SPSS数据分析—多重线性回归

合集下载

SPSS—回归—多元线性回归结果分析

SPSS—回归—多元线性回归结果分析

SPSS—回归—多元线性回归结果分析(二),最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:结果分析1:由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands"建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1时,从“线性模型中”剔除结果分析:1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些(0.422>0.300)2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。

结果分析:1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。

从“系数a” 表中可以看出:1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距但是,由于常数项的sig为(0.116>0.1) 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除所以:标准化的回归方程为:销售量=-0.59*价格+0.356*轴距2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF 都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大从“共线性诊断”表中可以看出:1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。

spss多元线性回归分析

spss多元线性回归分析

spss多元线性回归分析SPSS多元线性回归分析试验在科学研究中,我们会发现某些指标通常受到多个因素的影响,如血压值除了受年龄影响之外,还受到性别、体重、饮食习惯、吸烟情况等因素的影响,用方程定量描述一个因变量y与多个自变量x1、x2、x3.......之间的线性依存关系,称为多元线性回归。

有学者认为血清中低密度脂蛋白增高是引起动脉硬化的一个重要原因。

现测量30名怀疑患有动脉硬化的就诊患者的载脂蛋白A、载脂蛋白B、载脂蛋白E、载脂蛋白C、低密度脂蛋白中的胆固醇含量。

资料如下表所示。

求低密度脂蛋白中的胆固醇含量对载脂蛋白A、载脂蛋白B、载脂蛋白E、载脂蛋白C的线性回归方程。

表1 30名就诊患者资料表序号载脂蛋白A 载脂蛋白B载脂蛋白E载脂蛋白C低密度蛋白1 173 106 7.0 14.7 1372 139 132 6.4 17.8 1623 198 112 6.9 16.7 1344 118 138 7.1 15.7 1885 139 94 8.6 13.6 1386 175 160 12.1 20.3 2157 131 154 11.2 21.5 1718 158 141 9.7 29.6 1489 158 137 7.4 18.2 19710 132 151 7.5 17.2 11311 162 110 6.0 15.9 14512 144 113 10.1 42.8 8113 162 137 7.2 20.7 18514 169 129 8.5 16.7 15715 129 138 6.3 10.1 19716 166 148 11.5 33.4 15617 185 118 6.0 17.5 15618 155 121 6.1 20.4 15419 175 111 4.1 27.2 14420 136 110 9.4 26.0 9021 153 133 8.5 16.9 21522 110 149 9.5 24.7 18423 160 86 5.3 10.8 11824 112 123 8.0 16.6 12725 147 110 8.5 18.4 13726 204 122 6.1 21.0 12627 131 102 6.6 13.4 13028 170 127 8.4 24.7 13529 173 123 8.7 19.0 18830 132 131 13.8 29.2 122 spss数据处理步骤:(1)打开spss输入数据后,点击“分析”-“回归”-“线性”。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。

