反比例函数及典型例题

合集下载

人教版苏科版初中数学—反比例函数(经典例题 )

人教版苏科版初中数学—反比例函数(经典例题 )

班级小组姓名成绩(满分120)一、反比例函数(一)反比例函数的定义(共4小题,每题3分,题组共计12分)例1.下列函数中,是反比例函数的是()A.()11x y -=B.11y x =+C.21y x =D.13y x=例1.变式1.若函数()22351mm y m x +-=-为反比例函数,求的m 值.例1.变式2.当k 为时,反比例函数.例1.变式3.下列函数关系是反比例函数关系的是()A.三角形的底边为一常数,则三角形的面积y 与三角形的高x 间的函数关系B.力F 为一常数,则力所做的功W 与物体在力的方向上移动的距离S 间的函数关系C.矩形的面积为一常数,则矩形的长y 与宽x 间的函数关系D.当圆锥的底面积为一常数,圆锥的体积V 与圆锥的高h 间的函数关系(二)根据描述列出反比例函数的表达式(共4小题,每题3分,题组共计12分)例2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值,由表知函数表达式为.根据函数表达式完成下表.x -1368y3-32例2.变式1.若y 与21x +成反比例,且1x =时,2y =,则此函数表达式为.例2.变式2.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当2x =时,4y =-;当1x =-时,5y =,则y 与x 之间的函数表达式为.()223kk y k k x--=+例2.变式3.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,4y =;当3x =时,5y =,求1x =-时y 的值.(三)确定实际问题中函数表达式(共4小题,每题3分,题组共计12分)例3.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成函数关系,列出a 关于b 的函数关系式为.例3.变式1.已知一个长方体的体积是100m³,它的长是y m ,宽是5m ,高为x m ,试写出,x y之间的函数关系式,并注明x 的取值范围.例3.变式2.有一水池装水12m³,如果从水管中1h 流出x m³的水,则经过y h 可以把水放完,写出y与x 的函数关系式及自变量x 的取值范围.例3.变式3.一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时,31.43/kg m ρ=.(1)求ρ与V 的函数关系式;(2)求当32V m =时,氧气的密度ρ.二、反比例函数的图像和性质(一)反比例函数的图象(共4小题,每题3分,题组共计12分)例4.关于反比例函数4y x=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支位于第二、四象限内C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称例4.变式1.已知点(1,1)在反比例函数ky x=(k 是常数,0k ≠)的图象上,则这个反比例函数的大致图象是()A. B. C. D.例4.变式2.函数2y x =与函数1y x-=在同一坐标系中的大致图象是()A. B. C. D.例4.变式3.反比例函数1m y x-=的图象在第一、三象限内,则m 的取值范围是.(二)反比例函数的性质(共4小题,每题3分,题组共计12分)例5.如图,反比例函数ky x=的图象经过点A(-1,-2),则当1x >时,函数值y 的取值范围是()A.1y >B.01y << C.2y > D.02y <<例5.变式1.若点1P (1,m),2P (2,n)在反比例函数ky x=(0k <)的图象上,则m n(填“>”“<”或“=”).例5.变式2.在函数21a y x--=(a 为常数)的图像上有三点()11,x y 、()22,x y 、()33,x y ,且1230x x x <<<,则123,,y y y 的大小关系是()A.231y y y <<B.321y y y <<C.123y y y << D.312y y y <<例5.变式3.已知函数1y x-=,当自变量的取值为10x -<<或2x ≥,函数值y 的取值范围为.(三)反比例函数比例系数k 的几何意义(共4小题,每题3分,题组共计12分)例6.如图,已知A 是反比例函数ky x=(k 是常数,0k ≠)的图像上一点,AB⊥x 轴于点B,且△ABO 的面积是3,则k 的值是()A.3B.3-C.6D.6-例6.变式1.如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A,则k 的值是()A.2B.2-C.4D.4-例6.变式2.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB∥x 轴,C,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.例6.变式3.如图,矩形AOBC 的面积为4,反比例函数ky x=的图象的一支经过矩形对角线的交点P,则该反比例函数的表达式是()A.4y x=B.2y x=C.1y x=D.12y x=三、反比例函数的应用(一)反比例函数解析式和图象问题(共4小题,每题3分,题组共计12分)例7.某段公路全长200km,一辆汽车要行驶完这段路程,则所行驶速度v (km/h)和时间t (h)间的关系式为,若限定汽车行驶速度不超过80km/h,则所用时间最少要.例7.变式1.一个三角形的面积为10,则底边长a 与这条边上的高h 间的关系式为,自变量的取值范围为.例7.变式2.某变阻器两端的电压为220V,则通过变阻器的电流I(A)与它的电阻R(Ω)之间的函数关系的图象大致为下图中的()例7.变式3.学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边长y (m)与相邻的另一边长x (m)之间的关系如图所示.(1)绿化带面积是多少?你能写出这一函数的表达式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?(二)函数图象交点问题(共4小题,每题3分,题组共计12分)例8.双曲线8y x=与直线2y x =的交点坐标为.例8.变式1.同一坐标系中,正比例函数2y x =的图象与反比例函数()22k y k x-=≠的图象有公共点,则k 的取值范围为.例8.变式2.函数1y x =(x ≥0),29y x=(x >0)的图象如图所示,则有如下结论:①两函数图象的交点A 的坐标为(3,3);②当x >3时,21y y >;③当1x =时,BC=8;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是.x(m)10203040y(m)例8.变式3.右图中曲线是反比例函数7nyx+=的图象的一支.(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?(2)若一次函数2433y x=-+的图象与反比例函数7nyx+=的图象交于点A,与x轴交于点B,△AOB的面积为2,求n的值.(三)反比例函数的综合应用(共4小题,每题3分,题组共计12分)例9.(1)已知反比例函数kyx=(0k≠),当13x=-,6y=-时,求这个函数的表达式.(2)若一次函数4y mx=-的图象与(1)中的反比例函数kyx=的图象有交点,求m的取值范围.例9.变式1.今年两会提出:随着城镇化水平的提高,为了房产去库存,国家鼓励农民进城买房,可享受政府担保免收利息的惠民政策,小王家购买了一套学区房,首付15万元后,剩余部分贷款,贷款金额按月分期还款,每月还款数相同,计划每月还款y万元,x个月还清贷款,已知y是x的反比例函数,其图象如图所示.(1)求y与x的函数关系式,并求小王家购买学区房的总价是多少万元?(2)若计划80个月还清贷款,则每月应还款多少万元?例9.变式2.如图,函数11y k x b =+的图象与函数()220k y x x=>的图象相交于A,B 两点,与y 轴交于点C,已知,A 点坐标为(2,1),C 点坐标为(0,3).(1)求这两个函数表达式和点B 的坐标;(2)观察图像,比较0x >时,1y 与2y 大小.例9.变式3.如图,在直角坐标系中,O 为坐标原点.已知反比例函数ky x=(k >0)的图象经过点A(2,m),过点A 作AB⊥x 轴于点B,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C(x ,y )在反比例函数ky x=的图象上,求当1≤x ≤3时函数值y 的取值范围;(四)反比例函数的跨学科应用(共4小题,每题3分,题组共计12分)例10.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I 的函数表达式为()A.()60I R R =>B.()60I R R =->C.()30I R R=>D.()20I R R=>例10.变式1.某一电路中,电源电压()U V 保持不变,电流()I A 与电阻()R Ω之间的函数图像如图所示.(1)I 与R 的函数关系式为;(2)结合图象回答,当电路中的电流不超过12A 时,电路中电阻R 的取值范围是.例10.变式2.一定质量的二氧化碳,当它的体积35V m =时,它的密度31.98/kg m r =,则r 关于V 的函数图象大致是()例10.变式3.某小组到野外考察,路过一段临时铺设的木板路,木板对地面的压强()p Pa 是木板面积()2S m 的反比例函数,其图象如图所示.(1)请写出函数的表达式和变量的取值范围;(2)当木板的面积为20.2m 时,压强是多少;(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?。

反比例函数(含答案)

反比例函数(含答案)

