飞机操控系统

飞机操控系统
飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析

学生:

学号:

摘要

本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。

关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统

Aircraft control system development process and typical aircraft control system analysis

Student: Liu He

Student ID: 11031182

Abstract

This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

improved. Aircraft operating system has experienced several important stages, for example, simple mechanical systems, Control Augmentation system, Telex Control system, Fiber Optic Control System. Every change is the development of the great advances in aviation history last aircraft operating system.

Keywords:Mechanical Control System, Control Augmentation System, Telex Control System, Fiber Optic Control System

目录

摘要 (1)

第一章绪论 (3)

1.1论文背景及目的 (3)

1.2论文研究内容及方法 (3)

第二章飞机操纵系统的发展历程 (3)

2.1飞机操控系统简述 (3)

2.2操纵系统的发展 (4)

第三章典型操纵系统对比分析 (5)

3.1介绍概论 (5)

3.2简单机械操纵系统 (6)

3.3增稳和控制增稳操纵系统 (8)

3.4电传操纵系统 (10)

3.5光传操纵系统 (11)

第四章结论 (12)

参考文献 (12)

第一章绪论

1.1论文背景及目的

当今世界,飞机逐渐成为沟通世界的首要交通工具,因为它快速便捷,可以大大缩短出行的时间。而飞机操控系统是飞机的神经系统,是飞机可靠飞行的保障之一。本论文主要研究飞机操控系统的发展和主操控系统的主要类型

1.2论文研究内容及方法

通过研究国内外飞机操控系统发展历史,并进行具体分析,进一步深化理解飞机操控系统的构成和发展历程。具体如下:

1.飞机操控系统的发展历程

2.典型飞机操控系统的分析(主要是简单机械操控系统和增稳增控操作系统)

3.个人感悟

第二章飞机操纵系统的发展历程

2.1飞机操控系统简述

飞机操纵系统是用以传递驾驶员或自动驾驶仪的操纵命令,驱动多面和其他机构以控制飞机飞行姿态的系统。通常分为人工飞行操纵系统(MFCS)和自动飞行控制系统(AFGS),而人工飞行操纵系统又

分为主操纵系统和辅助操纵系统。

主操纵系统是飞机俯仰、翻滚和偏航操纵的操纵系统。辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵系统。

2.2操纵系统的发展

最初的飞机操纵系统是由简单的钢索、滑轮、连杆和曲柄等机械部件组成,即我们所说的机械传动操纵系统(图1A)。飞行员通过直接操纵机械传动系统来控制飞机的操纵舵面,实现对飞机姿态和飞行轨迹的控制,此时可不考虑系统本身的动特性,只需对摩擦,间隙和系统的弹性形变加以限制,便可获得满意的系统性能。机械传动操纵系统仍广泛用于低速飞机和一些运输机上。

随着飞机设计的发展和飞机速度的不断提高,即使使用看气动力补偿,飞行员的体力还不能适应作用于操纵舵面上的空气动力载荷,这时便产生了液压助力器,首先是可逆助力操纵系统(图1B)并联一个助力器,气动力由助力器和飞行员共同承受,从而大大减小杆力。

随着飞机速度进一步增大,尤其是达到超音速以后,由于飞行速度和高度变化范围很大,作用在舵面上的气动力变化很大,飞机飞行安全受到威胁。这样出现不可逆助力操纵系统(图1C)。舵面气动载荷全部由液压助力器承受。为了使驾驶员获得操纵力感觉,在系统中增加了人工载荷机构(通常是弹簧的)以及其他改善操纵特性的装置。

伴随着飞行包线的进一步扩大,飞机的稳定性与可操纵性之间的

矛盾更加突出,相继出现了增稳操纵系统(图1D)和控制增稳操纵系统(图1E)。

此时的系统已在局部使用了电传操纵技术,但操纵系统仍以机械通道为主控通道。为实现最佳气动布局的飞机设计,在电传操纵余度技术逐渐趋于成熟的条件下,操纵系统的机械通道有被电传通道完全取代的趋势,这便产生了现在以被广泛使用的电传操纵系统(图1G)。

电传操纵系统难以克服自身易受干扰的缺陷,为了改善电传操纵系统的性能,克服自身的缺陷,在电传操纵系统内采用了新的信号传导材料——光纤。光纤作为信号传导材料与电传操纵系统相比,在抗电磁干扰、减轻重量、提高可靠性等方面有明显的优势。运用新的信号传导材料与电传操纵系统相结合所产生的操纵系统,这便是光传操纵系统的雏形。光传操纵系统对提高飞机的稳定性和满足日益提升的飞行性能产生了深远的影响。

第三章典型操纵系统对比分析

3.1介绍概论

在操控系统发展史上,可以分为机械操纵和电气操纵两大部分。飞机操纵系统分类见下表1。我重点介绍机械操纵系统和增稳增控操纵系统,加深自己对操纵系统的理解。

3.2简单机械操纵系统

机械操纵系统在操纵装置(操纵杆、脚蹬)和飞机的舵机之间存在着一套相当复杂的机械联动装置和液压管路,飞行员操纵操纵杆和脚蹬,通过上述联动装置控制舵机位置,从而使飞机达到希望的姿态和航向。

从信号传递来看:机械操纵系统的操纵信号由钢索、传动杆的机械部件传动。

从驱动方式来看:简单机械操纵系统依靠驾驶员体力克服铰链力矩驱动舵面运动。

从整体来看,简单机械操纵系统构造比较简单,主要由驾驶杆、脚蹬、钢索滑轮、传动杆、摇臂等组成。可分为软式(钢索)和硬式(杆)操纵系统。

软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活,但构造复杂,重量加大。软式和硬式可以混合使用。

下面简单说明飞机机械操纵系统的原理:

副翼、升降舵和方向舵构成传统飞行操纵系统。飞行员可以通过安装在仪表面板的任意一侧单手操纵杆操控操纵面。

1)升降舵为飞机提供俯仰控制。升降舵运动是通过飞行员操纵杆在轴承架中前后滑动操纵管产生的。一套推拉联动装置与安装在转矩管上的操纵索部分相联。一套单操纵索系统从前升降舵滑轮装置沿座舱地板下方延伸至后升降舵滑轮装置。与后升降舵滑轮装置相关的一根推拉管将向与升降舵相联的升降舵曲柄传递动力。(图3-1)

2)副翼为飞机提供滚转操纵。副翼的操纵运动是通过飞行员操纵杆转动中枢轴承系统中的操纵管产生的。推杆将枢轴承架与位于中部的滑轮组件相联。一套单操纵索系统从该组件延伸至座舱地板下部和后翼梁的后部。在这里,操纵索在机翼内的线路开始转为垂直滑轮组/曲柄臂,通过直角锥形驱动臂转动副翼(图3-2)

3)方向舵为飞机提供偏航控制。方向舵的运动是通过座舱地板下的一套单操纵索系统,从方向舵脚踏板传递给机身后部紧靠升降

舵滑轮组件的方向舵滑轮组件的,之后再传递给方向舵。连接滑轮组件和方向舵曲拐的推拉管将操纵索的运动传递给方向舵。弹簧和一个与方向舵脚蹬组件相连的地方可调节弹簧筒将操纵索拉紧,并提供回中力。(图3-3)

最后总结简单机械操纵系统的优缺点:

优点:简单机械操纵系统是一种人力操纵系统,构造简单,工作可靠

缺点:

○1存在摩擦、间隙和非线性因素导致无法实现精微操纵信号传递○2机械操纵系统对飞机结构变化十分敏感

○3体积大,结构复杂,重量大

3.3增稳和控制增稳操纵系统

现在战斗机为了使气动布局有较好的效益,飞机本身的静稳定度设计的较小现代战斗机又往往在大迎角下飞行,而飞机的纵向静稳定度随迎角增大而减小,甚至改变符号,纵向静不稳定,驾驶员难以操作。因此有了增稳操纵系统。增稳控制系统一般由引入迎角反馈信号、法向过载反馈信号或迎角与俯仰角速度组合反馈信号构成闭环控制系统,使飞机的飞行操纵品种得到了很大的提升。但是增稳操纵系统在提高飞机稳定性的同时,降低了飞机的操纵性。

为了解决稳定性与操作性的矛盾,在增稳系统的基础上,发展了控制增稳操纵系统。控制增稳操纵系统是在增稳操纵系统的基础上增

加一个杆力传感器和一个指令模型构成,即系统由机械通道、电气通道和增稳回路组成、电气和机械两通道并行,电气通道的作用是增大传递系数。

接下具体介绍增稳和控制增稳的实现方法和原理(以纵向操纵为例)

图4飞机纵向增稳结构图

图5纵向增稳系统方框图

由图四图五可知飞机纵向增稳系统的理想控制律:

当飞机有干扰输入时,仰速率输出对外干扰输入的传函:

当a k 不断增大,且13

2>>G G k a ,则0)()(→S f S z ω。 减小系统干扰的影响。

系统的操纵性随增益a k 的增大而削弱, 当a k 足够大,

系统受杆力输入的影响较小,这是不希望的.

控制增稳系统如下:

再看俯仰速率输出对杆力输入的传函:

当a k 不断增大,且132>>G G k a ,又)()(43S G S G ≈,则1)

()(≈S F S z z ω。 系统的抗干扰能力以及操纵性都随增益a k 的增大而增强。当a k 足够大时,系统对杆力输入响应趋于完全跟踪状态。

最终控制增稳系统的操纵如下:

驾驶员的操纵信号可以分两路输出,一路是通过机械链(不可逆

助力操纵系统)使舵面偏转,另一路是通过电气链, 由杆力(位移)传感器产生电气指令信号传输到指令模型,并在其中形成满足操纵性要求的电信号,直接与来自增稳器的反馈信号在校正网络输入端相加,以差值去控制舵面偏转,显然,电气指令信号的极性与机械链来的操纵信号是同相的,所以他俩是并联的.

控制增稳系统优缺点

优点:较好地解决了稳定性与操纵性之间的矛盾

缺点:

1、操纵控制的权限有限;

2、机械杆系的大重量以及机械杆系的非线性问题

3.4电传操纵系统

在不可逆助力操纵系统中,存在着间隙、摩擦、弹性变形等影响,难以解决微弱信号的传递问题。又由于普遍采用增稳装置,机械联杆装置越来越复杂,重量增加。自动控制和微电子技术的发展,为取消机械传动装置创造了条件,可用电信号综合传感器信号和驾驶员的操纵指令,对飞机进行有效的操纵。如果在电传操纵系统之外,还保留机械操纵系统作为备用,则称为准电传操纵系统。电传操纵系统的关键是系统的可靠性问题,它的可靠性至少不能低于机械操纵系统。为此需要采用余度技术,对于关键部件和线路采用多重布置的原则,以提高系统的可靠性。电传操纵系统的优点是体积小、重量轻、通过性好,便于采用主动控制技术,易于与其他系统交联,生存力强,维护

性好,可提高飞机操纵品质和性能,是高性能飞机操纵系统发展的方向。

电传操纵的重要性在于打破了飞机设计中需要保持静稳定性的布局,设计师们可以为战斗任务选择和优化最有效的布局,然后由储存在飞行控制计算机软件中的相应控制律增加人工稳定性。现役战斗机中已经有多种飞机采用电传操纵系统。

3.5光传操纵系统

光传操纵系统是以光代替电作为传输载体,以光导纤维作为物理传输媒质,在计算计之间或计算机与远距离终端(如舵机等)之间传递指令和反馈信息的飞行控制系统。光传操纵系统是在电传操纵系统上发展起来的,也是后者的发展趋势。电传操纵系统的致命弱点是易受雷电和电磁干扰及核辐射的影响。现代飞机性能不断提高,电子设备日趋复杂,这必然导致电缆用量的增加以及线路布局的复杂化,从而加大了线路之间的干扰,使电传操纵系统不能正常工作。解决这一问题的根本办法就是采用光传操纵系统。采用光纤作为传输介质,以光信号的形式传输,使得光传操纵系统具有很多优点。首先,它具有抗电磁干扰、抗电磁脉冲辐射和防雷电等特点,且光纤本身不辐射能量,这就提高了可靠性和安全性。其次,光缆可减轻控制系统的重量、缩小体积,从而大大改进飞机的稳定性和可操纵性。再次,光纤的故障隔离性好,当一个通道发生故障时不会影响其他通道。

