多元线性回归实例分析

合集下载

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。

首先,准备好您的数据。

数据应该以特定的格式整理,通常包括自变量和因变量的列。

确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。

打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。

在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。

这将打开多元线性回归的对话框。

在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。

接下来,点击“统计”按钮。

在“统计”对话框中,您可以选择一些常用的统计量。

例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。

根据您的具体需求选择合适的统计量,然后点击“继续”。

再点击“图”按钮。

在这里,您可以选择生成一些有助于直观理解回归结果的图形。

比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。

选择完毕后点击“继续”。

然后点击“保存”按钮。

您可以选择保存预测值、残差等变量,以便后续进一步分析。

完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。

结果通常包括多个部分。

首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。

R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。

其次是方差分析表,用于检验整个回归模型是否显著。

如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。

最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。

回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。

多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要与案例多元线性回归是一种统计分析方法,用于探究多个自变量与一个因变量之间的关系。

它在许多领域中都被广泛应用,如经济学、社会科学、医学等。

本文将介绍多元线性回归的基本原理、步骤和统计检验,并通过一个实际案例来演示其应用。

一、多元线性回归的基本原理1.线性关系假设:多元线性回归假设自变量与因变量之间存在线性关系。

即每个自变量的变化对因变量的影响是独立的,并且可以通过线性方程来描述。

2.回归模型构建:根据线性关系假设,可以构建一个回归模型,以自变量为解释变量,因变量为被解释变量。

3.参数估计:利用最小二乘法估计回归模型中的参数,使得模型对观测数据的拟合程度最好。

4.统计检验:通过统计方法检验回归模型中自变量对因变量的影响是否显著。

二、多元线性回归的步骤1.数据收集:收集包括自变量和因变量的观测数据。

2.模型构建:根据所收集到的数据,确定自变量和因变量之间的关系,并构建回归模型。

3.参数估计:使用最小二乘法估计回归模型中的参数。

4.拟合度检验:通过拟合度检验,评估回归模型对观测数据的拟合程度。

5.统计检验:利用各种统计方法,检验回归模型中自变量对因变量的影响是否显著。

6.模型解释:解释回归模型中各个参数的含义和影响。

三、多元线性回归的统计检验1.F检验:用于检验所有自变量对因变量联合作用是否显著。

2.t检验:用于检验每个自变量对因变量的独立作用是否显著。

3.R方和调整R方:用于评估回归模型对观测数据的拟合程度。

4. Durbin-Watson检验:用于检验回归模型是否存在自相关性。

五、多元线性回归的应用案例下面通过一个实际案例来演示多元线性回归的应用。

假设我们要研究一个人的体重与身高、年龄和性别之间的关系。

我们收集了100个人的数据,并通过多元线性回归分析来建立一个预测模型。

首先,根据数据,我们构建如下的多元线性回归模型:体重=β0+β1×身高+β2×年龄+β3×性别。

多元线性回归实例分析研究

多元线性回归实例分析研究

多元线性回归实例分析研究为了更好地理解多元线性回归,我们可以以一个实例进行分析研究。

假设我们有一个数据集,包含了以下几个自变量:年龄、性别和教育水平,以及一个因变量:收入水平。

我们的目标是构建一个多元线性回归模型,以了解自变量对于收入水平的影响。

首先,我们需要对数据集进行探索性数据分析,了解各个变量之间的关系。

我们可以使用散点图或相关性矩阵来观察变量之间的关系。

例如,我们可以绘制年龄和收入水平之间的散点图,看看是否存在其中一种关联性。

类似地,我们还可以检查性别和教育水平与收入水平之间的关系。

接下来,我们需要对数据集进行预处理,以确保数据的准确性和一致性。

这可能包括处理缺失值、异常值和离群值。

我们还可以将分类变量转换为虚拟变量,以便在多元线性回归模型中进行分析。

然后,我们可以通过拟合一个多元线性回归模型来研究各个自变量对收入水平的影响。

多元线性回归模型的数学表达式为:Y=β0+β1X1+β2X2+...+βnXn其中,Y代表因变量(收入水平),X1、X2、..、Xn代表自变量(年龄、性别、教育水平),β0、β1、β2、..、βn代表模型的参数。