例1 已知一次函数2y x k =-的图象与反比例函数5k y x+=的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式. 解: 依题意,由两个函数解析式得所以一次函数和反比例函数的解析式分别为例注意: 解本题的关键是正确理解什么叫y 1与x+1成正比例,y 2与x 2成反比例,即把x+1与x 2看成两个新的变量.典型例题四例 (上海试题,2002)如图,直线221+=x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,x PB ⊥轴,B 为垂足,9=ABP S ∆(1)求点P 的坐标;(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧.作x RT ⊥轴,T 为垂足,当BRT ∆与AOC ∆相似时,求点R 的坐标.那么2-=b BT ,b RT 6=. ①当RTB ∆∽AOC ∆时,CO BT AO RT =,即2==COAOBT RT , ∴226=-b b ,解得3=b 或1-=b (舍去). ∴ 点R 的坐标为()2,3.②RTB ∆∽ COA ∆时,AO BT CO RT =,即21==AO CO BT RT , ∴2126=-b b ,解得131+=b 或131-=b (舍去). ∴点R 的坐标为⎪⎪⎭⎫ ⎝⎛-+2113,131. 综上所述,点R 的坐标为()2,3或⎪⎫⎛-+113,131.y例 B.((解 :(1)设点A 的坐标为(m,n),那么n AB m OB =-=,.∵ AB OB S ABO ⋅=∆21,∴.4,2)(21-==⋅-mn n m 又mk n =,∴4-==mn k .∴ 双曲线:x y 4-=,直线:4+-=x y .(2)解由xy 4-=,4+-=x y 组成的方程组,得2221+=x ,2221-=y ;例 A 、B 求B 两点的抛物线在x 轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作x BH ⊥轴于点H . 在OHB ∆Rt 中,.3,31tan BH HO HO BH HOB =∴==∠由勾股定理,得222OB HO BH =+. 又10=OB ,.3,1,0.)10()3(222==∴>=+∴HO BH BH BH BH ∴ 点B (-3,-1).∵ ∴ ∴ (∵ ∴ ∴ 令 ).31(321)(2122m m GA BH DO GA DO BH DO S +-=+=⋅+⋅=由已知,直线经过第一、二、三象限, ∴ 0>b ,即03>-mm..03,0>-∴>m m由此得 .30<<m ∴ ).31)(3(21mm S +-=即 ).30(292<<-=m mm S (3)过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.证明如下:S ∆由得 ∵ ∴ ∴ ∴ 即 则 aa 2121令 .321=-x x 则 .9324)21(2=-⋅-+-aa a a 整理,得 01472=+-a a . ∵ ,012174)4(2<-=⨯⨯--=∆∴ 方程01472=+-a a 无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.典型例题八例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 [ ]; (2)面积为定值时长方形的长与宽的关系 [ ]; (3)圆面积与半径的关系 [ ]; (4)圆面积与半径平方的关系 [ ];(5)三角形底边一定时,面积与高的关系 [ ]; (6)三角形面积一定时,底边与高的关系 [ ];(7)三角形面积一定且一条边长一定,另两边的关系 [ ]; (8)在圆中弦长与弦心距的关系 [ ];(9)x 越来越大时,y 越来越小,y 与x 的关系 [ ]; (10)在圆中弧长与此弧所对的圆心角的关系 [ ].说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义。

