指数函数与对数函数的应用(人教版A必修一)

合集下载

高中数学第四章指数函数与对数函数4.2指数函数4.2.1指数函数的概念课件新人教A版必修第一册

高中数学第四章指数函数与对数函数4.2指数函数4.2.1指数函数的概念课件新人教A版必修第一册

6.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定: 驾驶员在驾驶机动车时血液中酒精含量不得超过 0.2 mg/mL.如果某人喝了 少量酒后,血液中酒精含量将迅速上升到 0.8 mg/mL,在停止喝酒后,血液 中酒精含量就以每小时 50%的速度减少,则他至少要经过________小时后才 可以驾驶机动车.( )
(1,4),(2,16),设一次函数为 y=kx+b(k≠0),则bk+=b1=,4, 解得 b=1,k =3,∴y=3x+1,当 x=2 时,y=7,故不可能是一次函数模型;设二次函
c=1, 数为 y=ax2+bx+c(a≠0),则a+b+c=4,
4a+2b+c=16,
c=1, ∴a=92,
b=-32,
答案 解析
12,1∪(1,+∞) 因为函数 f(x)=(2a-1)x 是指数函数,所以22aa- -11>≠01,,
解得
1 a>2
且 a≠1,所以实数 a 的取值范围是12,1∪(1,+∞).
知识点二 指数函数的解析式 6.已知函数 f(x)=ax 是指数函数,若 f(2)=3,则 f(4)的值为( ) A.9 B.3 3 C.2 2 D.0 答案 A
18.某化工厂生产一种溶液,按市场要求,杂质含量不能超过 0.1%, 若初始溶液含杂质 2%,每过滤一次可使杂质含量减少13.
(1)写出杂质含量 y 与过滤次数 n 的函数关系式; (2)过滤 7 次后的杂质含量是多少?过滤 8 次后的杂质含量是多少?至少 应过滤几次才能使产品达到市场要求?
解 (1)过滤 1 次后的杂质含量为1200×1-13=510×23; 过滤 2 次后的杂质含量为1200×23×1-13=510×232; 过滤 3 次后的杂质含量为1200×232×1-13=510×233; …;

高中数学必修第一册人教A版(2019)第四章-《指数函数与对数函数》本章教材分析【2024版】

高中数学必修第一册人教A版(2019)第四章-《指数函数与对数函数》本章教材分析【2024版】

可编辑修改精选全文完整版《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

新教材高中数学第四章指数函数与对数函数函数模型的应用课件新人教A版必修第一册ppt

新教材高中数学第四章指数函数与对数函数函数模型的应用课件新人教A版必修第一册ppt
帮助做一个资金投资方案,使该经营者能获得最大纯利润,
并按你的方案求出该经营者下月可获得的最大纯利润(结
果保留两位有效数字).
解:以投入额为横坐标,纯利润为纵坐标,在平面直角坐标系中作出散
点图,如图所示(图①为 A 商品,图②为 B 商品).


由散点图可以看出,A 种商品所获纯利润 y 与投入额 x 之间的变化规
较为接近,
所以用 g(x)= ×( )x-3 作为模拟函数较好.
方法规律
选择函数模型的标准
函数模型的优劣,一般可用其他数据进行验证,若差
距较小,则说明选择正确,主要考查数学抽象、数学建模
的核心素养.
【跟踪训练】
4.某农产品从 5 月 1 日起开始上市,通过市场调查,得
到该农产品种植成本 Q(单位:元/百千克)与上市时间 t(单
据如下表:
x
0.50
0.99
2.01
3.98
y -0.99 0.01 0.98
则对 x,y 最适合的拟合函数是 (
A.y=2x
B.y=x2-1
C.y=2x-2
D.y=log2x
2.00
)
解析:将x=0.50,y=-0.99代入计算可以排除选项A.
将x=2.01,y=0.98代入计算可以排除选项B,C,故选D.
所以
x
g(x)= ×( ) -3.