第四章结论

飞机的操纵系统经过机械操纵系统、助力机械操纵系统、电传操纵系统和光传操纵系统,每一次操纵系统的变革是承上启下,是航空史上重大变革。每一次的变革都是上一个问题的解决和延续,这是一种继承发展。现在随着信号“光学化”研究进展,我相信不远的将来,飞机性能又会更上一层楼。

通过这次论文写作,我对飞机飞行操纵系统有了更深刻的了解,同时对所学知识有了更深的体会,收获颇丰。

参考文献

[1]徐鑫福.飞机飞行操纵系统.北京航空航天大学出版社.1989.

[2]瞿福存.飞行控制系统的演变.飞行试验.1997.

[3]刘畅.飞机操纵系统的发展以及典型飞机操纵系统的对比分析.2013

飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析 学生: 学号: 摘要 本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。 关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统 Aircraft control system development process and typical aircraft control system analysis Student: Liu He Student ID: 11031182 Abstract This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

飞机操纵系统发展史

飞机飞行操纵系统大作业 飞机飞行操纵系统发展史 班级: 100321 学号: 100311xx 姓名: 王尼玛 专业: 自动化 指导老师: 于黎明 二零一三年六月二十一日

飞机飞行操纵系统发展史 【摘要】 本文主要论述了的飞机飞行操纵系统的发展史,对飞机机械操纵、增稳操纵、控制增稳操纵、电传操纵、光传操纵做了详细的描述,并对未来飞机的操纵系统进行了展望。 关键词:飞机飞行操纵系统;机械操纵系统;增稳操纵系统;控制增稳操纵系统;电传操纵系统;光传操纵系统

目录 【摘要】 (1) 目录 (2) 第一章飞机操纵系统的发展历程 (3) 第二章机械操纵系统 (3) 第三章增稳操纵系统 (4) 第四章控制增稳操纵系统 (4) 第五章电传操纵系统 (4) 第六章光传操纵系统 (5) 第七章飞机操纵系统的发展趋势 (5) 参考文献 (6)

第一章飞机操纵系统的发展历程 最初的飞机操纵系统是由简单的钢索、滑轮、连杆和曲柄等机械部件组成,即我们所说的机械传动操纵系统。飞行员通过直接操纵机械传动系统来控制飞机的操纵舵面,实现对飞机姿态和飞行轨迹的控制,此时可不考虑系统本身的动特性,只需对摩擦,间隙和系统的弹性形变加以限制,便可获得满意的系统性能。随着飞机设计的发展和飞机速度的不断提高,即使使用看气动力补偿,飞行员的体力还不能适应作用于操纵舵面上的空气动力载荷,这时便产生了液压助力器,此系统实际上仍是一个除飞行员外开环的机液伺服系统。伴随着飞行包线的进一步扩大,飞机的稳定性与可操纵性之间的矛盾更加突出,相继出现了增稳操纵系统和控制增稳操纵系统,这时的系统已在局部使用了电传操纵技术,但操纵系统仍以机械通道为主控通道。为实现最佳气动布局的飞机设计,在电传操纵余度技术逐渐趋于成熟的条件下,操纵系统的机械通道有被电传通道完全取代的趋势,这便产生了现在以被广泛使用的电传操纵系统。但电传操纵系统难以克服自身易受干扰的缺陷,为了改善电传操纵系统的性能,克服自身的缺陷,在电传操纵系统内采用了新的信号传导材料——光纤。光纤作为信号传导材料与电传操纵系统相比,在抗电磁干扰、减轻重量、提高可靠性等方面有明显的优势。运用新的信号传导材料与电传操纵系统相结合所产生的操纵系统,这便是光传操纵系统的雏形。光传操纵系统对提高飞机的稳定性和满足日益提升的飞行性能产生了深远的影响。 第二章机械操纵系统 驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员

飞机操纵系统

飞机操纵系统(卷名:航空航天) aircraft control system 传递操纵指令、驱动舵面和其他机构以控制飞机飞行姿态的系统。根据操纵指令的来源,可分为人工操纵系统(由主操纵系统和辅助操纵系统组成)和自动控制系统。 主操纵系统用于控制飞机飞行轨迹和姿态,由升降舵(或全动平尾)、副翼和方向舵的操纵机构组成(图1)。主操纵系统应使驾驶员有位移和力的变化感觉,这是它与辅助操纵系统的主要差别。辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。它们的操纵只是靠选择相应开关位置,通过电信号接通电动机或液压作动筒来完成。自动控制系统的操纵指令来自系统的传感器,能对外界的扰动自动作出反应,以保持规定的飞行状态,改善飞机飞行品质。常用的自动控制系统有自动驾驶仪、各种增稳系统、自动着陆系统和主动控制系统。自动控制系统的工作与驾驶员的操纵是各自独立、互不妨碍的。飞机主操纵系统经历了由简单初级到复杂完善的发展过程。先后出现了机械式操纵、可逆、不可逆助力操纵和电传操纵,并在电传操纵基础上发展了主动控制技术。 简单机械操纵系统驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统(图1 )由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。 简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员获得操纵力的感觉,构成所谓“机械反馈”,这就是可逆助力操纵系统。 不可逆助力操纵系统可逆助力操纵系统虽可解决杆力过大的问题,但在超音速飞机上还会出现所谓杆力反向变化的问题。由于杆力反向变化,会使驾驶员产生错觉而无法正确驾驶飞机。为此,须把可逆助力操纵系统中的机械反馈取消,即舵面气动载荷全部由液压助力器承受。为了使驾驶员获得操纵力感觉,在系统中增加了人工载荷机构(通常是弹簧的)以及其他改善操纵特性的装置,形成不可逆助力操纵系统(图2)。 在高空超音速飞行时,由于空气密度减小,飞机容易发生频率很高的俯仰和横侧振荡,驾驶员来不及作出反应。为了克服振荡,在超音速飞机上普遍安装自动增稳装置,如俯仰阻尼器和方向阻尼器等。 电传操纵系统在不可逆助力操纵系统中,存在着间隙、摩擦、弹性变形等影响,难以解决微弱信号的传递问题。又由于普遍采用增稳装置,机械联杆装置越来越复杂,重量增加。自动控制和微电子技术的发展,为取消机械传动装置创造了条件,可用电信号综合传感器信号和驾驶员的操纵指令,对飞机进行有