反比例函数的应用专项练习30题(有答案)ok

反比例函数的应用专项练习30题(有答案)ok

反比例函数的应用专项练习30题(有答案)1.如图所示,楠溪江引水工程蓄水池每小时的放水量q(万m3/h)与时间t(h)之间的函数关系图象.(1)求此蓄水池的蓄水量,并写出此图象的函数解析式;(2)当每小时放水4万m3时,需几小时放完水?2.经科学研究人的大脑中的记忆随时间的变化有一定的函数关系,其规律可以用如下图象来说明;现有一个同学在学习某知识点一天后经估计记忆中有80%没有忘记,那么请你用学过的数学知识说明:8天后该同学在不复习的前提下,大脑中尚存有多少记忆没有忘记?3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度P是体积V的反比例函数,它的图象如图所示①求密度P(单位:kg/m3)与体积V(单位:m3)之间的函数表达式;②求当V=9m3时二氧化碳的密度P.4.某运输公司承担一项运送总量为100万立方米土石方的任务,计划安排若干辆同类型的卡车运输,每辆卡车每天的运载量为100立方米.(1)求安排卡车的数量y(辆)与完成运送任务所需的时间t(天)的函数关系式;(2)若所有的运输任务必须在90天内完成,则至少需要安排多少辆卡车运输?5.某石油公司要修建一个容积为10 000m3的圆柱形地下油库.(1)请写出油库的底面积s(m2)与其深度d(m)之间的函数关系.(2)当底面积为500m2时,施工队施工时应向下掘进多深?.6.甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示);(2)求甲、乙每天各加工多少个;(3)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.7.某车队有1辆大车和5辆小车,同时运送一批货物,大车每小时运送货物xt,大车每小时运送的货物是每辆小车每小时运送货物的3倍、设该车队运送货物800t需yh.(1)写出y与x的函数关系式:_________;(2)当x=12时,y的值是_________;(3)按(2)的工作效率运送800t货物,若要提前10h完成任务,问该车队在不增加大车的情况下,至少要增加几辆小车?8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求P与V的函数关系式;(2)当气球内气体的体积是0.96m3时,气球内气体的气压是多少?9.矩形面积为4,试写出矩形的长y与宽x之间的函数关系式,并在直角坐标系中画出它的图象.10.某新建的大楼楼体外表需贴磁砖,楼体外表总面积为4800m2.(1)设所需磁砖的块数为n(块),每块磁砖的面积为S(m2),试求n与S的函数关系式;(2)如果每块磁砖的面积均为80cm2,每箱磁砖有120块,需买磁砖多少箱?11.某工厂计划生产1.2万吨化工产品:(1)生产时间t(天)与生产速度v(吨∕天)有怎样的函数关系?(2)若工厂平均每天可生产60吨化工产品,那么该厂完成生产任务需要多长时间?(3)若工厂有12个车间,每个车间的生产速度相同,当以问题(2)中的生产速度正常生产80天后,由于受到金融危机的影响,市场需求量下降,该厂决定关闭4个车间,其余车间正常生产,那么工厂实际完成任务的时间将比原来推迟多少天?12.某小区新建成的住宅楼主体工程已经竣工,只剩下楼外体表需贴瓷砖,已知楼体外表的面积为5×103(m2).(1)写出每块瓷砖的面积S(m2)与所需的瓷砖块数m(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80(cm2),灰、白、蓝瓷砖使用比例是1:2:2,则需要三种瓷砖各多少块?13.设△ABC中BC边的长为x(cm),BC上的高AD为y(cm),△ABC的面积为常数.已知y关于x的函数图象过点(3,2).(1)求y关于x的函数解析式和△ABC的面积;(2)求当4<x<9时y的取值范围.14.一个水池的容积是8m2,如果从进水管中每小时流进x m2,那么经过y小时就可以把水池注满.(1)求y与x的函数关系式;(2)当x=2m2时,求y的值;(3)画出函数的图象.15.某车间承包一项生产1800个零件的任务,计划用t天完成.(1)每天生产零件s(个)与生产时间t(天)有怎样的函数关系;(2)车间有工人60名,每天最多生产300个零件,预计最快可在几天内完成任务?(3)如果由于特殊原因,必须提前两天完成任务,车间需要增加多少工人才能按要求完成任务?16.某司机驾驶汽车从甲地去乙地购买货物,他以80(千米/时)的平均速度用3小时到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系;(2)如果该司机必须在4小时之内回到甲地,则返程时的速度不能低于多少?17.一定量的气体的压强P与它的体积V成反比例,已知当V=200时,P=50.(1)试用V表示P;(2)当P=100时,求V的值.18.近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),若100度镜片的焦距比500度镜片的焦距多0.8米,求k的值.19.某蓄水池的排水管每小时排水8立方米,6小时可将满池的水全部排空.求:(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(立方米),将满池水排空所需的时间t(小时),试写出t关于x 的函数解析式,并指出定义域.(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空?20.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 000m3,那么水池中的水至少要多少小时排完?21.汽车匀速行驶在相距S千米的甲、乙两地之间,下图是行驶时间t(h)与行驶速度v(km/h)函数图象的一部分.(1)行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:_________.(2)若该函数图象的两个端点为A(40,1)和B(m,0.5).求这个函数的解析式和m的值;(3)若规定在该段公路上汽车的行驶速度不得超过50km/h,则汽车通过该路段最少需要多少时间?22.近视眼的度数y(度)与镜片焦距x(米)成反比例函数关系,已知200度近视眼镜镜片焦距0.5米,求眼镜度数y与镜片焦距x之间的函数关系式,并画出该函数示意图.23.某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)共需开挖水渠多少米?(2)求y与x之间的函数表达式;(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?24.如图,是一辆小汽车沿一条高速公路匀速前进的时间y(小时)与速度x(千米/时)关系的图象,根据图象提供的信息,解答下列问题:(1)这条公路的全长是多少千米;(2)写出速度与时间之间的函数关系式;(3)汽车最大速度可以达到多少;(4)汽车最慢用几个小时可以达到?如果要在3小时内达到,汽车的速度应不少于多少?25.某汽车油箱的容积为50升,司机加满油后准备从利川到100千米处的机场接客人,在接到客人后立即原路返回,请回答下列问题.(1)油箱加满油后,汽车能够行使的总路程y(千米)与平均耗油量x(升/千米)之间有怎样的函数关系?(2)司机驾驶汽车去机场时的平均耗油量为x升/千米.返回时司机降低车速,此时每行驶1千米的平均耗油量增加了1倍,司机一直以此速度行使,返回利川时邮箱里的油还能以此速度行驶100千米,求汽车去机场的平均耗油量是多少?26.为了提高某农作物的产量,有关部门选取了7500千克新产品供某地区使用.(1)写出可播种的亩数y(亩)与每亩所需的新品种的数量x(千克)之间的函数关系式;(2)若每亩需新品种15千克,这些新品种可供多少亩土地播种?27.为了预防流感,某校对教室进行“药熏消毒”.已知药物燃烧阶段室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例.燃烧完毕后,y与x成反比例(如图).根据图中信息解答下列问题:(1)求药物燃烧时,y与x函数关系式及自变量的取值范围;(2)求药物燃烧后,y与x函数关系式及自变量的取值范围;(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒副作用.那么从有人开始消毒,经多长时间后学生才可以回教室.28.我们学过反比例函数,如:当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式.请你仿照上例另举一个在日常生活中具有函数关系的量的实例,并写出它的函数关系式.29.汽车在高速公路上行驶,从如皋驶往上海.已知汽车到上海所需时间t(h)与行驶速度v (km/h)满足函数关系式:t=,其图象为如图所示的一段曲线,且端点为A(60,4),B(120,m).根据给出的图象,解答下列问题.(1)汽车在高速公路上行驶的速度不低于_________km/h;(2)求如皋到上海的路程;(3)若汽车上午6:40从如皋出发,中途在服务区休息10分钟,则最快上午几点到达上海?30.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之变化,密度ρ是体积v的反比例函数,当它的体积v=5m3时,密度ρ=1.98kg/m3.(1)求密度ρ(单位:kg/m3)与体积v(单位:m3)之间的函数关系式;(2)当二氧化碳的密度ρ=4.5kg/m3时,求v的值.参考答案:1.(1)设y关于x的函数解析式为q=,∵函数图象经过点(12,3),∴=3,解得k=36,∴函数解析式为q=;(2)当q=4万m3时,=4,解得t=9.答:当每小时放水4m3时,需9小时放完水2.设y=k/x当x=1时,y=0.8则k=0.8(3分)所以y=x(2分)当x=8,y=0.1(3分)答:大脑中尚存有10%的记忆没有忘记.3.(1)由题意可设P=(m为常量,m≠0),把点(3,1.98)代入,1.98=,解得:m=5.94;∴P=.(2)当v=9m3时,P==0.66,∴当V=9m3时二氧化碳的密度为0.66kg/m34.(1)由题意得:yt×100=1000000,解得y=;(2)当t=90时,y=≈112.答:至少需要安排112辆卡车运输.故答案为:y=;1125.(1)由容积=底面积×深度,可得:sd=10000所以:;(2)当底面积为500m2,即S=500时,将之代入第一问的函数关系式可得:解得d=20(米)答:施工队施工时应向下掘进20米.6.(1)根据题意,每天甲、乙两人共加工35个零件,易得解得x=15经检验,x=15是原方程的解,且符合题意.35﹣15=20答:甲每天加工15个,乙每天加工20个;(3)P=15m+20(m﹣1)即P=35m﹣20∵在P=35m﹣20中,P是m的一次函数,k=35>0,P 随m的增大而增大又由已知得:3≤m≤5∴当m=5时,P最大值=155当m=3时,P最小值=85.7.(1)根据题意,小车每小时可运送吨货物,易得这个车队车每小时运送货物为x+x=x,故有y ×x=800,化简可得;(3分)(2)由(1)的解析式,当x=12时,y==25;(6分)(3)根据题意,若要提前10h完成任务,即要求y≤15,代入解析式可得≤15,解可得x≥20,而此时的工作效率为12吨/时,故至少要增加=6辆小车(8分).故答案为:(1);(2)25.8.(1)设P与V的函数关系式为P=,则=60,解得k=96,∴函数关系式为P=;(2)当气球内气体的体积是0.96m3时,P=,∴气球内气体的气压是100kPa.画图10.(1)所需磁砖的块数=楼体外表总面积÷每块磁砖的面积所以由此可得出,n与S 的函数关系式是:;(2)当s=80时,,需买磁砖的箱数=所需磁砖的块数÷每箱磁砖的块数所以由此可得出,需买磁砖的箱数是=5000(箱)答:需买磁砖的箱数5000箱11.(1)∵vt=12000,∴,即t与v 的函数关系为.(2)当v=60时,,即工厂完成生产1.2万吨化工产品需200天.(3)(12000﹣80×60)÷[]=180(天),由180+80﹣200=60(天),知工厂实际完成任务时间将比原来推迟60天.12.(1)∵每块瓷砖的面积Sm2=楼体外表的总面积÷所需的瓷砖块数m块,由此可得出S与n的函数关系式是:S=;(2)当S=80×10﹣4=8×10﹣3时,n==625000,设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x 块,依据题意得出:x+2x+2x=625000,解得:x=125000,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块13.(1)设△ABC的面积为S,则S=xy,所以y=.所以2=,解得S=3(cm2),所以y与x 的函数解析式为,△ABC的面积为3cm2;(2)因为x>0,所以反比例函数的图象在第一象限,且y随x的增大而减小.当x=4时,y=;当x=9时,.所以y的取值范围为<y <.14.(1)∵水量×进水时间=容积,∴xy=8∴y=(2)令x=2,y===4,;(3)∵x>0,∴图象为:15.(1)∵某车间承包一项生产1800个零件的任务,计划用t天完成,∴每天生产零件s(个)与生产时间t(天)的函数关系为:s=;(2)1800÷300=6(天)故预计最快需要6天内完成任务;(3)设需要增加x人才能完成任务,则(x+60)××(6﹣2)=1800,解得x=30,答:需要增加30人才能按要求完成任务16.(1)∵s=80千米/时×3小时=240米,∴v=.(2)当t=4时,v==60,答:返回时的速度不低于60千米/小时.∵V=200时,P=50∴k=200×50=10000,∴p=;(2)当p=100时,v=10000÷100=100,故v的值是100.18.设100度镜片的焦距为x米,则500度镜片的焦距为(x﹣0.8)米.因为近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),所以100=,500=,即k=100x,k=500(x﹣0.8),解得x=1,k=100.故k的值为10019.(1)v=8×6=48m3,答:蓄水池的容积是48m3.(2)(0≤x≤6);(3)当t=5时,,x=9.6(m3),答:每小时的排水量至少为9.6m3.(4)当x=12时,(小时)答:最少4小时可将满池水全部排空20.(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)当t=6时,V==8000m3;∴每小时的排水量应该是8000m3;(4)∵V≤5000,∴≤5000,∴t≥9.6.∴水池中的水至少要9.6小时排完21.(1)把(40,1)代入t=,得k=40,∴行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:t=,故答案为:t=.(2)由(1)得出:函数的解析式为:t=,把(m,0.5)代入t=,0.5=,解得:m=80;(3)把v=50代入t=,得t=0.8,答:汽车通过该路段最少需要0.8小时22.由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.其图象为:23.(1)由图象,知共需开挖水渠24×50=1200(m);(3分)(2)设.∵点(24,50)在其图象上,故所求函数表达式为;(6分)(3)1200÷30=40(m).故每天至少要完成40m.24.(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=;(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/小时;(4)据图象,最低速度为50千米/小时,需要6时行完全程,汽车的速度应不少于每小时100千米25.(1)∵耗油量×行驶里程=50升;∴xy=50∴y=(x>0);(2)设平均耗油量为x升,根据题意得:解得:x=0.1.答:平均耗油量为0.1升/公里26.(1)∵一共有7500千克种子,∴xy=7500,即:y=;(2)当x=15时,y==500,答:若每亩需新品种15千克,这些新品种可供500亩土地播种27.(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x<10).(2)设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:8=,∴k2=80,∴此阶段函数解析式为y=(x≥10).(3)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,x>50.∴从消毒开始经过50分钟学生才可返回教室28.当路程s一定时,速度v是时间t的反比例函数;函数关系式为:v=(s为常数).答案不唯一.29.(1)∵图象端点A的坐标为(60,4),∴汽车在高速公路上行驶的速度不低于60km/h;(2)将(60,4)代入t=,得k=240.答:如皋到上海的路程为240km;(3)由(2)可知,函数解析式为:t=.由图象可知,汽车在高速公路上行驶的速度不得超过120km/h.则当v=120时,t==2.答:汽车最快上午8:50到达上海.30.(1)设密度ρ与体积v 之间的函数解析式为:(k≠0),依题意得:,∴k=9.9,∴密度ρ与体积v 之间的函数解析式为:;(2)由(1)求得:,当二氧化碳的密度ρ=4.5时,,=2.2(m3).。