利用 f(x),g(x)对 2019 年的 CO2 浓度比 2015 年增加的
单位数作估算,
则其数值分别为 f(4)=10,g(4)=10.5.
因为|f(4)-12|>|g(4)-12|,
故 g(x)= ×( )x-3 作为模拟函数与 2019 年的实际数据

人教A版高中同步学案数学必修第一册精品课件 第4章 指数函数与对数函数 指数函数的图象和性质

人教A版高中同步学案数学必修第一册精品课件 第4章 指数函数与对数函数 指数函数的图象和性质

2
f(- )>f(0)=1,而
3
3
1 -3
2
3
5
上是增函数,( ) =f(- ),3 =g(- ).
7
3
5
2
3
1 -3
g(- )<g(0)=1,所以( )
5
7
3
5
-
>3 .
规律方法
比较幂的大小的常用方法
变式训练4 (1)(多选题)下列式子不正确的是( AB )
A.1.52.5>1.53.2
C.
1
知识点1 指数函数的概念
1.一般地,函数
y=ax
(a>0,且a≠1)叫做指数函数.
其中指数x是自变量,定义域为
R
.
2.指数函数的特征:
(1)底数a>0,且a≠1;
(2)指数幂的系数是
1
.
名师点睛
根据指数函数的定义,只有形如y=ax(a>0,且a≠1)的函数才叫指数函数,
如 y=(a +2)
2
1 x
坐标是 (-1,4) .
解析 当x+1=0,即x=-1时,f(-1)=a0+3=4恒成立,
故函数f(x)=ax+1+3的图象恒过点(-1,4).
变式探究 本例中的函数改为f(x)=5a3x-2+3后,求f(x)的图象过的定点坐标.
解 令 3x-2=0,得
2
x=3,此时
f
2
3
=5+3=8.故函数 f(x)的图象过定点
重难探究·能力素养速提升
探究点一
指数函数的概念
【例1】 (1)若函数f(x)=(a2+2a-2)(a+4)x为指数函数,则( C )