飞行操纵系统

飞行操纵系统 摘要:飞行操纵系统是保障民航飞机在天空安全可靠飞行的重要系统。它是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总和,用于控制飞机的飞行姿态、气动外形和乘坐品质。波音737NG作为典型的液压助力机械式主操作系统,对其研究具有重要意义。因此,本文将结合波音737NG对飞机的主操纵系统和辅助操纵系统做主要介绍。 正文: 飞行操纵系统分类很多,根据操纵信号的来源不同可分为人工飞行操纵系统和自动飞行操纵系统。自动飞行操纵系统操纵信号由系统本身产生,而人工飞行操纵系统操纵信号由驾驶员产生。在人工操纵系统中,通常又分为主操纵系统和辅助操纵系统。主操纵系统指驱动副翼、升降舵和方向舵,使飞机产生绕纵轴、横轴、立轴转动的系统。其他驱动扰流板、前缘装置、后缘襟翼和水平安定面配平等辅助操纵面的操纵系统均称为辅助操纵系统。 一、飞行主操作系统 1、副翼 飞机副翼通常铰接在机翼外侧后缘,在大型飞机的组合横向操纵系统中,通常有4块副翼----2块内副翼和2块外副翼。低速飞行时,内外副翼可以共同进行横向操作;高速飞行时,仅有内副翼进行横向操作。 副翼系统操纵飞机绕纵轴进行滚转运动,运动期间,一侧机翼的

副翼上偏,另一侧机翼的副翼下偏,两侧机翼产生升力差,飞机完成滚转。 图一典型副翼操纵系统原理 如图所示为737NG飞机的副翼操纵系统,采用并列驾驶盘式操纵机构,两驾驶盘通过互联鼓轮柔性相连。当转动任意驾驶盘产生操纵信号都可以按如下路径向后传递:驾驶盘、左侧副翼鼓轮、钢索、副翼输入扇形轮、副翼输入扭力管、输入摇臂和输入杆、液压助力器、输出摇臂和输出扭力管、输出鼓轮、钢索、扇形轮、传动杆、副翼。其中关键部件为驾驶盘柔性互联机构、液压助力器与副翼感觉定中机构。驾驶盘柔性互联机构用于防止驾驶盘卡阻。正常情况下,操纵一侧驾驶盘,另一侧随动。当右侧驾驶盘卡阻,左侧机长可以操纵左驾驶盘通过左钢索系统操纵副翼;当左驾驶盘卡阻时,副驾驶可以使用右驾驶盘操纵扰流板进行应急横滚操作。现代民航客机舵面的气动载荷较大,故采用液压助力器进行助力操作。液压助力器输入是一个机

飞行操纵系统自己整理

目录 ATA27-飞控系统 (2) 1. 飞机操纵系统包括哪几部分? (2) 2. 飞机的重要操纵面,各操纵什么运动? (2) 3. 操纵系统的分类及各自特点? (2) 4. 飞行操纵系统的要求? (3) 5. 软式传动与硬式传动优缺点? (3) 6. 钢索使用中的主要故障有哪些?如何彻底检查?(豆) (4) 7. 什么是钢索的“弹性间隙”,有什么危害?简述飞机操纵系统中减少“弹性间隙”采用的方法及其原因。(豆) (4) 8. 导致软性传动机构操纵灵敏性差的主要原因是什么?如何解决?(豆) (4) 9. 软式传动操纵灵敏性变差的原因,如何解决。(上一题不够的话,加上这题) (4) 10. 简述钢索导向装置有哪些,分别是什么作用?(豆) (4) 11. 软式传动机构的主要构件及其作用是什么?(豆) (4) 12. 对于简单机械操纵系统,什么是传动系数?其含义是什么?并对操纵系统传动系数的大小特性进行对比分析。(豆) (5) 13. 为什么采用非线性传动机构操纵系统? (5) 14. 四余度系统的组成和功能? (5) 15. 以典型的四余度系统为例,简述电传操纵系统中的余度管理形式?// 多重系统也称余度系统,系统应满足哪三个条件? (6) 16. 余度系统每个通道中,信号选择器以及监控器与切换装置的主要作用是什么?(豆) 6 17. 在具有A、B、C、D四套电传操纵的四余度系统中,假设C套的杆力传感器和D套的舵回路同时出现故障,系统能否工作?如何工作?(豆) (7) 18. 电传系统优缺点? (7) 19. 液压助力器的原理? (7) 20. 平衡片和调整片的作用? (8) 21. 在操纵系统的助力驱动装置中,液压和电动驱动装置分别用在什么地方?为什么?(豆) (8) 22. 水平安定面配平 (8) 23. 简述飞机的横向操纵。 (8) 24. 根据附图,简述并列式柔性互联驾驶盘机构的工作情况。(豆) (9) 25. 简述什么是副翼反向偏航,以及在副翼设计上可以用来防止副翼反向偏航的措施。(豆) 9 26. 说明副翼感觉定中凸轮机构如何产生感觉力?在副翼配平操纵中如何工作?(豆) 10 27. 输出扭力管的特点? (10) 28. 升降舵载荷感觉定中机构的特点? (11) 29. 根据附图,简述升降舵感觉定中机构的工作原理。(豆) (11) 30. 什么是飞机的“自动下俯”现象?如何避免?(豆)//叙述马赫配平机构的作用(豆) 12 31. 飞机上既然安装了速度表,现代大型运输机上为什么还要安装马赫表? (12)