实际生活中的反比例函数

实际生活中的反比例函数

实际生活中的反比例函数
实际生活中的反比例函数
主要内容:
(一)反比例函数的性质:
反比例函数(k 是常数,)
当时,图象的两个分支分别位于第一、三象限。

在每一个象限内,y 的值随x 值的增大而减小。

当时,图象的两个分支分别位于第二、四象限。

在每一个象限内,y 的值随x 值的增大而增大。

(二)能利用反比例函数及其性质解决实际问题,解释一些生活中的现象,体会数学的价值。

比如:使劲踩气球时,气球为什幺会爆炸?
因为在温度不变的情况下,气球内气体的压强p(Pa)与它的体积V
(m3)的乘积是一个常数k。

即pV=k(k 为常数,k>0)
在温度不变的情况下,气球内气体的压强p 是气球体积V 的反比例函数,即。

根据反比例函数的性质
当k>0 时,p 随V 的减小而增大。

如果用力踩气球,气球的体积会变小,压强会变大。

当压强大到一定程度时,气球便会爆炸。

【典型例题】
例1. 某一电路中,保持电压U 不变,电流I(安培)与电阻R(欧姆)之。

例题_反比例函数的应用

例题_反比例函数的应用

(3)当施工队按(2)中的计划掘进到已地知下自1变5m量时的,值碰求上
了坚硬的岩石.
函数值
为了节约建设资金,储存室的底面积应改为多少才
能满足需要(保留两位小数)?
10 解:(3)根据题意,把d=15代入S
4
10 s
4
d ,得:
15
解得: S≈666.67
答:当储存室的深为15m时,储存室的底面积应改为 666.67m2才能满足需要.
例1: 市煤气公司要在地下修建一个容积为104m3 的
圆柱形煤气储存室. (1)储存室的底面积S(单位:m2)与其深度d(单位:m) 有怎样的函数关系? 解:(1)根据圆柱体的体积公式,我们有
10 sd=104
4
变形得:S
d
即储存室的底面积S是其深度d的反比例函数.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)
有怎样的函数关系? S 104
d (2)公司决定把储存室的底面积S定为500 m2 ,施工
队施工时应该向下掘进多深?
10 解: (2)把S=500代入 S
4
,得:ห้องสมุดไป่ตู้
500 104
d
d
已知函数值求自 变量的值
解得: d 20
答:如果把储存室的底面积定为500m2,施工时应向 地下掘进20m深.

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。

反比例函数八大解题模型(模型+例题+练习题)


3、特征
[象限]经过一三象限或二四象限 [坐标轴]双曲线与x轴或y轴无限接近, 但永不相交 [变化趋势]在一三象限,图象呈下降趋势, 在二四象限,图象呈上升趋势
模型一: 模型一:判断是否为反比例函数
(1)给出解析式判断是否为反比例函数(y 是 x 的函数) 例 1、下列函数中,是反比例函数的是( ) A y = x +1 B y=
2、下列函数中 y 是 x 的反比例函数的是( ) (A 级) A y=
y=
2 x +1
D y=
1 −1 x
(2)给出文字先列解析式再判断是否为反比例函数 例 2:当路程 s 一定时。速度 v 与时间 t 之间的函数是( A 正比例函数 B 反比例函数 C 一次函数 对象:路程 s 角度:速度 v、时间 t 分析与解:路程=速度 × 时间 即 s = vt → v = ) (A 级) D 二次函数
第 2 页 共 8 页
是:________________;药物燃烧后 y 关于 x 的函数关系式为:___________________. (2)研究表明,当空气中每立方米的含药量低于 1.6 毫克时学生方可进教室,那么从消毒开始,至少需要经 过_______分钟后,学生才能回到教室; (3)研究表明,当空气中每立方米的含药量不低于 3 毫克且持续时间不低于 10 分钟时,才能有效杀灭空 气中的病菌,那么此次消毒是否有效?为什么?
反比例函数八大 反比例函数八大解题模型 八大解题模型( 解题模型(模型+例题+练习题) 练习题)
基本知识点 1、定义:反比例函数的图像是经过 A(1,k)和 B(k,1)的双曲线 对应解析式 y = 2、举例说明: y =
k k ← 经过(x, (k 是常数,k≠0) ) x x

反比例函数的应用例题

反比例函数的应用例题一、题目:核电站发电机组的转速与负荷之间存在反比关系,当负荷为50%时转速为1500转/分钟,此时发电量为600兆瓦时;当负荷为75%时转速为1400转/分钟,求当负荷为80%时的发电量。

解答:根据题目所给条件,转速和负荷之间满足反比例关系,设转速为x,负荷为y,则有x×y=k,其中k为常数。

根据题意,当负荷为50%时转速为1500转/分钟,即有1500×0.5=k,解得k=750。

当负荷为75%时转速为1400转/分钟,即有1400×0.75=750。

由此可知,转速和负荷之间的反比例关系为x×y=750。

要求当负荷为80%时的发电量,设发电量为z,则有z=750÷0.8计算z=750÷0.8=937.5所以当负荷为80%时的发电量为937.5兆瓦时。

二、题目:一辆汽车以60km/h的速度行驶,行驶5小时后,汽车的速度缓慢下降至40km/h,求这辆汽车在行驶8小时后的速度。

解答:根据题目所给条件,速度和时间之间满足反比例关系,设速度为x,时间为y,则有x×y=k,其中k为常数。

根据题意,汽车以60km/h的速度行驶5小时后,即有60 × 5 = k,解得 k = 300。

设在行驶8小时后的速度为z,则有z×8=300。

计算z=300÷8=37.5所以在行驶8小时后,汽车的速度为37.5km/h。

三、题目:工厂的生产效率与工人数量之间存在反比关系,当工人数量为50人时,生产效率为1000件/小时;当工人数量减少为40人时,生产效率提高到1200件/小时,求当工人数量为30人时的生产效率。

解答:根据题目所给条件,生产效率和工人数量之间满足反比例关系,设生产效率为x,工人数量为y,则有x×y=k,其中k为常数。

所以当工人数量为30人时的生产效率约为1666.67件/小时。

四、题目:一个电阻器的电阻值与其长度之间满足反比关系,当电阻器长度为10cm时,电阻值为50欧姆;当电阻器长度缩短到8cm时,电阻值增加到60欧姆,求当电阻器长度为15cm时的电阻值。