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数指数函数的概念讲义

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数指数函数的概念讲义

最新课程标准:(1)通过具体实例,了解指数函数的实际意义,理解指数函数的概念.(2)能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.知识点一指数函数的定义函数y=a x(a>0且a≠1)叫做指数函数,其中x是自变量.定义域为R.错误!指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.知识点二指数函数的图象与性质a>10<a<1图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1单调性是R上的增函数是R上的减函数错误!底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.[教材解难]规定底数a>0且a≠1的理由(1)如果a=0,则错误!(2)如果a<0,比如y=(—2)x,这时对于x=错误!,错误!,错误!,错误!,…在实数范围内函数值不存在.(3)如果a=1,那么y=1x=1是常量,对此就没有研究的必要.[基础自测]1.下列各函数中,是指数函数的是()A.y=(—3)xB.y=—3xC.y=3x—1D.y=错误!x解析:根据指数函数的定义y=a x(a>0且a≠1)可知只有D项正确.答案:D2.函数f(x)=错误!的定义域为()A.RB.(0,+∞)C.[0,+∞)D.(—∞,0)解析:要使函数有意义,则2x—1>0,∴2x>1,∴x>0.答案:B3.在同一坐标系中,函数y=2x与y=错误!x的图象之间的关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称解析:由作出两函数图象可知,两函数图象关于y轴对称,故选A.答案:A4.函数f(x)=错误!的值域为________.解析:由1—e x≥0得e x≤1,故函数f(x)的定义域为{x|x≤0},所以0<e x≤1,—1≤—e x<0,0≤1—e x<1,函数f(x)的值域为[0,1).答案:[0,1)题型一指数函数概念的应用[经典例题]例1(1)若函数f(x)=(2a—1)x是R上的减函数,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.错误!D.(—∞,1)(2)指数函数y=f(x)的图象经过点错误!,那么f(4)·f(2)等于________.【解析】(1)由已知,得0<2a—1<1,则错误!<a<1,所以实数a的取值范围是错误!.(2)设y=f(x)=a x(a>0,a≠1),所以a—2=错误!,所以a=2,所以f(4)·f(2)=24×22=64.【答案】(1)C (2)64(1)根据指数函数的定义可知,底数a>0且a≠1,a x的系数是1.(2)先设指数函数为f(x)=a x,借助条件图象过点(—2,错误!)求a,最后求值.方法归纳(1)判断一个函数是指数函数的方法1看形式:只需判定其解析式是否符合y=a x(a>0,且a≠1)这一结构特征.2明特征:指数函数的解析式具有三个特征,只要有一个特征不具备,则不是指数函数.(2)已知某函数是指数函数求参数值的基本步骤跟踪训练1(1)若函数y=(3—2a)x为指数函数,则实数a的取值范围是________;(2)下列函数中是指数函数的是________.(填序号)1y=2·(错误!)x2y=2x—13y=错误!x4y=x x5y=31x⑥y=x13.解析:(1)若函数y=(3—2a)x为指数函数,则错误!解得a<错误!且a≠1.(2)1中指数式(错误!)x的系数不为1,故不是指数函数;2中y=2x—1=错误!·2x,指数式2x的系数不为1,故不是指数函数;4中底数为x,不满足底数是唯一确定的值,故不是指数函数;5中指数不是x,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填3.答案:(1)(—∞,1)∪错误!(2)31.指数函数系数为1.2.底数>0且≠1.题型二指数函数[教材P114例1]例2已知指数函数f(x)=a x(a>0,且a≠1),且f(3)=π,求f(0),f(1),f(—3)的值.【解析】因为f(x)=a x,且f(3)=π,则a3=π,解得a=π13,于是f(x)=π3x.所以,f(0)=π0=1,f(1)=π13=错误!,f(—3)=π—1=错误!.错误!要求f(0),f(1),f(—3)的值,应先求出f(x)=a x的解析式,即先求a的值.教材反思求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.因为底数a是大于0且不等于1的实数,所以a=—3应舍去.跟踪训练2若指数函数f(x)的图象经过点(2,9),求f(x)的解析式及f(—1)的值.解析:设f(x)=a x(a>0,且a≠1),将点(2,9)代入,得a2=9,解得a=3或a=—3(舍去).所以f(x)=3x.所以f(—1)=3—1=错误!.设f(x)=a x,代入(2,9)求出A.一、选择题1.下列函数中,指数函数的个数为()1y=错误!x—1;2y=a x(a>0,且a≠1);3y=1x;4y=错误!2x—1.A.0 B.1C.3D.4解析:由指数函数的定义可判定,只有2正确.答案:B2.已知f(x)=3x—b(b为常数)的图象经过点(2,1),则f(4)的值为()A.3B.6C.9 D.81解析:由f(x)过定点(2,1)可知b=2,所以f(x)=3x—2,f(4)=9.可知C正确.答案:C3.当x∈[—1,1]时,函数f(x)=3x—2的值域是()A.错误!B.[—1,1]C.错误!D.[0,1]解析:因为指数函数y=3x在区间[—1,1]上是增函数,所以3—1≤3x≤31,于是3—1—2≤3x—2≤31—2,即—错误!≤f(x)≤1.故选C.答案:C4.在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是()解析:需要对a讨论:1当a>1时,f(x)=ax过原点且斜率大于1,g(x)=a x是递增的;2当0<a<1时,f(x)=ax过原点且斜率小于1,g(x)=a x是减函数,显然B正确.答案:B二、填空题5.下列函数中:1y=2·(错误!)x;2y=2x—1;3y=错误!x;4y=31x-;5y=x13.是指数函数的是________(填序号).解析:1中指数式的系数不为1;2中y=2x—1=错误!·2x的系数亦不为1;4中自变量不为x;5中的指数为常数且底数不是唯一确定的值.答案:36.若指数函数y=f(x)的图象经过点错误!,则f错误!=________.解析:设f(x)=a x(a>0且a≠1).因为f(x)过点错误!,所以错误!=a—2,所以a=4.所以f(x)=4x,所以f错误!=432-=错误!.答案:错误!7.若关于x的方程2x—a+1=0有负根,则a的取值范围是________.解析:因为2x=a—1有负根,所以x<0,所以0<2x<1.所以0<a—1<1.所以1<a<2.答案:(1,2)三、解答题8.若函数y=(a2—3a+3)·a x是指数函数,求a的值.解析:由指数函数的定义知错误!由1得a=1或2,结合2得a=2.9.求下列函数的定义域和值域:(1)y=21x—1;(2)y=错误!222x-.解析:(1)要使y=21x—1有意义,需x≠0,则21x≠1;故21x—1>—1且21x—1≠0,故函数y=21x—1的定义域为{x|x≠0},函数的值域为(—1,0)∪(0,+∞).(2)函数y=错误!222x-的定义域为实数集R,由于2x2≥0,则2x2—2≥—2.故0<错误!222x-≤9,所以函数y=错误!222x-的值域为(0,9].[尖子生题库]10.设f(x)=3x,g(x)=错误!x.(1)在同一坐标系中作出f(x),g(x)的图象;(2)计算f(1)与g(—1),f(π)与g(—π),f(m)与g(—m)的值,从中你能得到什么结论?解析:(1)函数f(x)与g(x)的图象如图所示:(2)f(1)=31=3,g(—1)=错误!—1=3;f(π)=3π,g(—π)=错误!—π=3π;f(m)=3m,g(—m)=错误!—m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y轴对称.。