首先,准备好您的数据。

数据应该以特定的格式整理,通常包括自变量和因变量的列。

确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。

打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。

在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。

这将打开多元线性回归的对话框。

在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。

接下来,点击“统计”按钮。

在“统计”对话框中,您可以选择一些常用的统计量。

例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。

根据您的具体需求选择合适的统计量,然后点击“继续”。

再点击“图”按钮。

在这里,您可以选择生成一些有助于直观理解回归结果的图形。

比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。

选择完毕后点击“继续”。

然后点击“保存”按钮。

您可以选择保存预测值、残差等变量,以便后续进一步分析。

完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。

结果通常包括多个部分。

首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。

R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。

其次是方差分析表,用于检验整个回归模型是否显著。

如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。

最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。

回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量;来研究上海房价的变动因素..实验变量:以年份、商品房平均售价元/平方米、上海市城市人口密度人/平方公里、城市居民人均可支配收入元、五年以上平均年贷款利率%和房屋空置率%作为变量..实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ;Dependent因变量选择商品房平均售价;Independents自变量选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics;勾选Regression Coefficients回归系数选项组中的Estimates;勾选Residuals残差选项组中的Durbin-Watson、Casewisediagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots;选择ZPRED标准化预测值作为纵轴变量;选择DEPENDNT 因变量作为横轴变量;勾选选项组中的Standardized Residual Plots标准化残差图中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save;勾选Predicted Vaniues预测值和Residuals残差选项组中的Unstandardized;点击Continue.5.点击右侧Options;默认;点击Continue.6.返回主对话框;单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度人/平方公里. Stepwise Criteria:Probability-of-F-to-enter<= .050;Probability-of-F-to-remove >=.100.2 城市居民人均可支配收入元. Stepwise Criteria:Probability-of-F-to-enter<= .050;Probability-of-F-to-remove >=.100.a. Dependent Variable: 商品房平均售价元/平方米该表显示模型最先引入变量城市人口密度人/平方公里;第二个引入模型的是变量城市居民人均可支配收入元;没有变量被剔除..2.模型汇总Model Summary c该表显示模型的拟合情况..从表中可以看出;模型的复相关系数R为1.000;判定系数R Square为1.000;调整判定系数Adjusted R Square为1.000;估计值的标准误差Std. Error of the Estimate为28.351;Durbin-Watson检验统计量为2.845;当DW≈2时说明残差独立..3.方差分析表该表显示各模型的方差分析结果..从表中可以看出;模型的F统计量的观察值为23832.156;概率p值为0.000;在显著性水平为0.05的情形下;可以认为:商品房平均售价元/平方米与城市人口密度人/平方公里;和城市居民人均可支配收入元之间有线性关系..4.回归系数Coefficients a该表是多重共线性检验的特征值以及条件指数..对于第二个模型;最大特征值为2.891;其余依次快速减小..第三列的各个条件指数;可以看出有多重共线性.. 7. 残差统计量Collinearity Diagnostics aModel Dimension EigenvalueCondition IndexVariance ProportionsConstant城市人口密度 人/平方公里城市居民人均可支配收入元11 1.898 1.000 .05 .05 2.102 4.319 .95 .9521 2.891 1.000 .00 .00 .002 .106 5.213 .21 .03 .00 3.00330.736.78.971.00a. Dependent Variable: 商品房平均售价元/平方米该图为回归标准化残差的直方图;正态曲线也被显示在直方图上;用以判断标准化残差是否呈正态分布..但是由于样本数只有11个;所以只能大概判断其呈正态分布..9.回归标准化的正态P-P图该图显示的是因变量与回归标准化预测值的散点图;其中DEPENDENT 为x轴变量;ZPRED为y轴变量..由图可见;两变量呈直线趋势..附件:原始数据:自变量散点图:由散点图可以看出;可进入分析的变量为城市人口密度、城市居民人均可支配收入..。

SPSS实例教程:多重线性回归,你用对了么?

SPSS实例教程:多重线性回归,你用对了么?

SPSS实例教程:多重线性回归,你用对了么?在实际的医学研究中,一个生理指标或疾病指标往往受到多种因素的共同作用和影响,当研究的因变量为连续变量时,我们通常在统计分析过程中引入多重线性回归模型,来分析一个因变量与多个自变量之间的关联性。

一、多重线性回归的作用多重线性回归模型在医学研究领域得到了广泛的应用,其作用主要体现在以下几个方面:1、探索对于因变量具有影响作用的因素;2、控制混杂因素,评价多个自变量对因变量的独立效应;3、用已知的自变量来估计和预测因变量的值及其变化。

二、多重线性回归的形式多重线性回归的一般表达形式为:由表达式可以看出,每个因变量的实际测量值yi由两部分组成,即和ei 。

为估计值,即在给定自变量取值时因变量y的估计值,表示能由自变量决定的部分;ei为残差,即因变量实测值yi与估计值之间的差值,表示不能由自变量决定的部分,而对于残差的分析是多重线性回归建模过程中需要重点关注的地方。

此外在多重线性回归的表达式中,b0为常数项,表示当所有自变量取值为0时因变量的估计值;bi为偏回归系数,表示当其他自变量不变时,xi每改变一个单位时所引起的的变化量。

三、多重线性回归的适用条件多重线性回归模型作为一种统计模型,它有严格的适用条件,在建模时也需要对这些适用条件进行判断。

但是许多使用者往往忽视了这一点,在使用过程中只是单一的构建模型,最终很有可能得出错误的结论。

因此在应用多重线性回归之前,我们应该了解它需要满足哪些前提条件呢?总结起来可用4个词来概况:线性(Linear),独立(Independence),正态(Normality),齐性(Equal variance),缩写为LINE原则。

(1) 线性:各自变量xi与因变量yi之间存在线性关系,可以通过绘制散点图来进行判断;(2) 独立:因变量yi的取值之间相互独立,反映到回归模型中,实际上就是要求残差ei之间相互独立;(3) 正态性:构建多重线性回归模型后,残差ei服从正态分布;(4) 方差齐性:残差ei的大小不随xi取值水平的变化而变化,即残差ei具有方差齐性。