中考《反比例函数》经典例题及解析

一、反比例函数的概念1.反比例函数的概念:一般地,函数成1y kx -=的形式.自变量x 的取值范围2.反比例函数ky x=(k 是常数,k 自变量x 和函数值y 的取值范围都是不等于二、反比例函数的图象和性质 1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线于反比例函数中自变量x ≠0,函数y ≠0,标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分当k <0时,函数图象的两个分支分别在第二2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中3.注意(1)画反比例函数图象应多取一些点,(2)随着|x |的增大,双曲线逐渐向坐标轴(3)反比例函数的图象不是连续的,因此时,在每一象限(第一、三象限)内y 当k <0时,也不能笼统地说y 随x 的增大而三、反比例函数解析式的确定反比例函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比值范围是x ≠0的一切实数,函数的取值范围也是一切非≠0)中x ,y 的取值范围 不等于0的任意实数. 曲线,它有两个分支,这两个分支分别位于第一、三象,所以,它的图象与x 轴、y 轴都没有交点,即双曲两个分支分别在第一、三象限,在每个象限内,y 随在第二、四象限,在每个象限内,y 随x 的增大而增又是中心对称图形,其对称轴为直线y =x 和y =-x ,,描点越多,图象越准确,连线时,要注意用平滑的坐标轴靠近,但永不与坐标轴相交,因为反比例函数因此在谈到反比例函数的增减性时,都是在各自象随x 的增大而减小,但不能笼统地说当k >0时,y 增大而增大. 反比例函数的解析式也可以写一切非零实数. 三象限,或第二、四象限.由即双曲线的两个分支无限接近坐x 的增大而减小. 大而增大.,对称中心为原点. 平滑的曲线连接各点. 函数ky x=中x ≠0且y ≠0. 各自象限内的增减情况.当k >0随x 的增大而减小.同样,1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数ky x=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式. 2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x ,y 的值代入解析式,得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式. 四、反比例函数中|k|的几何意义 1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数12y y >时自变量x 的取值范围,只需观察下图,当12y y >时,x 的取值范围为x .2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数①k 值同号,两个函数必有两个交点;②(2)从计算上看,一次函数与反比例函数六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数.1.下列函数:①y =2x ﹣1;②;▲ (填序号) 【答案】②⑤.【解析】反比例函数的定义.【分析】根据反比例函数的定义逐一作出判③y=x 2+8x ﹣2是二次函数,不是反比例函时,是反比例函数,没有此条件则不是反比2.已知电压U 、电流I 、电阻R 三者之间的因此会有不同的可能图象,图象不可能是A . B .【答案】A【分析】在实际生活中,电压U、电流5y=x-22k y x=相交时,联立两个解析式,构造方程组,需观察一次函数的图象高于反比例函数图象的部分所对A x >或0B x x <<;同理,当12y y <时,x 的取值范坐标例函数的交点由k 值的符号来决定.②k 值异号,两个函数可无交点,可有一个交点,例函数的交点主要取决于两函数所组成的方程组的解的定函数解析式,再利用图象找出解决问题的方案,经典例题 反比例函数的定义;③y =x 2+8x ﹣2;④;⑤;⑥中作出判断:①y=2x ﹣1是一次函数,不是反比例函数比例函数;④不是反比例函数;⑤是反比是反比例函数.故答案为②⑤. 之间的关系式为:(或者),实际生活中能是( )C .D .流I 、电阻R 三者之中任何一个不能为负,依此可得22y=x1y=2x a y=x 22y=x 1y=2x U IR =U I R=,然后求出交点坐标.针对分所对应的x 的范围.例如,如取值范围为0A x x<<或B x x <,可有两个交点; 的解的情况. ,特别注意自变量的取值范围中,y 是x 的反比例函数的有函数;②是反比例函数;是反比例函数;⑥中,a≠0生活中,由于给定已知量不同,此可得结果.5y=x-ay=x【解析】A 图象反映的是,但自变量选:A .【点睛】此题主要考查了现实生活中函数图1. 2019年10月,《长沙晚报》对外发布长开的美丽姿态,该高铁站建设初期需要运送运输公司平均运送土石方的速度(单位是( )A .B .【答案】A【分析】由总量=vt ,求出v 即可.【解析】解(1)∵vt=106,∴v=,【点睛】本题考查了反比例函数的应用,经典1.从,,,这四个数中任取两例函数中,其图象在二、四象限的概率是【答案】【分析】从,,,中任取两个数础事件数,按照概率公式求解即可.【解析】从,,,中任取两个数其中积为负值的共有:8种, ∴其概率为【点睛】本题结合反比例函数图象的性质件数,是解题的关键.2.一次函数与反比例函数UI R=v 610v t=610v =610t1-23-4231-23-41-23-4y ax a =-自变量R 的取值为负值,故选项A 错误;B 、C 、D 函数图象的确立,注意自变量取值不能为负是解答此外发布长沙高铁两站设计方案,该方案以三湘四水,要运送大量的土石方,某运输公司承担了运送总量为单位:天)与完成运送任务所需的时间t (单位C . D .,故选:A . ,熟练掌握反比例函数的性质是解题的关键. 经典例题反比例函数的图象和性质 任取两个不同的数分别作为,的值,得到反比例函率是______. 两个数值作为,的值,表示出基本事件的总数两个数值作为,的值,其基本事件总数有:共计12种;概率为:故答案为:. 性质,考查了概率的计算,能准确写出基本事件的总在同一坐标系中的图象可能是( 3/m 26110v t =6210v t =a b a b a b 82123=23(0)ay a x=≠选项正确,不符合题意.故解答此题的关键.,杜鹃花开 ,塑造出杜鹃花总量为土石方的任务,该单位:天)之间的函数关系式比例函数,则这些反比总数,再表示出其积为负值的基件的总数,和满足条件的基本事) 6310m aby x=A .B .【答案】D【分析】根据一次函数与反比例函数图象的【解析】当时,,则一次函数三象限,故排除A ,C 选项;当时,,则一次函数排除B 选项,故选:D .【点睛】本题主要考查了一次函数与反比例键.3.已知点(-2,a ),(2,b ),(3,c )A .a <b <c B .b <a <c【答案】C【分析】根据反比例函数的性质得到函数减小,则,. 【解析】解:,函数,,【点睛】本题考查了反比例函数图象上点的1.反比例函数经过点,则下列A .C .当时,随的增大而增大【答案】C 【解析】【分析】将点(2,1)代入中求出0a >0a -<0a <0a ->y 0b c >>0a <0k >Q ∴ky =2023-<<<Q 0b c ∴>>0a <ky x=(2,1)2k =0x >y x ky x=C .D .图象的性质进行判断即可得解.次函数经过一、三、四象限,反比例函数经过一、二、四象限,反比例函数反比例函数图像的性质,熟练掌握相关性质与函数图在函数的图象上,则下列判断正确的是C .a <c <bD .c <b <a函数的图象分布在第一、三象限,在每的图象分布在第一、三象限,在每一象限,.故选:.上点的坐标特征,熟练掌握反比例函数的性质是解题则下列说法错误..的是( ) B .函数图象分布在第一、三象限 D .当时,随的增大而减小求出k 值,再根据反比例函数的性质对四个选项逐一分y ax a =-ax a =-ay =()0ky k x=>(0)ky k x=>(0)k x>a c b ∴<<C 0x >y x例函数经过一 、经过二、四象限,故函数图像的关系是解决本题的关确的是( ) 在每一象限,随的增大而象限,随的增大而减小, 是解题的关键.逐一分析即可. (0)ay a x=≠(0)a x≠y x y x【解析】将点(2,1)代入中,解得B .k=2﹥0,反比例函数图象分布在第一、C .k=2﹥0且x ﹥0,函数图象位于第一象D .k=2﹥0且x ﹥0,函数图象位于第一象【点睛】本题考查了反比例函数的性质,的关键.2.若点,在反比A .B .【答案】B【分析】由反比例函数,三种情况①若点A 、点B 在同在第二或第且点B 在第二象限讨论即可. 【解析】解:∵反比例函数①若点A 、点B 同在第二或第四象限,②若点A 在第二象限且点B 在第四象限③由y 1>y 2,可知点A 在第四象限且点综上,的取值范围是.故选【点睛】本题考查反比例函数的图象和性质不要遗漏. 3.反比例函数y =(x <0)的图象如图的增大而增大;③该函数图象关于直线也在该函数的图象上.其中正确结论的个数【答案】3【分析】观察反比例函数y =(x <0)性质即可进行判断.ky x=()11,A a y -()21,B a y +1a <-11a -<<(0)ky k x=<(ky k x=a 11a -<<kxkx解得:k=2,A .k=2,此说法正确,不符合题意;、三象限,此书说法正确,不符合题意;第一象限,且y 随x 的增大而减小,此说法错误,符第一象限,且y 随x 的增大而减小,此说法正确,不符,熟练掌握反比例函数的性质,理解函数图象上的在反比例函数的图象上,且,C .D .或,可知图象经过第二、四象限,在每个象限内,y 二或第四象限;②若点A 在第二象限且点B 在第四象,∴图象经过第二、四象限,在每个象限内,,∵,∴a-1>a+1,此不等式无解;象限,∵,∴,解得:且点B 在第二象限这种情况不可能. 故选:B .和性质,熟练掌握反比例函数的图象和性质是解题的关象如图所示,下列关于该函数图象的四个结论:①k 线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图的个数有_____个.)的图象可得,图象过第二象限,可得k <0,然后(0)ky k x=<12y y >1a >1a <-1a >0)<12y y >12y y >1010a a -⎧⎨+⎩<>1a -<; 符合题意;不符合题意;故选:C . 