人教A版高中同步学案数学必修第一册 第四章 指数函数与对数函数 函数的应用(二)函数的零点与方程的解

人教A版高中同步学案数学必修第一册 第四章 指数函数与对数函数 函数的应用(二)函数的零点与方程的解

所示.由图象可知,两个函数图象只有一个交点,故函数()只有一
个零点.
1

(3)() = 2 + lg( + 1) − 2.
解(方法1)∵ (0) = 1 + 0 − 2 = −1 < 0,(2) = 4 + lg 3 − 2 = 2 + lg 3 > 0,
∴ () = 0在(0,2)内必定存在实根.
C.(−1,1)和(1,2)D.(−∞, −3)和(4, +∞)
[解析]易知() = + + ( ≠ )的图象是一条连续不断的曲线,又
(−)(−) = × (−) = − < ,所以()在(−, −)内有零点,即方程
+ + = ( ≠ )在(−, −)内有根,同理,方程 + + = ( ≠ )在

( )


( )









= + = − < ,( ) = + = − < ,











= + = − + = − ,() =






> ,∴ > ,即 − > ,∴ ( ) > ,
() = − − 有2个不同的实根,即函数()的图象与直线
= − − 的图象有2个交点.作出直线 = − − 与函数
1 = ()和2 = ℎ()的图象,则两个图象公共点的个数就是函数 = ()零点的个数.