我们可以使用最小二乘法来估计模型参数,以最小化真实值和预测值之间的误差。

通过计算模型参数的置信区间和显著性水平,我们可以确定哪些自变量对收入水平具有显著影响。

最后,我们可以使用模型来预测新数据点的收入水平。

通过将新数据点的自变量值代入模型方程,我们可以得到一个预测值,从而对收入水平进行估计。

同时,我们还可以计算预测的置信区间,以度量模型的准确性和不确定性。

通过对多元线性回归实例的分析研究,我们可以深入了解多元线性回归方法的原理和应用。

这种方法可以帮助我们探索多个自变量对一个因变量的影响关系,并且提供了一种有效的方式来预测因变量的值。

同时,我们还可以通过分析参数的置信区间和显著性水平来确定影响因变量的重要自变量。

多元线性回归分析实例及教程

多元线性回归分析实例及教程

多元线性回归分析实例及教程多元线性回归分析是一种常用的统计方法,用于探索多个自变量与一个因变量之间的关系。

在这个方法中,我们可以利用多个自变量的信息来预测因变量的值。

本文将介绍多元线性回归分析的基本概念、步骤以及一个实际的应用实例。

1.收集数据:首先,我们需要收集包含因变量和多个自变量的数据集。

这些数据可以是实验数据、观察数据或者调查数据。

2.确定回归模型:根据实际问题,我们需要确定一个合适的回归模型。

回归模型是一个数学方程,用于描述自变量与因变量之间的关系。

3.估计回归参数:使用最小二乘法,我们可以估计回归方程的参数。

这些参数代表了自变量对因变量的影响程度。

4.检验回归模型:为了确定回归模型的有效性,我们需要进行各种统计检验,如F检验和t检验。

5.解释结果:最后,我们需要解释回归结果,包括参数的解释和回归方程的解释能力。

应用实例:假设我们想预测一个人的体重(因变量)与他们的年龄、身高、性别(自变量)之间的关系。

我们可以收集一组包含这些变量的数据,并进行多元线性回归分析。

首先,我们需要建立一个回归模型。

在这个例子中,回归模型可以表示为:体重=β0+β1×年龄+β2×身高+β3×性别然后,我们可以使用最小二乘法估计回归方程的参数。

通过最小化残差平方和,我们可以得到每个自变量的参数估计值。

接下来,我们需要进行各种统计检验来验证回归模型的有效性。

例如,我们可以计算F值来检验回归方程的整体拟合优度,t值来检验各个自变量的显著性。

最后,我们可以解释回归结果。

在这个例子中,例如,如果β1的估计值为正且显著,表示年龄与体重呈正相关;如果β2的估计值为正且显著,表示身高与体重呈正相关;如果β3的估计值为正且显著,表示男性的体重较女性重。

总结:多元线性回归分析是一种有用的统计方法,可以用于探索多个自变量与一个因变量之间的关系。

通过收集数据、确定回归模型、估计参数、检验模型和解释结果,我们可以得到有关自变量对因变量影响的重要信息。

(完整word版)多元线性回归模型案例分析

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。

此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。

影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。

(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。

二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。

暂不考虑文化程度及人口分布的影响。

从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。

在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

—多元线性回归分析案例

—多元线性回归分析案例
(0.389178) (0.050206) (0.033647) (0.042281)
t=(2.184942) (3.849318) (12.80847)
(7.130844)
R2 0.963517 R 2 0.959307 F 228.2846 df 26
模型检验:拟合优度可决系数 R2 0.963517 较高, 修正的可决系数 R 2 0.959307 也较高,表明模型 拟合较好。
t0025260684因为各解释变量的参数对应的t统计量均大于0684这说明在5的显著水平下斜率系数均显著不为零表明三大产业的增长率对gdp增长都有显著影响
多元线性回归分析 案例
目录
• 1.建立模型 • 2.模型参数估计 • 3.检验 • 4.预测 • 5.软件操作
1.建立模型
考察三大产业的增长对我国经济增长 的贡献
F检验: 针对H0: b1=b2=b3=0
F 228.2846
给定 0.05,得临界值F0.0(5 k,n k 1) F0.05(3,26) 2.98 由于228.2846>2.98,故拒绝H0 回归方程是显著的。
t检验: 给定 0.05,查自由度t分布表得:t0.025(26)=0.684 因为各解释变量的参数对应的t统计量均大于0.684, 这说明在5%的显著水平下,斜率系数均显著不为零, 表明三大产业的增长率对GDP增长都有显著影响。
8.3
2.8
8.4
10.3
1987 11.6
4.7
13.7
14.4 2002
9.1
2.9
9.8
10.4
1988 11.3
2.5
14.5
13.2 2003 10.0
2.5

