驱动器的功能第 2 天• 识别交流和直流伺服电机的功能 • 识别反馈元件的功能 • 识别软件伺服环的功能 • 应用运动配置文件• 应用电子齿轮和凸轮运动曲线 •运动控制基础知识:集成练习课程编号:CCN130课程目的完成本课程后,您应该能够说明对所有罗克韦尔自动化运动控制系统通用的基本运动控制概念。
本课程旨在让您了解运动控制的概念、术语、功能及应用。
此外,您还将使用每节课讨论的概念和原理来了解运动控制应用项目如何工作。
本课程将帮助您建立牢固的必要基础,以便今后学习运动控制系统的维护和编程所需的技能。
本课程不针对运动控制系统设计或特定运动控制软件编程。
如果您要寻求这些方面的培训,应参加相关的罗克韦尔自动化培训课程,参加之前请确保您已符合这些课程的课前要求。
运动控制运动控制基础知识课程描述动力、控制与信息解决方案GMST10-PP247B-ZH-E版权所有 ©2010 罗克韦尔自动化有限公司。
保留所有权利。
美国印刷。
适合参加者为了工作而需要了解基本运动控制概念的人员,或者为了参加其他运动控制课程而需要学习这些概念以满足课前条件的人员应参加本课程。
课前要求参加本课程不需要满足任何特定课前要求。
但是, 以下几点将很有帮助:• 基本电学、电子学和计算机概念方面的背景 •控制器操作的基本知识技术要求罗克韦尔自动化将提供学员在课堂内使用的所有 技术。
学员在参加本课程时不必具备任何技术。
动手练习在整个课程期间,您将有机会通过各种涉及罗克韦尔自动化运动控制硬件的动手练习来实践所学的技能。
您还将有机会通过完成集成练习来组合和实践多项 关键技能。
学员资料为增强和促进您的学习体验,课程包中提供了以 下资料:•学员手册,其中包含主题列表和练习。
您将使用此手册来跟随讲课内容、记笔记和完成练习。
运动控制 知识

运动控制知识运动控制是一种由信息传递、决策计算与执行组成的技术,它是机器人或其他自动控制系统实施任务的一个重要基础。
此外,运动控制的广泛用途将其涉及的领域拓展到了各种应用领域,其中包括机械、农业、医疗、电力、航空、机器视觉、楼宇自动化系统、自动驾驶和工业机器人。
运动控制是一项复杂的学术研究,集机械工程、电子工程、自动控制、信息技术、机器人学和计算机等学科知识于一体,主要的研究内容包括机械制造、运动控制、传动原理、节能减速机、电机控制、伺服系统、传感器技术、智能控制及模拟、数字信号控制、机器人视觉技术、车辆控制系统及仿真技术等。
由于其多重性能特征,运动控制在机器人与其他自动控制系统中发挥着重要作用,它可以进行运动路径规划,控制机器人运动,以及实现机械设备的精确控制。
针对机器人的运动控制,需要解决的技术问题主要有:运动控制系统的建立,用于运动控制的传感器技术,机器人运动控制的数字信号处理,运动控制系统的参数设置,运动控制系统的实时调节,机器人的运动学、动力学和逆向等等。
除机器人运动以外,运动控制在其他自动控制系统中也发挥着重要作用。
例如,在工业机器人领域,运动控制可以用于实现机器人的插补控制以及其他任务控制;在数控系统中,运动控制可以用于实现各种类型的坐标运动控制,以及各种坐标系联动控制;在机械制造领域,运动控制可以用于实现机械加工过程的控制;在楼宇自动化系统中,运动控制可以用于实现楼宇装置的自动控制;在机器视觉领域,运动控制可以用于实现目标物体的实时跟踪;在质量检测领域,运动控制可以用于实现产品质量自动检测。
为了实现运动控制,采用了一系列新型技术,其中包括了运动控制芯片,传感器技术、控制系统软件设计、数字电路与模拟电路混合技术、精密机械制造技术等等。
首先,运动控制芯片的发展为运动控制的实施奠定了基础。
例如,通过PLC型号的控制芯片,可以执行简单的运动控制指令,从而实现对设备的运动控制。
其次,传感器技术的发展,为运动控制的实现提供了可靠的数据支持。
