离散数学自学笔记命题公式及其真值表

合集下载

离散数学命题逻辑

离散数学命题逻辑

第一章命题逻辑
等价公式的证明方法 方法1:用列真值表。(不再举例) 方法2:用公式的等价变换.(用置换定律)
置换定律(定理1-4.1):A是一个命题公式,X是A中的 一部分且也是合式公式,如果XY,用Y代替A中的X 得到公式B,则AB。 证明: XY则对任意指派X,Y真值相同,用Y代 替A中的X得B,则对任意指派A,B真值相同,故等价.
1-4 真值表与等价公式 1-5 重言式与蕴含式
第一章命题逻辑
4.1 真值表
命题公式不是命题,它没有真值,但是给其中 的所有命题变元作指派以后它就有了真值. 真值表:在命题公式中,对于分量指派真值的各种 可能组合,就确定了这个命题公式的各种真值情况, 把它汇成表,就形成了命题公式的真值表。 例如命题公式 (PQ)∨Q 的真值表 P Q P P Q (PQ)∨Q F F T T F T F T T T F F F T T T F T T T
① 对任意公式A 、B ,若AB 且A是重言式, 则B必是重言式。
② 对任意公式A、B和C,若AB,BC,则 AC。 ③ 对任意公式A、B和C,若AB,AC,则 A(B∧C)。 ④ 对任意公式A、B和C,若AC,BC,则 A∨BC。
第一章命题逻辑
下面给出等价式与蕴涵式之间的关系。 定理1-5.1 设P和Q是两命题公式,PQ的充要条 件是PQ且QP。 证明: 若PQ,则PQ为重言式,因为 PQ (PQ)∧(QP) 则 PQ为永T, QP为永T.即PQ且QP。 反之,若 PQ且QP,则PQ为永T, QP为永T 因此, PQ为重言式,即PQ.
第一章命题逻辑
5.2 蕴涵式
有些重言(永真)式,如(P∧(PQ))Q,公式 中间是“”联结词,是很重要的,称之为重言蕴 涵式. 定义:如果公式PQ是重言式,则称P重言(永真) 蕴涵Q,记作PQ。

离散数学第一章(第2讲)

离散数学第一章(第2讲)

P Q P ∨Q
FF F FT T TF T TT T
(P∨Q)ΛP
F F T T
¬((P∨Q)ΛP)
T T F F
P Q R QΛR P∨(QΛR)
FFF F
F
FFT F
F
FTF F
F
FTT T
TTTF F
T
TTT T
T
例2.写出命题公式 P∨(QΛR)的真值表
由上二例可见,2个命题 变元有4组真值指派;3 个命题变元有23= 8组 真值指派,n个命题变元 则有 2n个真值指派。
翻译:P :今天是周六 R: 我们到圆明园玩 T:我们到动物园玩
Q:我们到颐和园玩 S:颐和园游人太多
前提: P (Q∨R), S Q, P , S
结论: R∨T
(11) 设P:明天下雨,Q:明天刮风,R:我去学校,则下列命 题公式各表示什么意思。
1) (PQ) R 如果明天不是风雨交加,则我去学校。
2) (PQ) R 如果明天不下雨也不刮风,我才去学校。
3) P ∨ Q R 若明天下雨或刮风,则我不去学校。
§3命题公式的翻译
步骤如下: (1)找出各简单命题,分别符号化。 (2)选择适当的联结词,把简单命题逐个联结起来。
例. 将下列命题符号化. (1)李明是计算机系的学生,他住在312室或313室。 解:首先用字母表示简单命题。 P:李明是计算机系的学生。 Q:李明住在312室。 R:李明住在313室。 该命题符号化为:P(Q▽R)
《定义》:命题公式A在其所有可能的赋值下取得的值 列成的表称为A的真值表。
构造真值表的步骤如下: 1)找出给定命题公式中所有的命题变元,列出所有可能的 赋值。 2)按照命题公式的运算次序列出命题公式的各层次。 3)对应每个赋值,计算命题公式各层次的值,直到最后计 算出整个命题公式的值。