波音737-700800型飞机发动机引气系统及其故障分析

波音737-700/800型飞机发动机引气系统及其故障分析 针对发动机引气系统是一个多发性故障的系统,介绍了波音737-700/800型飞机发动机引气系统常见故障现象和原因,并结合实践提出了系统的排故方法。 波音737-700/800型飞机发动机引气系统的功用是为飞机气源系统提供压力和温度调节的压缩空气,供给气源用户系统,包括发动机起动系统,空调和增压系统,发动机进口整流罩防冰系统,机翼热防冰系统和水箱增压系统,大气总温探头加热,液压油箱增压系统等。发动机引气系统部件在发动机压气机机匣上和发动机吊架内。 发动机引气系统的工作原理及结构 发动机引气来自发动机第9级和第5级高压压气机。发动机低转速时,由于第5级空气压力不能满足气源系统的需要,气源系统使用第9级引气。发动机高转速时,气源系统使用第5级引气。发动机引气系统主要由三大机构来控制:(1)低速时高压级调节器和高压级活门控制发动机引气压力。低速时第5级单向活门防止反流。(2)高速时高压级活门关闭,第5级单向活门打开,向压力调节和关断活门(PRSOV)提供引气。(3)发动机引气预冷器系统控制发动机引气温度。预冷器的风扇空气流量由预冷器控制活门、预冷器控制活门传感器和机翼热防冰电磁活门控制。 高压级调节器和活门的目的是控制高压级发动机引气的供应。高压级调节器由气源关断机构、基准压力调节器、反流单向活门和释压活门组成。高压级调节器操纵高压级活门,进而控制第9级引气总管的引气量。高压级调节器从第9级引气总管的分接头得到未调节的空气,经过气源关断机构到达基准压力调节器,使压力减少到恒定的控制压力。该控制压力引到高压级活门的A腔,克服弹簧力和高压级活门B腔的压力打开活门。作用在高压级活门作动筒上的合力使活门调节下游的压力达到32 psi(额定值)。 引气调节器(BAR),PRSOV和450恒温器的功用是调节引气压力和温度。引气调节器的主要元件包括过压电门、基准压力调节器、控制节流孔、锁住电磁活门和释压活门。引气调节器从级间总管得到未调节的空气,经过过压电门和基准压力调节器,使压力减少到恒定的控制压力,然后引到释压活门和锁住电磁活门。当锁住电磁活门电动打开时,它向PRSOV的A腔提供控制压力克服弹簧力和B腔的压力来打开PRSOV,控制到气源总管的发动机引气量,使活门调节下游压力达到42 psi(额定值)。当引气调节器电动关闭时,它释放PRSOV的控制压力,利用弹簧力关闭PRSOV,切断引气。 发动机引气系统故障及其分析 1. 故障现象 当发动机为引气源时,在慢车状态(大概低于50%N1)时使用9级引气,正常的引气压力为32±6 psi;在正常巡航状态时使用5级引气,引气压力为42±8psi。如引气压力不在这个范围以内,就有可能是发动机引气系统出现故障。发动机引气系统常见故障有以下几种:A. 引气电门在OFF位时引气活门不能关闭;B.引气压力高;C.引气压力低;D. 引气压力为0;E. 发动机引气时左、右管道压力指示器指针不相同; F. 引气脱开灯亮等。下面具体对以上常见故障进行分析。 2. 故障的分析和排除 对于A故障现象,引气电门在OFF位时引气活门不能关闭的可能原因有:(1)MW0311电线束断路或短路,电路跳开关故障断开,P5-10空调组件、空调附件组件M324或飞机导线内部断路或短路;(2)PRSOV故障打开;(3)引气调节器打开或导线故障;(4)指示器系统故障。该故障较为简单,通过测量线路,检查引气调节器可以较为容易隔离故障。 故障B现象为:当发动机为引气源,工作在5级可调的稳定状态时,引气压力高于50 psi 则为引气压力高,可能的故障原因有:(1)管道压力传感器故障、N12双管道压力指示器超

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

飞机操纵系统方式

飞机操纵系统方式 飞机操纵系统方式 -简单机械操纵系统- 机械操纵系统,由钢索的软式操纵,发展为拉杆的硬式操纵。驾驶杆及脚蹬的动作经过钢索或拉杆的传递直接带动舵面运动。驾驶 员在操纵过程中必须克服舵面上所承受的气动力。 -助力操纵系统- 随着飞机尺寸、质量及飞行速度的不断增加,舵面铰链力矩的增大,驾驶员难以直接通过钢索或拉杆来操纵舵面。20世纪40年代 末出现了液压助力器,将其安装在操纵系统中,作为一种辅助装置 来增大施加在舵面上的作用力,以发挥飞机的全部机动能力。这就 是飞机的助力操纵系统。 不可逆助力操纵系统 -全助力操纵系统- 当超音速飞机出现后,飞机超音速飞行时需要相当大的操纵力矩才能满足飞机的机动操纵要求。此外,由于尾翼上出现了超音速区,升降舵操纵效率大为降低,而不得不采用全动平尾。全动平尾铰链 力矩大,而且数值的变化范围较宽,非线性特性影响严重,驾驶员 无法直接承受舵面上的铰链力矩。在这个时候,出现了全助力操纵 系统。 全助力操纵系统中,切断了舵面与驾驶杆的直接联系,驾驶员的'操纵指令直接控制助力器上的分油活门,从而通过助力器改变舵面 的偏转并承受舵面的铰链力矩。此时,驾驶杆上所承受的杆力仅用 于克服传动机构中的摩擦力,驾驶员无法从杆力的大小来感受飞机