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

第2课时 指数函数及其性质的应用课程标准(1)掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.(2)能借助指数函数图象及单调性比较大小.(3)会解简单的指数方程、不等式.(4)会判断指数型函数的奇偶性.新知初探·课前预习——突出基础性教材要点要点一 比较大小❶1.对于同底数不同指数的两个幂的大小,利用指数函数的________来判断;2.对于底数不同指数相同的两个幂的大小,利用指数函数的______的变化规律来判断;3.对于底数不同指数也不同的两个幂的大小,则通过______来判断.要点二 解指数方程、不等式(1)形如a f(x)>a g(x)的不等式,可借助y=a x的________求解❷;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x的_ _______求解;(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.要点三 指数型函数的单调性❸一般地,有形如y=a f(x)(a>0,且a≠1)函数的性质(1)函数y=a f(x)与函数y=f(x)有________的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有________的单调性;当0<a<1时,函数y=a f(x)与函数y=f(x)的单调性________.助学批注批注❶ 注意区别指数函数与幂函数的比较大小.批注❷ 如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论.批注❸ 与复合函数的单调性“同增异减”一致,即内外两个函数单调性相同,则复合函数为增函数;内外两个函数单调性相反,则复合函数为减函数.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)若0.3a>0.3b,则a>b.( )(2)函数y=3x2在[0,+∞)上为增函数.( )(3)函数y=21x在其定义域上为减函数.( )(4)若a m>1,则m>0.( )2.设a=1.20.2,b=0.91.2,c=0.3-0.2,则a,b,c大小关系为( ) A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.已知2m>2n>1,则下列不等式成立的是( )A.m>n>0B.n<m<0C.m<n<0D.n>m>04.函数f(x)=2|x|的递增区间是________.题型探究·课堂解透——强化创新性题型 1 利用指数函数的单调性比较大小例1 若a=(12)32,b=(34)14,c=(34)34,则a,b,c的大小关系是( ) A.a>b>c B.b>a>cC.b>c>a D.c>b>a方法归纳底数与指数都不同的两个数比较大小的策略巩固训练1 下列选项正确的是( )A.0.62.5>0.63B.1.7−13<1.7−12C.1.11.5<0.72.1D.212>313题型 2 解简单的指数不等式例2 (1)不等式3x -2>1的解集为________.(2)若a x +1>(1a )5−3x(a >0且a ≠1),求x 的取值范围.方法归纳利用指数函数单调性解不等式的步骤巩固训练2 已知集合M ={-1,1},N ={x |12<2x +1<4,x ∈Z },则M ∩▒N = ()A .{-1,1}B .{-1}C .{0}D .{-1,0}题型 3 指数型函数的单调性例3 求函数f (x )=(13)x 2-2x 的单调区间.方法归纳指数型函数单调区间的求解步骤巩固训练3 函数f (x )=2x2-1的单调减区间为________.题型 4 指数函数性质的综合问题例4 已知函数f (x )=e x -mex 是定义在R 上的奇函数.(1)求实数m 的值;(2)用单调性定义证明函数f (x )是R 上的增函数;(3)若函数f (x )满足f (t -3)+f (2t 2)<0,求实数t 的取值范围.方法归纳有关指数函数性质的综合问题的求解策略是奇函数.巩固训练4 已知函数f(x)=2x−a2x+a(1)求实数a的值;(2)求f(x)的值域.第2课时 指数函数及其性质的应用新知初探·课前预习[教材要点]要点一单调性 图象 中间值要点二单调性 单调性要点三相同 相同 相反[基础自测]1.答案:(1)× (2)√ (3)× (4)×2.解析:∵a=1.20.2>1.20=1,b=0.91.2<0.90=1,∴b<a,又y=x0.2在(0,+∞)上单调递增,∴1<a=1.20.2<0.3-0.2=(103)0.2,∴b<a<c.答案:C3.解析:因为2m>2n>1,所以2m>2n>20;又函数y=2x是R上的增函数,所以m>n>0.答案:A4.解析:因为f(x)=2|x|={2x,x>0(12)x,x≤0,故函数f(x)的单调递增区间为(0,+∞).答案:(0,+∞)题型探究·课堂解透例1 解析:因为b=(34)14,c=(34)34,函数y=(34)x在R上单调递减,所以(34)14>(34)34,即b>c;又a=(12)32=(14)34,c=(34)34,函数y=x34在(0,+∞)上单调递增,所以(14)34<(34)34,即a<c,所以b>c>a.答案:C巩固训练1 解析:对于A:y=0.6x在定义域R上单调递减,所以0.62.5>0.63,故A正确;对于B:y=1.7x在定义域R上单调递增,所以1.7−13>1.7−12,故B错误;对于C:因为1.11.5>1.10=1,0<0.72.1<0.70=1,所以1.11.5>0.72.1,故C错误;对于D:因为¿)6=23=8,¿)6=32=9,即(212)6<¿)6,所以212<313,故D错误.答案:A例2 解析:(1)3x-2>1⇒3x-2>30⇒x-2>0⇒x>2,所以解集为(2,+∞).(2)因为a x+1>(1a)5−3x,所以当a>1时,y=a x为增函数,可得x+1>3x-5,所以x<3.当0<a<1时,y=a x为减函数,可得x+1<3x-5,所以x>3.综上,当a>1时,x的取值范围为(-∞,3),当0<a<1时,x的取值范围为(3,+∞).答案:(1)(2,+∞) (2)见解析巩固训练2 解析:∵12<2x+1<4,∴2-1<2x+1<22,∴-1<x+1<2,∴-2<x<1.又∵x∈Z,∴x=0或x=-1,即N={0,-1},∴M∩N={-1}.答案:B例3 解析:令u=x2-2x,则原函数变为y=(1 3 )u.∵u=x2-2x=(x-1)2-1在(-∞,1)上单调递减,在[1,+∞)上单调递增,又∵y=( 13)u在(-∞,+∞)上单调递减,∴y=(13)x2-2x单调递增区间是(-∞,1),单调递减区间是[1,+∞).巩固训练3 解析:令t=x2,则y=2t-1为增函数,当x∈(-∞,0)时,t=x2为减函数,所以f(x)=2x2-1在x∈(-∞,0)上是减函数.答案:(-∞,0)例4 解析:(1)∵f(x)是定义在R上的奇函数,∴f(0)=0,得m=1;(2)设x1,x2∈R,且x1<x2,则f(x1)-f(x2)=e x1−1e x1−e x2+1e x2=(e x1−e x2)¿)∵x1<x2,∴0<e x1<e x2,因此f(x1)<f(x2),即f(x)是R上的增函数;(3)∵f(x)是奇函数,∴f(2t2)<-f(t-3)=f(3-t),又f(x)在R上为增函数,∴2t2<3-t,解得-32<t<1.巩固训练4 解析:(1)因为f(x)=2x−a2x+a,f(-x)=2−x−a2−x+a =1−a·2x 1+a·2x由f(-x)=-f(x),可得1−a·2x1+a·2x =-2x−a2x+a,(1-a·2x)(2x+a)=(1+a·2x)(a-2x),2x-a·2x·2x+a-a2·2x=a+a2·2x-2x-a·2x·2x,整理得2x(a2-1)=0,于是a2-1=0,a=±1.当a=1时,f(x)定义域为R,f(x)是奇函数.当a=-1时,f(x)定义域为{x|x≠0},f(x)是奇函数.因此a=±1.(2)当a=1时,f(x)=1-22x+1,定义域为R,所以2x>0,于是2x+1>1,0<22x+1<2,因此-1<1-22x+1<1,故f(x)的值域为(-1,1).当a=-1时,f(x)=1+22x−1,定义域为{x|x≠0},所以2x>0,且2x≠1,于是2x-1>-1,且2x-1≠0,所以22x−1<-2,或22x−1>0.因此1+22x−1<-1或1+22x−1>1,故f(x)的值域为(-∞,-1)∪(1,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2指数函数与对数函数的应用
目标认知:学习目标:
能够熟练运用指数函数与对数函数的性质,解决指数函数与对数函数的综合问题.
学习重点:
运用函数有关理论,解决综合问题.
学习难点:
指数函数与对数函数综合应用.
典型例题:例1.设,函数在区间上的最大值与最小值之差为,则( )
A.B.2C.D.4
【解读】设,函数在区间上的最大值与最小值分别为
,,它们的差为,∴,,选D.例2.函数的反函数的定义域为( )
A.B.(1,9]C.(0,1)D.
【解读】函数的反函数的定义域为原函数的值域,原函数的值域为(1,9],
∴选B.
例3.若,则下列结论正确的是( )
A.B.C.
D.
【解读】D;由指数函数与对数函数的单调性知D正确.
例4.函数的值域为
A.B.C.D.
答案:A
例5.若函数是函数的反函数,且,则
( )
A.B.C.D.
答案:A
【解读】函数的反函数是,又,即