2 离散数学-命题公式,真值表

2 离散数学-命题公式,真值表

2 命题公式,真值表(1) 数理逻辑是通过引入表意符号研究人类思维中的推理过程及推理正确与否的数学分支.数学------⎧⎨⎩符号运算推理---思维过程:前提结论命题逻辑---研究由命题为基本单位构成的前提和结论之间的可推导关系.(逻辑演算) 即将推理(不涉及内函)形式化.例1 (a) 4是偶数.张林学习优秀.太阳系以外的星球上有生物.(b) 这朵花真美丽!现在开会吗?(c) 3 5.x +>我正在说慌.特征分析(a) 陈述句,非真即假.(b) 感叹句,疑问句.(c) 悖论.定义1 能辩真假的陈述句,称为命题,用,,,P Q Z 表示.其判断结果称为命题的真值.成真的命题称为真命题,其真值为真,记为,T 或为1.成假的命题称假命题,其真值为假,记为,F 或为0.例2 (1) 2008年奥运会在北京举行.(2) 22 5.⨯=(3) 计算机程序的发明者是诗人拜伦.用符号表是上述命题,并求真值.解 (1) :P 2008年奥运会在北京举行. .T(2) :Q 22 5.⨯= .F(3) :R 计算机程序的发明者是诗人拜伦. .F(2) 3, 35,+ 3(41).+- 例3 (1) 今天没有数学考试.(2) 下午,我写信或做练习.(3) 王芳不但用功,而且成绩优秀.(4) 如果太阳从西边出来了,那么地球停止转动.(5) 2是素数,当且仅当三角形有三条边.特征分析(a)存在自然语言中的虚词.(b)语句可以分解,细化.定义2 称下列符号为逻辑联结词否定 ⌝ 非 P ⌝析取 ∨ 或者 P Q ∨合取 ∧ 且 P Q ∧蕴涵 → 若----,则----- P Q →等价 ↔ 当且仅当 P Q ↔逻辑联结词真值的规定例4 将下列命题符号化.(1) 小李聪明,但不用功. ()P Q ∧⌝(2) 单位派小王或小苏出差. P Q ∨(3) 如果椅子是紫色的,且是园的,那么地是平的. ()P Q R ∧→ (4) n 是偶数当且仅当它能被2整除. P Q ↔注 1 逻辑联结词:运算符.顺序 ,,,,.⌝∧∨→↔2 自然语言中 虽然---,但是----; 不但---,而且----; ∧只有----,才----; 除非----,才-----; →3 ∨ 可兼或(相容) ∨ 不可兼或(排斥)小王是山东人或是河北人. ()()P Q P Q P Q ∨⇔∧⌝∨⌝∧4 ,P Q -----------------------简单命题()P Q R ∨→-----------复合命题(由简单命题及逻辑联结词按一定规则组成)5 复合命题的真值由简单命题和逻辑联结词真值规定共同确定.“若雪是黑的,那么太阳从西边出来了.”P :雪是黑的. :Q 太阳从西边出来了.P Q → 真值 为 T6 蕴含联结词的真值规定解释“若天下雨,那么我带伞.”何时自食其言.前件:P 天下雨.后件:Q 我带伞.则有命题 P Q → 仅当天下雨,我没有带伞时才自其言,即当前件为T ,后件为F 时,命题才为F .对应的真值情况如下:(3) 3,;43;ππ-221, 5.;23;24|x y x x y x y ==++-定义3 真值确定的命题,称为命题常元1,0,否则为命题变元,记号仍用,.P Q命题公式是由按下列规则生成的符号串(1)命题常元是命题公式(2)命题变元是命题公式(3)若,P Q 是命题公式,则,,,,P P Q P Q P Q P Q ⌝∨∧→↔也是命题公式.(4)有限次运用(1),(2),(3)得到的字符串也是命题公式.注 1 递归定义.():,,,().P Q R P P P Q P Q R ⌝→∧⌝⌝→⌝→∧2 ,(()Q P Q ∧∨不是命题公式.(4) 定义4 命题公式中,命题变元的一组确定的真值,称为该公式的一个真值指派.真值指派的全体构成的表,称为该公式的真值表.注 命题公式12(,,,)n A P P P 一共有2n 个真值指派.例5 求命题公式()Q P Q P ∧→→的真值表.解(5) 22sin cos 1,arcsin 2,30.x x x x +=≥+>例6 讨论下列命题公式的真值情况.(),P P Q ⌝→→ (),P Q P ∧∧⌝ ().P P Q ∨⌝→ 解定义5 命题公式12(,,,)n A P P P 在2n 个真值指派下其值⎧⎪⎨⎪⎩永真永假至少有一个真 称A 为重言式矛盾式可满足式(1) 数理逻辑、命题逻辑研究的内容。