象上的点与解析式的关系是解答,则的取值范围是( ) 随x 的增大而增大,由此分四象限;③若点A 在第四象限,y 随x 的增大而增大, ; 题的关键,注意要分情况讨论,>0;②当x <0时,y 随x 函数图象上,则点(﹣1,6)然后根据反比例函数的图象和a 1<【解析】观察反比例函数y =(x <0)的图象可知:图象过第二象限,∴k <0,所以①错误; 因为当x <0时,y 随x 的增大而增大,所以②正确;因为该函数图象关于直线y =﹣x 对称,所以③正确; 因为点(﹣2,3)在该反比例函数图象上,所以k =﹣6,则点(﹣1,6)也在该函数的图象上,所以④正确.所以其中正确结论的个数为3个.故答案为:3.【分析】本题考查了反比例函数的图象和性质,熟练掌握图象和性质是解题的关键.经典例题 反比例函数解析式的确定1.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =(k ≠0)的图象经过其中两点,则m 的值为_____. 【答案】-1.【分析】根据已知条件得到点在第二象限,求得点一定在第三象限,由于反比例函数的图象经过其中两点,于是得到反比例函数的图象经过,,于是得到结论. 【解析】解:点,,分别在三个不同的象限,点在第二象限,点一定在第三象限,在第一象限,反比例函数的图象经过其中两点, 反比例函数的图象经过,, ,,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.2.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________. 【答案】 【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式中求出k 即可得到答案.【解析】令y=2x 中y=2,得到2x=2,解得x=1,∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为,将点(1,2)代入,得, kxkx(2,1)A -(6,)C m -(0)ky k x=≠(0)ky k x=≠(3,2)B (6,)C m -Q (2,1)A -(3,2)B (6,)C m -(2,1)A -∴(6,)C m -(3,2)B Q (0)ky k x=≠∴(0)ky k x=≠(3,2)B (6,)C m -326m ∴⨯=-1m ∴=-1-2y x =2y x=ky x=2y x =ky x=122k =⨯=∴反比例函数的解析式为,故答案为【点睛】此题考查函数图象上点的坐标,问题.1.已知反比例函数的图象经过点(2A .y=B .y =﹣【答案】D【分析】设解析式y =,代入点(2,-4)【解析】设反比例函数解析式为y =,解得:k =-8,所以这个反比例函数解析式为【点睛】本题主要考查待定系数法求反比例2.已知反比例函数的图像经过点【答案】﹣12【分析】直接将点代入反比例函数【解析】依题意,将点代入【点睛】本题主要考查反比例函数图象上的经典例1.如图,将一把矩形直尺ABCD 和一块含A 重合,点F 在AD 上,三角板的直角边直尺的宽CD =3,三角板的斜边FG =【答案】2y x =2x2xkxk x ky x=()3,4-()3,4-答案为:. ,函数图象的交点坐标,待定系数法求反比例函数,﹣4),那么这个反比例函数的解析式是( ) C .y =D .y =﹣求出即可. ,将(2,-4)代入,得:-4=,析式为y =-.故选:D .反比例函数解析式,求反比例函数解析式只需要知道其过点,则的值是_________. 例函数解析式中,解之即可. ,得:,解得:=﹣12,故答案为:﹣象上的点的坐标特征,熟练掌握图象上的坐标与解析经典例题 反比例函数与平面几何综合 一块含30°角的三角板EFG 摆放在平面直角坐标系中角边EF 交BC 于点M ,反比例函数y =(x >0)的图,则k =_____.2y x=8x8xk 2k8x()3,4-k k y x=43k =-k kx例函数的解析式,正确计算解答 知道其图像上一点的坐标即可. :﹣12.与解析式的关系是解答的关键.系中,AB 在x 轴上,点G 与点的图象恰好经过点F ,M .若【分析】通过作辅助线,构造直角三角形比例函数k 的意义,确定点F 的坐标,进而【解析】解:过点M 作MN ⊥AD ,垂足为在Rt △FMN 中,∠MFN =30°,∴FN设OA =x,则OB =x +3,∴F(x ,解得,x =5,∴F(5,,∴k【点睛】考查反比例函数的图象上点的坐标2.如图,平行四边形的顶点的图像经过、A .B .【答案】B【分析】根据题意求出反比例函数解析式示求出OA ,再利用平行四边形的面【解析】解:如图,分别过点D 、B∵四边形是平行四边形∴易得CH=OABC A ()0,0k y k x x =>>C 84,3⎛⎫ ⎪⎝⎭9,32⎛⎫ ⎪⎝⎭OABC OABC 角形,求出MN ,FN ,进而求出AN 、MB ,表示出点进而确定k 的值即可. 垂足为N ,则MN =AD =3,MN AN =MB =83,M (x +3,,∴=(x +3)=40的坐标特征,把点的坐标代入函数关系式是常用的方在轴的正半轴上,点在对角线上两点.已知平行四边形的面积是,则点C .D . 析式,设出点C 坐标,得到点B 纵坐标,利用的面积是构造方程求即可. 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交CH=AFx ()3,2D OB D OABC 152105,3⎛⎫⎪⎝⎭2416,55⎛⎫⎪⎝⎭6,a a ⎛⎫⎪⎝⎭152a 示出点F 、点M 的坐标,利用反用的方法. 上,反比例函数则点的坐标为( ) 利用相似三角形性质,用表y 轴于点HB a∵点在对角线上,反比例函数∴ 即反比例函数解析式为∵ ∴∴∴∵平行四边形的面积是∴∴点B 坐标为故应选:B 【点睛】本题是反比例函数与几何图形的综根据题意构造方程求解.1.如图,在平面直角坐标系中,直线的圆上一动点,连结,为的中A .B . 【答案】A【分析】连接BP ,证得OQ 是△ABP 的中标为(x ,-x ),根据点,可利用勾股【解析】解:连接BP , ∵直线与双曲线的图形均关∵点Q 是AP 的中点,点O 是AB 的中点()3,2D OB 236k =⨯=DE BF P ODE OBF :△△DE 9OA OF AF OF HC a =-=-=OABC 1529,32⎛⎫⎪⎝⎭AP Q AP 12-32-(2,2)C y x =-ky x=例函数的图像经过、两点式为∴设点C 坐标为 ∴∴ ,点B 坐标为 解得(舍去) 形的综合问题,涉及到相似三角形的的性质、反比例与双曲线交于、两点,是以点的中点.若线段长度的最大值为,则的值为C .D . 的中位线,当P 、C 、B 三点共线时PB 长度最大,用勾股定理求出B 点坐标,代入反比例函数关系式即形均关于直线y=x 对称,∴OA=OB , 中点∴OQ 是△ABP 的中位线,()0,0ky k x x=>>C D 6y x =6,a a ⎛⎫ ⎪⎝⎭OE BF OF=236OF a=6392a OF a ⨯==a -96,a a ⎛⎫⎪⎝⎭96152a a a ⎛⎫-⋅= ⎪⎝⎭122,2a a ==-y x =-ky x=A B P OQ 2k 2-14-两点 反比例函数的性质,解答关键是为圆心,半径长的值为( ),PB=2OQ=4,设 B 点的坐系式即可求出k 的值. (2,2)C 1当OQ 的长度最大时,即PB 的长度最大∵PB≤PC+BC ,当三点共线时PB 长度最大∵PC=1,∴BC=3,设B 点的坐标为(解得代入中可得:,故答案为【点睛】本题考查三角形中位线的应用和正2.如图,在平面直角坐标系中,矩形ABC AD 平分,反比例函数18,则k 的值为()A .6B .12 【答案】B【分析】先证明OB ∥AE ,得出S △ABE △OAE=×3a ×=18,求解即可. 【解析】解:如图,连接BD ,∵四边形又∵AD 为∠DAE 的平分线,∴∠OAD=∵S △ABE =18,∴S △OAE =18,设A 的坐标为12x x ==k y x=12k =-OAE ∠(ky x=12k a最大,度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,x ,-x ),则,B 点坐标为, 案为:A .用和正比例函数、反比例函数的性质,结合题意作出ABCD 的对角线AC 的中点与坐标原点重合,点E 的图象经过AE 上的两点A ,F ,且C .18 D .24=S △OAE =18,设A 的坐标为(a ,),求出F 点的坐边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠AD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE , 坐标为(a ,), 3=⎝⎭0,0)k x >>k aka意作出辅助线是解题的关键. 是x 轴上一点,连接AE .若,的面积为点的坐标和E 点的坐标,可得S ∴∠ODA=∠OAD , AF EF =ABE △∵AF=EF ,∴F 点的纵坐标为,代入反∴E 点的坐标为(3a,0),S △OAE =【点睛】本题考查了反比例函数和几何综合经典例1.如图,点,点都在反比点,.连接,,.若四A .B .【答案】C【分析】过点P 分别向x 轴、y 轴作垂线−2),根据反比例函数系数k 的几何意义求S 2=4:3.【解析】解:点P (m ,1),点Q (−2∴m×1=−2n =4,∴m =4,n =−2,∵P (4,1),Q (−2,−2),∵过点P 分别作QK ⊥PN ,交PN 的延长线于K ,则2k a 12(,1)P m (-2,)Q n M N OP OQ PQ 12:2:3S S =12:S S =代入反比例函数解析式可得F 点的坐标为(2a ,×3a ×=18,解得k=12,故选:B . 何综合,矩形的性质,平行线的判定,得出S △ABE 经典例题 反比例函数中k 的几何意义在反比例函数的图象上,过点分别向轴、若四边形的面积记作,的面积记 C . D .垂线,垂足分别为点M ,N ,根据图象上点的坐标特征意义求得S 1=4,然后根据S 2=S △PQK −S △PON −S 梯形ONKQ ,n )都在反比例函数y =的图象上, 分别向x 轴、y 轴作垂线,垂足分别为点M ,N ,PN =4,ON =1,PK =6,KQ =3,k a4y x=P x OMPN 1S POQ △1:112:4:3S S =12:5:3S S =4x), BE =S △OAE =18是解题关键.意义、轴作垂线,垂足分别为面积记作,则( )标特征得到P (4,1),Q (−2,NKQ 求得S 2=3,即可求得S 1:,∴S 1=4,2k ay 2S∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−【点睛】本题考查了反比例函数图象上点的的关键.2.