—多元线性回归分析案例

—多元线性回归分析案例

—多元线性回归分析案例多元线性回归分析是一种广泛使用的统计分析方法,用于研究多个自变量对一个因变量的影响程度。

在实际应用中,多元线性回归可以帮助我们理解变量之间的相互关系,并预测因变量的数值。

下面我们将以一个实际案例来介绍多元线性回归分析的应用。

假设我们是一家电子产品制造商,我们想研究影响手机销量的因素,并尝试通过多元线性回归模型来预测手机的销量。

我们选择了三个自变量作为影响因素:广告投入、价格和市场份额。

我们收集了一段时间内的数据,包括这三个因素以及对应的手机销量。

现在我们将利用这些数据来进行多元线性回归分析。

首先,我们需要将数据进行预处理和清洗。

我们检查数据的完整性和准确性,并去除可能存在的异常值和缺失值。

然后,我们对数据进行描述性统计分析,以了解数据的整体情况和变量之间的关系。

接下来,我们将建立多元线性回归模型。

我们将销量作为因变量,而广告投入、价格和市场份额作为自变量。

通过引入这些自变量,我们可以预测手机销量,并分析它们对销量的影响程度。

为了进行回归分析,我们需要估计模型的系数。

这可以通过最小二乘法来实现,该方法将使得模型的预测结果与实际观测值之间的残差平方和最小化。

接下来,我们将进行统计检验,以确定自变量对因变量的显著影响。

常见的统计指标包括回归系数的显著性水平、t值和p值。

在我们的案例中,假设多元线性回归模型的方程为:销量=β0+β1×广告投入+β2×价格+β3×市场份额+ε。

其中,β0、β1、β2和β3为回归系数,ε为误差项。

完成回归分析后,我们可以进行模型的诊断和评估。

我们可以检查模型的残差是否呈正态分布,以及模型的拟合程度如何。

此外,我们还可以通过交叉验证等方法评估模型的准确性和可靠性。

最后,我们可以利用训练好的多元线性回归模型来进行预测。

通过输入新的广告投入、价格和市场份额的数值,我们可以预测手机的销量,并根据预测结果制定相应的市场策略。

综上所述,多元线性回归分析是一种强大的统计工具,可用于分析多个自变量对一个因变量的影响。

多元线性回归模型案例分析报告

多元线性回归模型案例分析报告

多元线性回归模型案例分析报告多元线性回归模型是一种用于预测和建立因变量和多个自变量之间关系的统计方法。

它通过拟合一个线性方程,找到使得回归方程和实际观测值之间误差最小的系数。

本报告将以一个实际案例为例,对多元线性回归模型进行案例分析。

案例背景:公司是一家在线教育平台,希望通过多元线性回归模型来预测学生的学习时长,并找出对学习时长影响最大的因素。

为了进行分析,该公司收集了一些与学习时长相关的数据,包括学生的个人信息(性别、年龄、学历)、学习环境(家乡、宿舍)、学习资源(网络速度、学习材料)以及学习动力(学习目标、学习习惯)等多个自变量。

数据分析方法:通过建立多元线性回归模型,我们可以找到与学习时长最相关的因素,并预测学生的学习时长。

首先,我们将根据实际情况对数据进行预处理,包括数据清洗、过滤异常值等。

然后,我们使用逐步回归方法,通过逐步添加和删除自变量来筛选最佳模型。

最后,我们使用已选定的自变量建立多元线性回归模型,并进行系数估计和显著性检验。

案例分析结果:经过数据分析和模型建立,我们得到了如下的多元线性回归模型:学习时长=0.5*年龄+0.2*学历+0.3*学习资源+0.4*学习习惯对于系数估计,我们发现年龄、学历、学习资源和学习习惯对于学习时长均有正向影响,即随着这些变量的增加,学习时长也会增加。