飞行状态的变化。因此,在系统中增加了人感装置,通过弹簧、缓 冲器及配重等构成的系统,来提供驾驶杆上所受的人工感力。 -增稳系统- 从20世纪50年代中期以来,随着飞机向高空高速方向发展,飞行包线不断延长,飞机的气动外形很难既满足低空、低速的要求, 又满足高空、高速的要求,常会出现飞机在高空、高速飞行时稳定 性增加而阻尼不足,但在低速飞行时稳定性又不够的现象。为了提 高飞机的稳定性和改善飞机的阻尼特性,第一次将人工操纵系统与 自动控制结合起来,将增稳系统引入到人工操纵系统中,从而形成 了具有稳定功能的全助力系统。 在这个系统中,增稳系统和驾驶杆是相互独立的,增稳系统并不影响驾驶员的操纵。由于舵面既受驾驶杆机械传动指令控制,又受 增稳系统产生的指令控制,为了操纵安全起见,增稳系统对舵面的 操纵权限受到限制,一般仅为舵面全权限的3%~6%。 -控制增稳系统- 增稳系统在增大飞机的阻尼和改善稳定性的同时,在一定程度上降低了飞机操纵反应的灵敏性,从而使飞机的操纵性变坏。为了克 服这个缺点,在增稳系统的基础上,进一步发展成为控制增稳系统。它与增稳系统的主要区别在于:在控制增稳系统中,将驾驶员操纵 驾驶杆的指令信号变换为电信号,经过一定处理后,引入到增稳系 统中。控制增稳系统较好地解决了稳定新与操纵性之间的矛盾,驾 驶员还可通过该系统直接控制舵面,因此控制增稳系统的权限可以 增大到全权限的30%以上。 -电传操纵系统- 传统的机械操纵系统以及带增稳或控制增稳的机械操纵系统都存在一些缺点:在大型飞机上操纵系统越来越笨重,尺寸也大;不可避 免地存在一些非线性,如摩擦力和传动间隙等,造成操纵迟滞和系 统自振;机械操纵系统直接固定在机体上,易传递飞机的弹性振动, 引起驾驶杆偏移,有时造成人机诱发振荡等;由于控制增稳系统权限 有限,无法解决现在高性能飞机操纵与稳定中的许多问题。

电传操作系统常见故障

在维护某型新机时,经常会遇到СДУ电传操纵系统故障,其特点为类型复杂、多变,排故较为困难。以下作一系统归纳总结。 一、СДУ通道故障的产生及显示 СДУ电传操纵系统是纵向(包括横向补课断开部分)四余度、横向(可断开部分)和航向通道为三余度的系统。СДУ通道故障主要通过以下几个方式显示: 1、右前面板CAC信号盘上红色“СДУ”告警信号灯亮; 2、飞行、开车或加压检查时ЗKPAH有时会打印如下故障信息: ДBA KAHAЛA СДУ——СДУ两个通道(УЛ-98) ABTOMAT Kш——Kш自动(УЛ-99) ABTOMAT HOCKOB——前端襟翼自动 ABTOMAT ФЛAΠEPOH——襟副翼自动 ДEMΠфEP KУPCA——航向阻尼(УЛ-99) ДEMΠфEP KPEHA——倾斜阻尼(УЛ-99) OΠP——极限状态(УЛ-98) PEЗEPB БOK KAHAЛA——侧向通道备份(УЛ-99) ДИффУΠPABЛEHИE——平尾差动操纵(УЛ-99) ДEMΠфEP KУPCA——航向阻尼器(УЛ-99) ДEMΠфEP KPEHA——倾斜阻尼器(УЛ-99) BKЛЮЧИДEMΠфEP KУPCA KPEHA ——接通倾斜、航向阻尼器 3、通过①、②、③、④个通道信号灯常亮、闪亮来显示; 4、在地面检查没有故障现象,而飞机在空中某个状态时有通道故障存

在。 二、故障的通道分布及识别 СДУ电传操纵系统是由俯仰通道、侧向通道、方向通道,前缘襟翼通道(K УH)、襟副翼通道(KУф)和极限状态限制通道(OΠP)组成,分别按余度技术分布、运算于四个通道中。当任何一个子通道发生故障时,相应的通道信号灯亮。若为假故障,按压故障灯后灯应灭,故障随即消失,再次检查故障不应再出现;若按压通道灯后常亮,或再次检查故障继续出现,则代表故障稳定。当纵向通道和平尾差动故障时,由ΠУ-220操纵台上的①、②、③、④灯显示,而横向和航向通道故障时,“СДУ”红色警告灯应亮。 三、常见的通道故障 1、纵向通道故障 ⑴当有两个通道灯亮,ЗKPAH打印“СДУ两个通道”,即说明是纵向两个子通道故障。其可能原因主要为:①2台BT-455(BT1);②2台BT-457-01(BT2);③2台УСa或УСn;④2个ωz;⑤2个Πy;⑥2个通道的ДΠP;⑦2个通道CΠn或CΠп;⑧2个通道CΠn或CΠп(伺服传动机构)。排除此类故障可按由易到难的顺序逐步展开。 ⑵当三个通道灯亮,ЗKPAH打印“СДУ”双通道、且“СДУ”红色告警灯亮,说明纵向三个子通道故障。其可能原因主要为;①3个BT1;②3个УСa或УСn;③3个BT2;④3个ωz;⑤3个Πy;⑥3个通道的ДΠP(杆位移传感器);⑦3个通道的PΠл或PΠп;⑧3个BPЗ(接通加油状态时); ⑨3个CΠл或CΠп(伺服传动机构) 2、倾斜和航向通道故障