如图,在平面直角坐标系中,▱ABCD =(k <0,x <0)与▱ABCD 的边AB 所在直线翻折,使原点O 落在点G 处,【答案】【分析】将点F 坐标代入解析式,可求双曲股定理可求EG 的长,由勾股定理可求【解析】解:∵双曲线 y =(k <0,∵▱ABCD 的顶点A 的纵坐标为10,∴∴点E 的横坐标为﹣6,即BE =6.∵△BOC 和△BGC 关于BC 对称,∴∵EG ∥y 轴,在Rt △BEG 中,BE =6,延长EG 交x 轴于点H ,∵EG ∥y 轴,∴∠GHC 是直角,在Rt 则有CH =OH ﹣OC =BE ﹣GC =6﹣m ∴m=,∴GC ==OC ,∴S △BOC【点睛】本题考查反比例函数系数k 的几何12kx503k x 1031036×3−×4×1−(1+3)×2=3,∴S 1:S 2=4:3,上点的坐标特征,反比例函数系数k 的几何意义,CD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣,连接EG ,若EG ∥y 轴,则△BOC 的面积是_____求双曲线解析式为y =−,由平行四边形的性质可CO 的长,即可求解.x <0)经过点F (﹣12,5),∴k =﹣60,∴双曲线BO =10,点E 的纵坐标为10,且在双曲线y =BG =BO =10,GC =OC .BG =10,∴EG =8. △GHC 中,设GC =m ,,GH =EH ﹣EG =10﹣8=2,则有m 2=22+(6﹣=××10=,故答案为:.的几何意义,折叠的性质,平行四边形的性质,正确的121260x12103503503,故选:C . ,分别求得S 1、S 2的值是解题x 轴的负半轴上,双曲线y 12,5),把△BOC 沿着BC .性质可得OB=10,BE=6,由勾双曲线解析式为 y =. 上,m )2,正确的作出辅助线是解题关键.60x-60x-1.如图,已知在平面直角坐标系xOy 中数y =(x >0)的图象经过OA 的中点【答案】【分析】作辅助线,构建直角三角形,利用利用△OCE ∽△OAB 得到面积比为1【解析】解:连接OD ,过C 作CE ∥∵∠ABO =90°,反比例函数y =(x ∴S △COE =S △BOD =,S △ACD =S △OCD ∵CE ∥AB ,∴△OCE ∽△OAB ,∴∴4×k =2+2+k ,∴k =,故答案为【点睛】本题考查了反比例函数比例系数和y 轴分别作垂线,与坐标轴围成的矩形的一点和垂足以及坐标原点所构成的三角形的2.(2020·内蒙古赤峰·中考真题)如图,()的图象上,且轴,A .3B .4 kx83kx12k OCS △1212830x >//BC y 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点中点C .交AB 于点D ,连结CD .若△ACD 的面积是利用反比例函数k 的几何意义得到S △OCE =S △OBD :4,代入可得结论. AB ,交x 轴于E ,>0)的图象经过OA 的中点C , =2, ,∴4S △OCE =S △OAB , 答案为:. 系数k 的几何意义:在反比例函数y=图象中任取一矩形的面积是定值|k|.在反比例函数的图象上任意一角形的面积是|k|,且保持不变.也考查了相似三,点B 在反比例函数()的图象上,,垂足为点C ,交y 轴于点A ,则C .5 D .614OCE S =△△OAB 83kx126y x =0x >AC BC ⊥V 点A 在第一象限,反比例函面积是2,则k 的值是_____. BD =k ,根据OA 的中点C ,任取一点,过这一个点向x 轴任意一点向坐标轴作垂线,这相似三角形的判定与性质. ,点C 在反比例函数的面积为 ( )122y x=-ABC【答案】B【分析】作BD ⊥BC 交y 轴于D ,可证四积,进而由矩形的性质可求的面积【解析】作BD ⊥BC 交y 轴于D ,∵∴S 矩形ACBD =6+2=8,∴的面积为【点睛】本题考查了反比例函数比例系数的点P ,向x 轴和y 轴作垂线你,以点P P 的一个垂足和坐标原点为顶点的三角形的经典例1.如图,函数与函数的图A .或B .或【答案】D【分析】根据图象可知函数数图象之上的x 的取值范围.【解析】解:如图所示,直线图象在反比例故本题答案为:或.故选ABC V ABC V 1y x=+22y x=2x <-01x <<2x <-1y x =+20x -<<1x >可证四边形ACBD 是矩形,根据反比例函数k 的几何意的面积.轴,,∴四边形ACBD 是矩形,积为4.故选B .系数的几何意义,一般的,从反比例函数(及点P 的两个垂足和坐标原点为顶点的矩形的面积等角形的面积等于.也考查了矩形的性质. 经典例题 反比例函数与一次函数的综合的图象相交于点.若, C .或 D .与函数的图象相交于点M 、N ,若,反比例函数图象之上的x 的取值范围为故选:D//BC y AC BC ⊥ky x=12k ()()1,,2,M m N n -12y y >1x >20x -<<01x <<2-22y x=12y y >2x -<几何意义求出矩形ACBD 的面, k 为常数,k ≠0)图象上任一的面积等于常数,以点P 及点综合,则x 的取值范围是( )或 ,即观察直线图象在反比例函或, k 0x <<1x >0<1x >【点睛】本题主要考查了反比例函数图象与题的关键.2.如图,在平面直角坐标系中,直线y 平移b 个单位长度,交y 轴于点B ,交反比A .1B .2 【答案】C【分析】解析式联立,解方程求得的横坐的坐标,代入即可求得的值【解析】解:直线与反比例函数解求得,的横坐标为OA//BC ,∴,∴,∴,∴把代入得,,将直线沿轴向上平移个单位长把的坐标代入得,求得【点睛】本题考查了反比例函数与一次函数式等知识,求得交点坐标是解题的关键.3.如图,直线与反比例函数8.(1)填空:反比例函数的关系式为____A C y x b =+b Q y x =∴4x x=2x =±A ∴Q CBG AOH ∠=∠2OA BC =Q 2OA AH BC GC ==1x =4y x=4y =C ∴Q y x =y b ∴C 41b =+AB ky =图象与一次函数图象的交点问题,能利用数形结合求=x 与反比例函数y =(x >0)的图象交于点交反比例函数图象于点C .若OA =2BC ,则b 的值为C .3 D .4的横坐标,根据定义求得的横坐标,把横坐标代入的值. 函数的图象交于点, 坐标为2,如图,过C 点、A 点作y 轴垂线, ,,解得=1,的横坐标为1,, 单位长度,得到直线, ,故选:.次函数的综合问题,涉及函数的交点、一次函数平移. 的图象交于A ,B 两点,已知点A 的坐标为_________________;(2)求直线的函数关系式4xC 4(0)y x x=>A OHA BGC ~V V 22BC BC GC=GC C ∴(1,4)y x b =+3b =C (0)x x>AB 结合求出不等式的解集是解答此于点A ,将直线y =x 沿y 轴向上的值为( )标代入反比例函数的解析式求得, 数平移、待定系数法求函数解析坐标为,的面积为关系式;(3)动点P 在y 轴上运()6,1AOB V动,当线段与之差最大时,求点【答案】(1);(2)【分析】(1)把点代入解析式,即可(2)过点A 作轴于点C ,过点点B 的坐标为,表示出△ABE 的面积到解析式;(3)根据“三角形两边之差小于,代入即可求值.【解析】解:(1)把点代入(2)如图,过点A 作轴于点形.设点B 的坐标为,∴∵点A 的坐标为,∴∴∵A ,B 两点均在双曲线上∴∵的面积为8,∴,∴.解得设直线的函数关系式为∴直线的函数关系式为PAPB 6y x =12y =-()6,1AC x ⊥(),m n AB ()6,1A AC x ⊥(),m n mn ()6,1BE DE=11(1)(622ABE S AE BE n =⋅=-V 6(0)y x x =>AOB AOC BOD OCED S S S S =--V V V 矩形AOB V 132n m -23830n n --=123,n n =AB (y kx =+AB 12y =-求点P 的坐标.;(3) 即可得到结果;过点B 作轴于点D ,交于点E ,则四的面积,根据△AOB 得面积可得,得到点差小于第三边”可知,当点P 为直线与y 轴的交点可得,∴反比例函数的解析式为C ,过点B 作轴于点D ,交于点.. . 上,∴. ,整理得.(舍去).∴.∴点B 的坐标为.,则.解得.. 4x +()0,4BD y ⊥,CA DB 616m n =-AB (0)ky x x =>6k =BD y ⊥,CA DB 6=6,1E BD m AE CE AC n -=-=-=-)m -16132BOD AOC S S ==⨯⨯=V V ABE S -V 1633(1)(6)32n n m n =-----=-8=616m n =-13=-2m =(2,3)0)b k ≠6123k b k b +=⎧⎨+=⎩124k b =-=⎧⎪⎨⎪⎩4x +则四边形为矩形,设得到点B 的坐标,代入即可的的交点时,有最大值为; 于点E ,则四边形为矩.OCED PA PB -6y x=OCED 12m(3)如上图,根据“三角形两边之差小于第当点P 为直线与y 轴的交点时,∴点P 的坐标为.【点睛】本题主要考查了反比例函数与一次1.如图,在平面直角坐标系中,一次是第一象限内反比例函数图象上一点,且【答案】2.【分析】联立方程组求出A 过A 作轴,交BF 于F 点,交根据的面积是的面积的【解析】联立方程组,解得,轴,过B 作轴,过AAB ()0,4xOy 12y x y x =+⎧⎪⎨=⎪⎩//AE x ABP △AOB V 12y x y x =+⎧⎪⎨=⎪⎩PE x ⊥BF x ⊥小于第三边”可知,有最大值为,把代入与一次函数的综合,准确分析题意是解题的关键.一次函数的图象与反比例函数的图象且的面积是的面积的2倍,则点,B 两点坐标,设,过P 作PE 于点E ,分别求出梯形BFEP 、△APE 、△ABF 的2倍列方程求解即可.,,,, 作轴,交BF 于F 点,交PE 于点E ,如图PA PB -AB 0x =1y =-1y x =+2y x=ABP △AOB V 2,(0)P x x x ⎛⎫⎪⎝⎭>PE1112x y =⎧⎨=⎩2221x y =-⎧⎨=-⎩(2,1)A ∴--(1,2)B //AE x ,得. .的图象交于A ,B 两点,若点P 则点P 的横坐标...为________. 轴,过B 作轴,、△AOB 、△ABP 的面积,设,过P 作如图, 42x +4y =E x ⊥BF x ⊥2,(0)P x x x ⎛⎫⎪⎝⎭>。