离散数学重要公式定理汇总

离散数学重要公式定理汇总
⑴ 交换律 对任何集合A、B,有AB=BA。 ⑵ 结合律 对任何集合A、B、C,有 (AB)C=A(BC)。教材里有证明。 ⑶ 同一律 对任何集合A,有AΦ=A。 ⑷ 对任何集合A,有AA=Φ。 ⑸ ∩对可分配 A∩(BC)=(A∩B)(A∩C)
关系的性质
一. 自反性
定义:设R是集合A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中,“”是自反关系,因
离散数学重要公式定理汇总
大一上
Formula
基本的等价公式
⑴ 对合律 PP ⑵ 幂等律 P∨PP P∧PP ⑶ 结合律 P∨(Q∨R)(P∨Q)∨R P∧(Q∧R)(P∧Q)∧R ⑷交换律 P∨QQ∨P P∧QQ∧P ⑸分配律 P∨(Q∧R)(P∨Q)∧(P∨R) P∧(Q∨R)(P∧Q)∨(P∧R) ⑹ 吸收律 P∨(P∧Q)P P∧(P∨Q)P ⑺德.摩根定律 (P∨Q)P∧Q (P∧Q)P∨Q
2013-12-16 7
Formula
• 蕴含的性质
*若AB且A为重言式,则B必为重言式 *若AB且BC,则AC (传递性) *若AB且AC,则A(B ∧ C) *若AB且C B,则(A∨C) B 证明见书P22
2013-12-16
8
conjunction
一、全功能真值表
2013-12-16 10
normal form
主析取范式定义 析取范式 A1∨A2∨...∨An, , 其中每个Ai (i=1,2..n) 都是小项,称之为主析取范式。 思考:主析取范式与析取范式的区别是什么? 主析取范式的写法 方法Ⅰ:列真值表 ⑴列出给定公式的真值表。 ⑵找出真值表中每个“T”对应的真值指派再对 应的小项。 ⑶用“∨”联结上述小项,即可。

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解
⑴ 交换律 对任何集合A、B,有AB=BA。 ⑵ 结合律 对任何集合A、B、C,有 (AB)C=A(BC)。教材里有证明。 ⑶ 同一律 对任何集合A,有AΦ=A。 ⑷ 对任何集合A,有AA=Φ。 ⑸ ∩对可分配 A∩(BC)=(A∩B)(A∩C)
关系的性质
一. 自反性
定义 :设 R是集合 A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中 , “ ”是自反关系,因
例 邻居关系和朋友关系是对称关系。
四.反对称性
定义:设R为集合A中关系,若对任何x, y∈A,如果有 xRy,和yRx,就有x=y,则称R为A中反对称关系 。
R是A上反对称的 xy((xAyAxRyyRx) x=y) xy((xAyAxyxRy)y Rx) (P112) 由R的关系图看反对称性:两个不同的结点之间 最多有一条边。 从关系矩阵看反对称性:以主对角线为对称的两 个元素中最多有一个1。 另外对称与反对称不是完全对立的,有些关系它 既是对称也是反对称的,如空关系和恒等关系。
如 实数的大于关系>,父子关系是反自反的。 注意:一个不是自反的关系,不一定就是反自反
的。
三.对称性 定义:R是集合A中关系,若对任何x, y∈A,如果有
xRy,必有yRx,则称R为A中的对称关系。 R是A上对称的
xy((xAyAxRy) yR方向相反的两 条边。 从关系矩阵看对称性:以主对角线为对 称的矩阵。
3
2018/10/25
Formula
等价公式(前10个)与集合论的公式比较: ⑴ 对合律 ~~AA ~A表示A的绝对补集 ⑵ 幂等律 A∪AA A ∩ A A ⑶ 结合律 A∪(B∪C)(A∪B)∪C; A∩(B∩C)(A∩B)∩C ⑷交换律 A∪BB∪A A∩BB∩A ⑸分配律 A∪(B∩C)(A∪B)∩(A∪C) A∩(B∪C)(A∩B)∪(A∩C) ⑹ 吸收律 A∪(A∩B)A A∩(A∪B)A