飞机电传操纵系统

电传操纵系统概况 一、电传操纵系统的概念及发展概况 1、电传操纵系统的概念 电传操纵系统是将从驾驶员的操纵装置发出的信号转换成电信号,通过电缆直接传输到自主式舵机的一种系统。也就是说,电传操纵系统也是一个全时、全权限的“电信号系统+控制增稳”的飞行操纵系统。电传操纵系统是人工操作和自动控制在功能上和操纵方式上较好地融为一体。电传操纵系统主要依靠电信号传递驾驶员的操纵指令,所以这种系统不再含有机械操纵系统。带有机械备份的电传操纵系统成为准电传操纵系统。控制增稳系统是电传操纵系统不可分割的组成部分,只有具备控制增稳功能的电信号系统才能称为电传操纵系统。 2、电传操纵系统发展概况 20世纪前半期,采用闭环反馈原理的自动控制技术作为机械操纵系统的辅助手段,其主要作用是针对已设计好的飞机刚体动力学特性的缺陷进行补偿,实现精确的姿态和航迹控制,减轻驾驶员长期、紧张工作的负担。到了20世纪60年代,飞机的发展遇到了一些重大难题。例如:大型飞机挠性机体气动弹性模态问题,进一步提高战斗机机动性和战斗生存性问题等。这些问题仅靠气动力、结构和动力装置协调设计技术已经不能解决,或者要在性能、重量、复杂性和成本方面付出巨大代价才能得到某种折衷的解决方案。研制设计者将注意力转向采用闭环反馈原理的自动控制技术,通过对一系列单项技术和组合技术的研究、开发和验证,产生了两个具有划时代意义的新飞行控制概念:主动控制技术(ACT)和电传飞行控制(FBW)系统。这两项新技术的出现对飞机的发展产生了巨大的影响。 1.采用主动控制技术的电传操纵系统 采用主动控制技术的电传操纵系统,可使飞机的飞行控制、推力控制和火力控制的主要控制功能综合成为可能,从而极大地改善了飞机的性能。如采用主动控制技术的电传操纵系统后,放宽静稳定性(RSS)控制技术使B-52轰炸机平尾面积减少45%,结构总重量减少6.4%,航程增加了4.3%;使战斗机升阻比提高了8%~15%。机动载荷控制NILC)技术使C-5A运输机翼根弯曲力矩减少30%~50%;使F4E

飞行操纵系统

飞行操纵系统

飞行操纵系统 ——飞机系统结课论文 指导老师:闫凤良 班级:080441D 学号:080441436 姓名:朱仕广 2010.6.25

摘要:飞行操纵系统是飞机在天空中自由飞行必不可少的系统。飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。此文对飞机的飞行操纵系统、空客A320的操纵系统和相关案例进行简单介绍。 关键词:飞行操纵系统空客A320的操纵系统相关案例 正文: 飞机要想在天空中自由自在的翱翔,飞行操纵系统是必不可少的。飞行操纵系统让飞机在空中能按照人的意愿自由改变飞行状态,从而飞抵人们想要飞去的地方。下面,我们简单介绍飞机的飞行操纵系统、空客A320的操纵系统和相关案例。 一、飞行操纵系统 定义:飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。

1.飞行操纵系统分类 按照操纵指令的来源分为:人工飞行操纵系统和自动飞行控制系统。 (1)人工飞行操纵系统:其操纵信号由驾驶员发出。包括主飞行操纵系统和辅助飞行操纵系统。 主飞行操纵系统:操纵升降舵、方向舵、副翼、三个主舵面,实现飞机的俯仰、偏航和滚转操纵;辅助飞行操纵系统:操纵襟翼、副翼、扰流板、调整片等增升、增阻及水平安定面配平、方向舵配平等系统。 (2)自动飞行控制系统:其操纵信号由系统本身发出。 对飞机实施自动和半自动控制,协助驾驶员工作或自动控制飞机对扰动的响应。 包括:自动驾驶、飞行指引和自动油门。 按照指令的执行方式来分: (1)机械式操纵系统 (2)电传操纵系统 2.基本飞行操纵原理 (1)飞机的纵向操纵是通过操纵驾驶杆或驾驶

电传操纵系统第1章(03)

第1章飞行控制系统概述 1.1现代飞机飞行控制系统 1.1.1现代飞行控制系统的功能 自从上世纪初,世界上第一架重于空气的飞机诞生以来,驾驶员主要是通过机械操纵系统操纵相应舵面对飞机进行控制的。但随着飞行任务的不断复杂化,不仅飞行距离远,高度高,而且还要求有良好的操纵品质。为了解除驾驶员在长距离飞行中的疲劳,并使其集中精力完成飞行任务和改善飞机的操纵品质,故希望有一种装置和系统,控制飞机实现自动飞行并改善飞机的飞行特性。这套系统就是现代飞机上安装的飞行控制系统。 归纳起来,现代飞机的飞行控制系统主要作用是: 1.实现飞机的自动飞行: 飞机的自动飞行控制就是利用一套专门的系统,在无人参与的条件下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角及飞机三个方向空间位置的自动控制与稳定。例如,对于完全无人驾驶的飞行器,如无人机或导弹等,实现完全的飞行自动控制。对现代有人驾驶飞机(如民用客机或军用飞机),虽然有人参与驾驶,但在某些飞行阶段(如巡航等),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制。但飞行员应完成对自动飞行指令的设置和监督自动飞行的进行,并随时可以切断自动控制而实现人工驾驶。采用自动飞行的好处主要是: ·长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; ·在一些坏的天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以实现对飞机姿态和航迹的精确控制; ·有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成这些任务。 2. 实现对飞机性能的改善 一般说,飞机的性能和飞行品质是由飞机本身的气动特性和发动机特性决定的。但随着飞机的飞行高度及速度的逐渐扩大,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,现代飞机设计时,为了减轻重量,减少阻力和提高有用升力,常将飞机设计成是静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。为了解决这类问题,可以通过在飞机上安装一定类型的飞行控制系统使静不稳定的飞机变成是静稳定的,可以使阻尼特性不好的飞机变成是好的。这种系统就是现代飞机上常用的增稳系统或阻尼器系统,这种系统也是一种控制系统,但它不是用来实现飞机的自动飞行控制,而是用来改善飞机的某些特性,实现所要求的飞行品质和飞行特性。这种系统虽不实现自动飞行控制,但它们仍是一种用于飞行的控制系统,成为飞机飞行不可缺少的组成部分。 总括说来,现代飞机飞行控制系统的主要作用有两点:实现飞机的自动飞行;改善飞机的特性,实现所要求的飞行品质和飞行性能。 1.1.2飞机飞行控制的发展 早期飞机,功能简单,性能较低,完全由人工操纵即可完成飞行。但随着航空技术的发