多元线性回归分析spss

多元线性回归分析spss

多元线性回归分析spss
多元线性回归分析是一种常用的统计分析技术,用于对各因素之间的相互关系进行研究。

使用多元线性回归分析,可以检验一个或多个自变量对因变量具有统计学显著性的影响,从而推断出实际世界存在的不同因素可能带来的影响。

在spss中,我们使用下拉菜单选择“分析”>“回归”>“多元”来开始多元线性回归分析。

在多元线性回归窗口中,我们可以在右边的“可用变量”列中选择变量,拖拽到“因变量”和“自变量”栏中。

接下来,我们可以选择要使用的模型类型,其中包括多元线性回归,截距,变量中心以及相关的其他预测结果。

在进行模型拟合之前,我们可以在“多重共线性”复选框中对共线性进行调整,进行预测和显著性检验,并调整“参数估计”和“残差”复选框,自由地绘制结果。

在运行了多元线性回归分析之后,在spss中,我们可以在输出窗口中查看多元回归方程的系数和检验的结果,以及它们对回归系数的影响,残差分布情况,多重共线性分析和其他一些输出参数。

总而言之,spss中多元线性回归分析是一种有效的统计分析方法,可以用来检验多个自变量对回归方程的影响。

它具有许多内置功能,可以容易地针对回归系数和其他参数进行各种分析,提供了可信的结果,帮助人们深入了解各类因素对研究结果的影响。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。

SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。

本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。

步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。

数据应包含一个或多个自变量和一个因变量,以便进行回归分析。

数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。

步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。

可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。

确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。

步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。

在对话框中,将因变量和自变量移入相应的输入框中。

可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。

步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。

例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。

根据需要,适当调整这些选项。

步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。

结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。

步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。

spss多元线性回归分析结果解读

spss多元线性回归分析结果解读

spss多元线性回归分析结果解读SPSS多元线性回归分析结果解读1. 引言多元线性回归分析是一种常用的统计分析方法,用于研究多个自变量对因变量的影响程度及相关性。

SPSS是一个强大的统计分析软件,可以进行多元线性回归分析并提供详细的结果解读。

本文将通过解读SPSS多元线性回归分析结果,帮助读者理解分析结果并做出合理的判断。

2. 数据收集与变量说明在进行多元线性回归分析之前,首先需要收集所需的数据,并明确变量的含义。

例如,假设我们正在研究学生的考试成绩与他们的学习时间、家庭背景、社会经济地位等因素之间的关系。

收集到的数据包括每个学生的考试成绩作为因变量,以及学习时间、家庭背景、社会经济地位等作为自变量。

变量说明应当明确每个变量的测量方式和含义。

3. 描述性统计分析在进行多元线性回归分析之前,我们可以首先对数据进行描述性统计分析,以了解各个变量的分布情况。

SPSS提供了丰富的描述性统计方法,如均值、标准差、最小值、最大值等。

通过描述性统计分析,我们可以获得每个变量的分布情况,如平均值、方差等。

4. 相关性分析多元线性回归的前提是自变量和因变量之间存在一定的相关性。

因此,在进行回归分析之前,通常需要进行相关性分析来验证自变量和因变量之间的关系。

SPSS提供了相关性分析的功能,我们可以得到每对变量之间的相关系数以及其显著性水平。

5. 多元线性回归模型完成了描述性统计分析和相关性分析后,我们可以构建多元线性回归模型。

SPSS提供了简单易用的界面,我们只需要选择因变量和自变量,然后点击进行回归分析。

在SPSS中,我们可以选择不同的回归方法,如逐步回归、前向回归、后向回归等。

6. 回归结果解读在进行多元线性回归分析后,SPSS将提供详细的回归结果。

我们可以看到每个自变量的系数、标准误差、t值、显著性水平等指标。

系数表示自变量与因变量之间的关系程度,标准误差表示估计系数的不确定性,t值表示系数的显著性,显著性水平则表示系数是否显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果。

对于有多个自变量和一个因变量的线性回归称为多重线性回归,有的资料上称为多元线性回归,但我认为多元的意思应该是真的因变量而非自变量的,而且多重共线性这个说法,也是针对多个自变量产生的,因此我还是赞同叫做多重线性回归。

多重线性回归是适用条件和简单线性回归类似,也是自变量与因变量之间存在线性关系、残差相互独立、残差方差齐性,残差呈正态分布,但是由于自变量多于1个,因此还需要要求自变量之间不存在相关性,即不存在多重共线性,但是完全不存在相关的两个变量是不存在的,因此条件放宽为只要不是强相关性,都可以接受。

多重线性回归在SPSS中的操作过程和简单线性回归一样,只是设置的内容多了一些,并且由于考察的信息较多,建议设定分析步骤,常用的步骤为
1.绘制散点图,判断是否存在线性趋势
2.初步建模,包括设定变量筛选方法
3.残差分析,分析建模之后的残差的正态性,独立性,方差齐性等问题
4.强影响点和多重共线性的判断
5.根据以上分析结果修正模型,并重复3-4,直到模型达到最优效果
分析—回归—线性。

相关文档
最新文档