离散数学自学笔记命题公式及其真值表

离散数学自学笔记命题公式及其真值表

我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。

深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。

相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。

命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。

下面我们引入高一级的语言成分——命题公式。

定义1.1 以下三条款规定了命题公式(proposition formula)的意义:(1)命题常元和命题变元是命题公式,也称为原子公式或原子。

(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。

(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。

命题公式简称公式,常用大写拉丁字母A,B,C等表示。

公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。

例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。

为使公式的表示更为简练,我们作如下约定:(1)公式最外层括号一律可省略。

(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。

(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。

例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。

离散数学笔记总结

离散数学笔记总结

离散数学笔记总结一、命题逻辑。

1. 基本概念。

- 命题:能够判断真假的陈述句。

例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。

- 命题变元:用字母表示命题,如p,q,r等。

2. 逻辑联结词。

- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。

- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。

- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。

- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。

- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。

3. 命题公式。

- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。

- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。

- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。

4. 逻辑等价与范式。

- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。

例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。

- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。

- 合取范式:由有限个简单析取式的合取组成的命题公式。

- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。

- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。

二、谓词逻辑。

1. 基本概念。

- 个体:可以独立存在的事物,如人、数等。

- 谓词:用来刻画个体性质或个体之间关系的词。

例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。

- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。

- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。

离散数学(1)复习笔记

离散数学(1)复习笔记

离散数学(1)复习笔记Ch1 命题逻辑的基本概念1.1 命题命题:能判断真假且⾮真即假的陈述句。

命题的真值,真命题,假命题。

* 真值待定 *简单命题 | 原⼦命题,复合命题。

1.2 常⽤的5个命题联结词否定,合取,析取,蕴涵,双蕴涵。

* 异或 | 排斥或 | 不可兼或 * 注意语义判断。

* p→q = ﹁ p∨q ** 必要条件 * 只有……才……;仅当……,……;……,仅当……。

注意命题符号化的蕴涵⽅向。

* domain * A horse is white. (×)联结词集,⼀元联结词,⼆元联结词。

* 优先顺序 * (),﹁,∧,∨,→,↔1.3 合式公式及其赋值命题常项 | 命题常元(值是确定的),命题变项 | 命题变元(真值可以变化的陈述句)。

合式公式 | 命题公式 | 命题形式 | 公式(wff)(well formed formulas),原⼦命题公式(单个命题变项),⼦公式。

* 单个命题变项是合式公式,没说命题常项。

*赋值 | 解释,成真赋值,成假赋值。

真值表。

* 真值表要点:赋值从00…0开始,按照⼆进制加法,直到11…1为⽌;按照运算的优先次序写出各⼦公式。

*命题公式的分类:重⾔式 | 永真式,⽭盾式 | 永假式,可满⾜式。

1.4 重⾔式与代⼊规则代⼊规则。

* 1. 公式中被代换的只能是命题变项(原⼦命题),⽽不能是复合命题。

2.对公式中某命题变项施以代⼊,必须对该公式中出现的所有同⼀命题变项施以相同的代换。

* 1.5 命题形式化命题形式化 | 符号化。

* 注意充分条件和必要条件的区别 ** 注意语义是否考虑完整 *1.6 波兰表达式中置式 | 中缀式,前置式 | 前缀式 | 波兰式,后置式 | 后缀式 | 逆波兰式。

Ch2 命题逻辑的等值和推理演算2.1 等值定理等值 | 等价,等值定理:设A,B为两个命题公式,A = B的充分必要条件是 A↔B为⼀个重⾔式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学自学笔记命题公式及其真值表
我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。

深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。

相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。

命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。

下面我们引入高一级的语言成分——命题公式。

定义1.1 以下三条款规定了命题公式(proposition formula)的意义:
(1)命题常元和命题变元是命题公式,也称为原子公式或原子。

(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。

(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。

命题公式简称公式,常用大写拉丁字母A,B,C等表示。

公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。

例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。

为使公式的表示更为简练,我们作如下约定:
(1)公式最外层括号一律可省略。

(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。

(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。

湖南省自考网:/整理
例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))
设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A的子公式;q ∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。

如果公式A含有命题变元p1,p2,…,pn,记为A(p1,…,pn),并把联结词看作真值运算符,那么公式A可以看作是p1,…,pn的真值函数。

对任意给定的p1,…,pn的一种取值状况,称为指派(assignments),用希腊字母a,b等表示,A均有一个确定的真值。

当A对取值状况 a 为真时,称指派a弄真A,或a是A的成真赋值,记为a (A) = 1;反之称指派a弄假A,或a是A的成假赋值,记为a (A) = 0.对一切可能的指派,公式A的取值可能可用表1.7来描述,这个表称为真值表(truth table)。

当A(p1,…,pn)中有k个联结词时,公式A的真值表应为2n行、k+n列(不计表头)。

例1.9 作出公式┐(p→(q∧r))的真值表。

表1.7
表1.7即为所求。

可见指派(0,0,0),(0,0,1),(0,1,0),(0,1,1)及(1,1,1)均弄假该公式,而指派(1,0,0),(1,0,1),(1,1,0)
了解自考资讯:湖南大学自考网:/
湖南省自考网:/
/
资料来源网络,仅供参考。

相关文档
最新文档