其中,年龄和学习资源的影响较大,学历和学习习惯的影响较小。

在显著性检验中,我们发现该模型的拟合度较好,因为相关自变量的p值均小于0.05,表明它们对学习时长的影响具有统计学意义。

案例启示:本案例的分析结果为在线教育平台提供了重要的参考。

公司可以针对年龄较大、学历高、学习资源丰富和有良好学习习惯的学生,提供个性化的学习服务和辅导。

同时,公司也可以通过提供更好的学习资源和培养良好的学习习惯,来提升学生的学习时长和学习效果。

总结:多元线性回归模型在实际应用中具有广泛的应用价值。

通过对因变量和多个自变量之间的关系进行建模和分析,我们可以找到相关影响因素,并预测因变量的取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS--回归-多元线性回归模型案例解析!(一)
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:
毫无疑问,多元线性回归方程应该为:
上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
那么,多元线性回归方程矩阵形式为:
其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为0
3:同共方差性假设,即指,所有的随机误差变量方差都相等
4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。

数据如下图所示:
点击“分析”——回归——线性——进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10
个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)
如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)
“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:
点击“统计量”弹出如下所示的框,如下所示:
在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。

提示:
共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。

这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。

所以,需要勾选“共线性诊断”来做判断
通过容许度可以计算共线性的存在与否?容许度TOL=1-RI平方或方差膨胀因子(VIF): VIF=1/1-RI平方,其中RI平方是用其他自变量预测第I个变量的复相关系数,显然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其他自变量之间存在共线性的可能性越大。

提供三种处理方法:
1:从有共线性问题的变量里删除不重要的变量
2:增加样本量或重新抽取样本。

3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。

再点击“绘制”选项,如下所示:
上图中:
DEPENDENT( 因变量) ZPRED(标准化预测值) ZRESID(标准化残差) DRESID(剔除残差) ADJPRED(修正后预测值) SRSID(学生化残差) SDRESID(学生化剔除残差)
一般我们大部分以“自变量”作为 X 轴,用“残差”作为Y轴,但是,也不要忽略特殊情况,这里我们以“ZPRED(标准化预测值)作为"x" 轴,分别用“SDRESID(血生化剔除残差)”和“ZRESID(标准化残差)作为Y轴,分别作为两组绘图变量。

再点击”保存“按钮,进入如下界面:
如上图所示:勾选“距离”下面的“cook距离”选项(cook 距离,主要是指:把一个个案从计算回归系数的样本中剔除时所引起的残差大小,cook距离越大,表明该个案对回归系数的影响也越大)
在“预测区间”勾选“均值”和“单值” 点击“继续”按钮,再点击“确定按钮,得到如下所示的分析结果:(此分析结果,采用的是“逐步法”得到的结果)
SPSS—回归—多元线性回归结果分析(二)
,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:
结果分析1:
由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands" 建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1时,从“线性模型中”剔除
结果分析:
1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些
(0.422>0.300)
2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不
可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,
3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA 方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。

结果分析:
1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。

从“系数a” 表中可以看出:
1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距
但是,由于常数项的sig为(0.116>0.1) 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除
所以:标准化的回归方程为:销售量=-0.59*价格+0.356*轴距
2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和
膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大
从“共线性诊断”表中可以看出:
1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。

从上图可以看出:从自变量相关系数矩阵出发,计算得到了三个特征值(模型2中),最大特征值为2.847,最小特征值为0.003
条件索引=最大特征值/相对特征值再进行开方(即特征值2的条件索引为 2.847/0.150 再开方=4.351)
标准化后,方差为1,每一个特征值都能够刻画某自变量的一定比例,所有的特征值能将刻画某自变量信息的全部,于是,我们可以得到以下结论:
1:价格在方差标准化后,第一个特征值解释了其方差的0.02,第二个特征值解释了0.97,第三个特征值解释了0.00
2:轴距在方差标准化后,第一个特征值解释了其方差的0.00,第二个特征值解释了0.01,第三个特征值解释了0.99
可以看出:没有一个特征值,既能够解释“价格”又能够解释“轴距”所以“价格”和“轴距”之间存在共线性较弱。

前面的结论进一步得到了论证。

(残差统计量的表中数值怎么来的,这个计算过程,我就不写了)
从上图可以得知:大部分自变量的残差都符合正太分布,只有一,两处地方稍有偏离,如图上的(-5到-3区域的)处理偏离状态。

相关文档
最新文档