所以,a=2,故,选A.
例6.设,,,则
A.B.C.D.
答案:A
【解读】∵,∴
∴,∴.
例7.设则________
答案:.
【解读】本题考察了分段函数的表达式、指对数的运算.
例8.已知函数.若,a<b且,则的取值范围是
A.B.C.D.
答案:C
【解读1】因为,所以,所以a=b(舍去),或,所以
又0<a<b,所以0<a<1<b,令,
由“对勾”函数的性质知函数在上为减函数,
所以,即a+b的取值范围是.
【解读2】由0<a<b,且得:,利用线性规划得:,化为求的取值范围问题,
,过点(1,1)时z最小为2,
∴C 例9.若函数的零点与的零点之差的绝对值不超过0.25,则可以是
A.B.C.
D.
答案:A
【解读】的零点为,的零点为,
的零点为,的零点为.
现在我们来估算的零点,因为,,
所以的零点,
又函数的零点与的零点之差的绝对值不超过0.25,
只有的零点适合,故选A.
例10.函数的图像大致为().
【解读】函数有意义,需使,其定义域为,排除C,D,
又因为,所以当时,函数为减函数,故选A.
答案:A.
例11.设,则的定义域为( )
A.B.C.
D.
答案:B
【解读】的定义域是(-2,2),故应有且,
解得或,故选B.
例12.若函数(且)有两个零点,则实数a的取值范围是________.
答案:
【解读】设函数(且)和函数,
则函数(且)有两个零点,
就是函数(且)与函数有两个交点,
由图象可知,当时,两函数只有一个交点,不符合;
当时,因为函数()的图象过点(0,1),
而直线所过的点(0,a)在点(0,1)的上方,就一定有两个交点.
所以实数a的取值范围是.
【命题立意】本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.
例13.设,,函数有最大值,则不等式
的解集为________.
【解读】设,,函数有最大值,∵
有最小值,
∴,则不等式的解为,解得

所以不等式的解集为(2,3).
例14.求函数的增区间和减区间.
【解读】令,∴,y对u而言是减函数.
∴当时,u对x为减函数,∴y对x为增函数.
当时,u对x为增函数,∴y对x为减函数.
∴的增区间为,减区间为.
例15.已知函数是奇函数,a是常数,求a的值.
【解读】∵是奇函数,∴
∴∴∴

例16.求,的值域.
【解读】设.∴,∴,,故转化为二次函数问题
∵的对称轴为,∴∴值域为
例17.已知函数(1)判断奇偶性,(2)求函数的
值域,(3)证明在区间上是增函数.
【解读】由
(1)为奇函数
(2)∵∴,

(3),

∵,,∴
又∵,,

即.
∴即∴在上为增函数.。

相关文档
最新文档