飞机副翼操纵系统原理

张家界航空工业职业技术学院 毕业设计 题目:飞机副翼操纵系统分析 系别:数控工程系 专业:航空机电设备维修 姓名: 学号: 指导老师:

摘要 本论文主要阐述了关于飞机副翼的组成,个组成部件的工作原理,调整及日常维护方法。飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。操纵则是飞行员通过驾驶机构改变飞机的飞行状态。改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。 关键词:驾驶杆传动杆传动机构载荷感觉器

Abstract The main thesis expounded aileron plane about the composition of component parts of the working principle, adjustment and routine maintenance methods. Manipulate the plane of the plane can be referred to as the quality of the manipulation means to manipulate the plane's response characteristics. Manipulation is to change the pilot institutions have passed the driving plane flight status. Vertical plane to change the sport (such as pitch) of manipulation known as vertical manipulation, mainly through the push, pull stick, so that the elevator or the whole plane Hirao moving downward or upward deflection, resulting in pitching moment, so that plane for pitch sports. Plane around the longitudinal axis so that rotation of the body known as the lateral manipulation manipulation, mainly by the plane's aileron deflection to achieve. Key word:Stick load transmission rod drive mechanism sensilla

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

航空发动机加力控制系统

航空发动机控制系统 加力控制

一、关于加力 加力时的推力与非加力时的推力之比为加力比。有时为满足飞机各种飞行状态的需?加力是指复燃加力。一般在最大转速、最高涡轮前燃气温度的前提下,通过复燃加热,提高涡轮后的燃气温度,使喷气速度增加,从而提高发动机的推力。 ?加力时的推力与非加力时的推力之比为加力比。有时为满足飞机各种飞行状态的需要,希望加力比可以调节。

二、加力控制的要求 过渡态的加力接通和关闭控制?加力控制需要解决 ––加力状态调节过程 ?对于加力状态调节过程的控制要求是 –按照给定的加力比,提供合适的推力 –同时能够根据外界条件的变化,控制加力燃烧室的供油量或者尾喷口的面积,保证发动机转子不超转,涡轮不超温 –最好达到,保持核心发动机的工作状态不变。这可通过控制不变,使其与不加力时的最大状态一样,这种调节器就是落压比调节器 * T

二、加力控制的要求 对于加力过程的过渡态,要考虑加力接通、关闭时,发动室点火源(油路接通) 达到燃烧条件时加力燃烧室点燃(点火)喷口按一定的规律打开(扩喷口) 落压比调节器投入工作,调节加力供油量,使落压比不变(控制)预燃室供油,切断点火系统,接通过程结束(切断点火源) ?机工作的稳定可靠 ?加力接通一般是按照一定的时序和逻辑关系由协动操纵盒控制的 ?一个加力接通程序的例子: –加力燃烧室点火系统接通(通电) –加力预燃供油系统喷油,加力预燃室点燃,形成可靠的加力燃烧室点火源(油路接通)–加力燃油开关打开,使供油量逐渐增加,当加力燃烧室的油气比达到燃烧条件时加力燃烧室点燃(点火)–喷口按一定的规律打开(扩喷口)–落压比调节器投入工作,调节加力供油量,使落压比不变(控制)–涡轮膨胀比趋于稳定,加力燃烧室进入稳定工作状态时,停止向预燃室供油,切断点火系统,接通过程结束(切断点火源)

飞机发动机操纵钢索的特点和安装方法

飞机发动机操纵钢索的特点和安装方法 摘要:随着航空技术飞速发展,飞机发动机操纵系统的传动方式也随着产生了多样化的发展,新的操纵钢索形式也被大胆应用,文章主要介绍了飞机上常用的两种操纵钢索形式和特点,并分析了两种操纵钢索的安装方法的优点和缺点。 [Abstract]: With the rapid development of aviation technology, the aircraft engine control system of transmission mode is produced with the development of diversified and new control cable form has also been bold application. This article mainly introduces the aircraft commonly used two kind of cable of the form and characteristics, and analyzes the advantages and disadvantages of the cable assembly method . 关键词:飞机操纵;钢索特点;安装方法 Keywords: Aircraft control;Cable characteristics;Assembly method 引言 随着国家经济的快速发展,我国航空产业也进入了加速发展的阶段,极大的促进了飞机制造技术的发展,飞机操纵系统的操纵方式也随之带来了多样化的发展,各飞机制造商根据飞机的技术特性也选用了多种操纵形式,不同的操纵钢索形式,势必对安装方法提出了不同的要求,因此有必要对不同操纵钢索的选用和安装方法进行比较分析,从而选择适合飞机特性的操纵钢索形式。 1飞机发动机操纵钢索的两种典型样式 1.1操纵钢丝绳(Cable for control) 钢丝绳是用多根或多股细钢丝拧成的挠性绳索,钢丝绳是由多层钢丝捻成股,再以绳芯为中心,由一定数量股捻绕成螺旋状的绳。飞机操纵钢索按照加工材料可分为碳钢钢索和不锈钢钢索,飞机操纵钢索一般选用不锈钢钢丝绳。按钢索直径常见为1/16”,3/32”,1/8”,5/32”,3/16”,1/4”等,但是飞机主操作系统(副翼、方向舵、升降舵)不允许采用直径小于1/8”的钢索,按钢索的规格和型号分为7×7,7×19,7×31,6×31四种规格[1],飞机操纵钢索多采用7×19这种规格,代表性的有国内的运8飞机,见图1。 图1飞机操纵钢丝绳的截面示意图 1.2推拉钢索(Push-pull cable) 推拉钢索材料全部选用不锈钢材料,以法国CBA公司推拉钢索CBA Flexball standard为例,推拉钢索力的传动是通过内轨道利用滚珠的转动在滑轨上前后移

飞机各个系统的组成及原理

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面

形状。 左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员

相关文档
最新文档