台达运动控制 的基础知识

运动控制的基础知识位置单位PLS 位置单位是什麽PLS单位即编码器的脉波单位,以台达A2伺服为例,编码器解析度虽然有分17 bit与20 bit。
但PLS 单位都统一定为1280000 PLS/每圈,使用者无法更改。
也就是当齿轮比设为1:1时,命令必须下达1280000 个脉波,伺服马达才会转一圈.此单位由于解析度高,适用于驱动器底层马达控制。
然而在运动控制系统中,必须建立一个绝对坐标系,若以PLS 做为位置单位,不论是命令或回授,都有以下的问题:1.此单位对应到机械末端的位移量,通常都不是整数的公制单位,不容易观察。
以下图为例,一伺服经联轴器连接一导螺杆,编码器的解析度为1280000PLS/每圈,螺杆的节距为10mm,则每一PLS对应的长度为0.0078125um ,并不是整数,所以使用起来并不方便。
2.不同机种或不同厂牌的伺服马达其编码器解析度不同,更换马达后PLS单位就不同。
且一个控制系统往往不只使用一个马达,每个马达连接的机械结构尺寸各异,即使马达型号相同,各轴转一圈对应的机械位移量也不同,造成每个轴的PLS单位不同,这对多轴路径规划是极为困扰的!3.为了马达控制性能的提升,编码器的解析度愈来愈高,但位置计数器的宽度通常只有32 bit,若採用PLS单位会让位置计数器很容易发生溢位(Overflow)。
例如某一编码器解析度为23 bit/每圈,若初始位置为0,只需要旋转256圈[注1]就可令位置计数器溢位。
在不允许溢位的应用(例如绝对坐标定位),机械的行程可能很长且有安装减速机,限制马达不可超过256圈是不切实际的。
4.传统控制器是发送实体脉波给驱动器来控制伺服马达的,若命令以PLS为单位会造成脉波命令频率过高,以1280000 PLS/每圈为例,若要达到3000rpm :脉波命令频率= 1280000 (PLS/Rev)x 3000 (Rev/min) / 60(sec/min)= 64000000 PLS/sec= 64 MHz控制器很难发送如此高频率的实体脉波,必须藉由电子齿轮比来放大倍率,使脉波命令的频率降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制知识
运动控制是指尝试控制和管理运动及其表现的过程。
运动控制是运动学的重要部分,从简单的运动到复杂的运动,都是需要控制的。
运动控制的基本概念包括认知控制、知觉控制和运动控制。
认知控制是指运动员需要在练习的过程中,以有限的资源来理解部分信息,并且运用它们来实现运动技巧的特定组合。
知觉控制是指通过运动员对外部环境的感知,来控制自己身体的运动,实现运动动作的平衡、精准和协调。
最后,运动控制是指通过运动员的动态调整,来调整肌肉力量和运动技巧,来完成自己的动作。
为了更好地控制运动,运动员必须具备足够的体能,因为体能是控制运动的基础,体能越强,运动员可以控制的力量越大,而且运动员可以使用更多样化的动作来实现特定的运动目标。
其次,运动员也需要充分的动态调整能力,这是控制运动的核心,通过不断调整力量、速度和运动技巧,运动员可以实现更好的运动效果。
此外,运动员还必须具备足够的认知能力,这是控制运动的重要组成部分。
认知能力是指运动员能够通过理解自己的运动特点,以及通过实践来学习运动技巧和改善自己的运动技能,来达到提高运动控制能力的目的。
最后,为了获得更好的运动控制效果,运动员需要经过持续的训练,以提高自己的动态调整能力,提高体能,提升认知能力,提高运动灵活性,以及提高运动的精准度。
运动控制有时也可以通过缓慢的冥想运动,来帮助运动员集中注意力,提高内在的稳定性,从而提高
运动的控制水平。
以上就是关于运动控制知识的介绍。
只有通过不断的练习,运动员才能够掌握运动控制的技巧,突破自己的技术障碍,从而获得更好的运动成绩。