反比例函数经典例题

反比例函数经典例题1.(北京模拟)如图,直线AB经过第一象限,分别与%轴、》轴交于A、B两点,P为线段AB 上任意一点(不与A、B重合),过点P分别向%轴、y轴作垂线,垂足分别为。

、。

.设OC=%,四边形OCPD的面积为S.(1)若已知4(4,0),B(0,6),求S与%之间的函数关系式;39(2)若已知4(a,0),B(0,b),且当%=彳时,S有最大值不,求直线AB的解析式;48(3)在(2)的条件下,在直线AB上有一点M,且点M到%轴、y轴的距离相等,点N在过M 点的反比例函数图象上,且■OAN是直角三角形,求点N的坐标.2.(北京模拟)已知点A是双曲线y=k(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与%轴交于点B,与双曲线y=k2(k2<0)交于点C.点D(m,0)是%轴上一点,且位于直线AC右侧,E是AD的中点.(1)如图1,当m=4时,求△ACD的面积(用含k1、k2的代数式表示);(2)如图2,若点E恰好在双曲线y=与(k1>0)上,求m的值;(3)如图3,设线段EB的延长线与y轴的负半轴交于点R当m=2时,若△BDF的面积为1,且CF//AD,求k1的值,并直接写出线段CF的长.图1图2图33.(上海模拟)Rt△ABC在直角坐标系中的位置如图所示,tan/BAC=1,反比例函数yk=~(k十0)在第一象限内的图象与BC边交于点D(4,m),与AB边交于点E(2,n),x△BDE的面积为2.(1)求反比例函数和直线AB的解析式;4.(安徽某校自主招生)如图,直角梯形OABC的腰OC在y轴的正半轴上,点A(5n,0)在%轴的负半轴上,OA:AB:OC=5:5:3.点D是线段OC上一点,且OD=BD.(1)若直线y=kx+m(k十0)过B、D两点,求k的值;m(2)在(1)的条件下,反比例函数y=7的图象经过点B.xm①求证:反比例函数y=m的图象与直线AB必有两个不同的交点;x②已知点P(p,-n-1),Q(q,-n—2)在线段AB上,当点E落在线段PQ上时,求n的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当A ABQ是以AB为斜边的直角三角形时,求k的值.6.(浙江义乌)如图,矩形OABC的顶点A、C分别在l、y轴的正半轴上,点D为对角线kOB的中点,点E(4,n)在边AB上,反比例函数y=-在第一象限内的图象经过点D、E,x 1且tan Z BOA=2.(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC交于点F将矩形折叠,使点O与点F重合,折痕分别与%、y轴正轴交于点H、G,求线段OG的长.7.(浙江某校自主招生)已知点P的坐标为(m,0),在%轴上存在点Q(不与P重合),以PQ为边,Z PQM=60°作菱形PQMN,使点M落在反比例函数y=-2^的图象上.x(1)如图所示,若点P的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN,若另一个菱形为PQ1M1N1,求点M1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M在第四象限,另一个菱形的顶点M1在第二象限.通过改变P点坐标,对直线MM1的解析式y=kx+b进行探究可得k=,若点P的坐标为(m,0),则k=(用含m的代数式表示);(3)继续探究:①若点P的坐标为(m,0),则m在什么范围时,符合上述条件的菱形分别为两个、三个、四个?②求出符合上述条件的菱形刚好有三个时,点M坐标的所有情况.备用图8 .(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,k 3),A 、B 两点关于直线y =%对称,反比例函数y =-(%>0)图象经过点A ,点P 是直线y %9 .(浙江模拟)已知点P (m ,n )是反比例函数y =6(%>0)图象上的动点,PA 〃1轴,%3 PB 〃y 轴,分别交反比例函数y =-(%>0)的图象于点A 、B ,点C 是直线y =2%上的一点.%(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标; (2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m 的值;若不能,请说明理由.=%上一动点.(1)填空:B 点的坐标为( ); (2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为 顶点的四边形是平行四边形?若存在,求出点C 坐标; (3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,Q 点坐标. 若不存在,请说明理由;当四边形AOBP 为菱形时,过点Q 当QE +QF +QB 的值最小时,求出11.(江苏泰州)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2c5=x的图象相交于B(-1,5)、C(2,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点. (1)求k、b的值;3c(2)设-1<m<5,过点P作x轴的平行线与函数y2=]的图象相交于点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数知识点及典型例题反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。

由反比例函数的图像和性质衍生出了好多数学问题,这对“数形结合”思想还有点欠缺的中学生来说无疑是一个难点。

一、反比例函数知识要点点拨 1、反比例函数的图象和性质:反比例函数 (0)ky k x=≠ k 的符号0k > 0k <图象性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠.②当0k >时,函数图象的两个分支分别在第一、第三象限.在每个象限内,y 随x 的增大而减小.①x 的取值范围是0x ≠,y 的取值范围是0y ≠.②当0k <时,函数图象的两个分支分别在第二、第四象限.在每个象限内,y 随x 的增大而增大. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.2、反比例函数与正比例函数(0)y kx k =≠的异同点:函数正比例函数反比例函数xyOxyO解析式 (0)y kx k =≠(0)ky k x=≠ 图象直线,经过原点双曲线,与坐标轴没有交点自变量取值范围 全体实数 0x ≠的一切实数图象的位置当0k >时,在一、三象限; 当0k <时,在二、四象限. 当0k >时,在一、三象限; 当0k <时,在二、四象限. 性质当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小.当0k >时,y 随x 的增大而减小;当0k <时,y 随x 的增大而增大.二,、典型例题例 1 下面函数中,哪些是反比例函数?(1)3x y -=;(2)xy 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,xk y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式.例 2在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ).答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 3 已知反比例函数62)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题.解 因为62)2(--=a x a y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=. 例4 (1)若函数22)1(--=m x m y 是反比例函数,则m 的值等于( )A .±1B .1C .3 D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则: A .1=S B .2=S C .3=S D .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D .(2)由双曲线xy 1=关于O 点的中心对称性,可知:OBC OBA S S ∆∆=.∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .例5 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值. 解 因为1y 与x 成正比例,2y 与x 成反比例, 所以)0(,212211≠==k k xk y x k y .所以xk x k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=.所以当1-=x 时,4821811-=--=y说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.例 6 根据下列表格x 与y 的对应数值.x …… 1 2 3 4 5 6 …y …6 3 2 1.5 1.2 1 …(1)在直角坐标系中,描点画出图像;(2)试求所得图像的函数解析式,并写出自变量x 的取值范围. 解:(1)图像如右图所示.(2)根据图像,设)0(≠=k xk y ,取6,1==y x 代入,得16k =. ∴6=k .∴函数解析式为)0(6>=x xy .说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.例 7(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xk y =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xk y =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C . 例8,已知函数24231-⎪⎭⎫ ⎝⎛+=m x m y 是反比例函数,且其函数图像在每一个象限内,y 随x的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m因为此函数图像在每一象限内,y 随x 的增大而减小 ,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy =说明:此题根据反比例函数的定义与性质来解反比例函数x k y = )0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.例 9 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式.解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=.(2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米)(4)用描点法画函数图像,列表如下:x… 0.5 2 5 10 15… y… 40 10 4 2311 …描点画图如图所示.例10 如图,P 是反比例函数xk y =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解. 解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-. 又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=.说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xk y =中的k .例13. 当n 取什么值时,122)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y 随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k xk y 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n n x n n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n . 故当1-=n 时,122)2(-++=n n x n n y 表示反比例函数:xy 1-=.01<-=k ,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.。

相关文档
最新文档