指数函数与对数函数及其不等式

合集下载

指数函数与对数函数的方程与不等式练习题

指数函数与对数函数的方程与不等式练习题

指数函数与对数函数的方程与不等式练习题指数函数与对数函数是高中数学中的重要概念,它们在数学建模、统计学、金融等领域中有着广泛的应用。

掌握指数函数与对数函数的方程与不等式的求解方法,对于解决实际问题具有重要意义。

本文将对指数函数与对数函数的方程与不等式进行练习与探讨。

一、指数函数的方程与不等式练习题1. 求解方程 $2^x = 8$。

首先,我们可以观察到 $8$ 可以表示为 $2$ 的多少次幂,即 $8 = 2^3$。

因此,原方程可以重写为 $2^x = 2^3$。

根据指数函数的性质,当底数相同时,指数相等。

因此,我们可以得出 $x = 3$。

2. 求解不等式 $2^x > 16$。

同样地,我们可以将 $16$ 表示为 $2$ 的多少次幂,即 $16 = 2^4$。

因此,原不等式可以重写为 $2^x > 2^4$。

根据指数函数的性质,当底数相同时,指数的大小决定底数函数的大小关系。

因此,我们可以得出 $x > 4$。

二、对数函数的方程与不等式练习题1. 求解方程 $\log_2(x) = 3$。

对数函数与指数函数是互为反函数的关系,因此可以通过将指数形式的方程转化为对数形式的方程来求解。

根据对数函数的性质,$\log_a(a^x) = x$。

因此,我们可以将原方程转化为 $x = 2^3$。

解得 $x = 8$。

2. 求解不等式 $\log_3(x) < 2$。

对于对数函数的不等式,首先需要找到不等式的底数。

在本例中,底数为 $3$。

根据对数函数的性质,当底数相同时,对数的大小决定真数的大小关系。

因此,我们可以得出 $x < 3^2$。

解得 $x < 9$。

三、综合练习题1. 求解方程 $3^x - 2 \cdot 3^{x-1} = 9$。

首先,我们可以对方程进行整理,得到 $3^x - 2 \cdot 3^x \cdot 3^{-1} = 9$。

继续化简得 $3^x - 2 \cdot \frac{3^x}{3} = 9$。

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

高中数学公式大全指数对数函数的方程与不等式应用

高中数学公式大全指数对数函数的方程与不等式应用

高中数学公式大全指数对数函数的方程与不等式应用一、指数方程与不等式的应用指数方程和不等式是数学中常见的问题类型,它们在实际生活中有着广泛的应用。

本文将介绍指数方程和不等式在各个领域中的应用,涉及到经济学、生物学、物理学等多个领域。

1. 经济学中的应用指数方程和不等式在经济学中有着广泛的应用。

例如,在经济增长模型中,经济增长率可以用指数函数来表示,通过解指数方程可以计算经济增长的速率和时间。

此外,不等式方程可以描述供需关系,从而帮助经济学家做出合理的决策。

2. 生物学中的应用指数方程和不等式在生物学中也有着重要的应用。

在生物种群的增长模型中,指数方程可以用来描述种群数量随时间的变化。

通过解指数方程,我们可以计算出种群的增长速率和繁殖周期。

此外,在生物学研究中,不等式方程可以用来描述物种之间的竞争关系和资源分配问题。

3. 物理学中的应用指数方程和不等式在物理学中也有着广泛的应用。

例如,在放射性衰变中,物质的衰变速率可以用指数函数来描述。

通过解指数方程,我们可以计算出物质的衰变速率,从而了解物质的特性。

此外,在能量传递和振动系统中,指数方程和不等式可以帮助我们理解能量的转换和系统的稳定性。

4. 社会科学中的应用指数方程和不等式在社会科学中也有着一定的应用。

例如,在人口增长模型中,指数方程可以用来描述人口数量的变化规律。

通过解指数方程,我们可以计算出人口的增长速率和预测未来的人口数量。

此外,在社会科学研究中,不等式方程可以用来描述社会不平等和资源分配问题。

二、指数对数函数的应用指数和对数函数是数学中的重要概念,它们在各个领域中的应用十分广泛。

下面将介绍指数对数函数的应用于科学、工程、金融等领域。

1. 科学中的应用指数和对数函数在科学研究中有着广泛的应用。

例如,在物理学中,指数函数可以用来描述物体的增长速度、衰减速度等特性。

而对数函数则可以用来描述复杂系统的变化趋势和规律。

在化学研究中,指数函数可以用来描述化学反应的速率、反应物的浓度等特性。

指数与对数函数的方程与不等式

指数与对数函数的方程与不等式

指数与对数函数的方程与不等式指数与对数函数是高中数学中的重要内容,它们在数学和实际问题中有着广泛的应用。

本文将介绍指数与对数函数的方程与不等式的求解方法和应用。

一、指数函数方程的求解指数函数方程是形如y=a^x的方程,其中a为常数,x和y为变量。

求解指数函数方程的一般步骤如下:1. 将指数函数方程转化为对数函数方程。

对于y=a^x,我们可以将其转化为对数形式:x=loga(y)。

2. 根据对数函数的性质,将对数函数方程进行化简。

例如,利用对数函数的指数与对数互为反函数的性质,可以将方程简化为x=logay。

3. 求解化简后的对数函数方程。

利用对数函数的性质和求对数的方法,我们可以得到方程的解。

例如,求解指数函数方程2^x=8,我们可以将其转化为对数函数方程x=log2(8),再利用对数函数的性质将其化简为x=3。

因此,方程2^x=8的解为x=3。

二、对数函数方程的求解对数函数方程是形如y=loga(x)的方程,其中a为常数,x和y为变量。

求解对数函数方程的一般步骤如下:1. 利用对数函数的性质将对数函数方程进行化简。

例如,利用对数函数的底数和真数的换底公式将方程化简为一个常用底数(如10或e)的对数函数方程。

2. 求解化简后的对数函数方程。

利用求对数的方法和对数函数的性质,我们可以得到方程的解。

例如,求解对数函数方程log2(x)=3,我们可以利用对数函数的性质将其化简为log(x)/log(2)=3,再通过计算得到log(x)=3log(2),最后解得x=2^3=8。

因此,方程log2(x)=3的解为x=8。

三、指数函数不等式的求解指数函数不等式是形如y>a^x或y<a^x的不等式,其中a为常数,x 和y为变量。

求解指数函数不等式的一般步骤如下:1. 将指数函数不等式转化为对数函数不等式。

例如,将y>a^x转化为x<loga(y)。

2. 根据对数函数的性质,将对数函数不等式进行化简。

指数函数与对数函数(讲义)

指数函数与对数函数(讲义)

(一)基础知识回顾:1.二次函数:当¹a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。

,下同。

2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)∞)上随自变量增大函数值增大(简称递增)。

当a <0时,情况相反。

情况相反。

3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-¹}和空集Æ,f (x )的图象与x 轴有唯一公共点。

轴有唯一公共点。

3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和Æ.f (x )图象与x 轴无公共点。

共点。

当a <0时,请读者自己分析。

时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。

高中数学公式大全指数对数函数的方程与不等式求解

高中数学公式大全指数对数函数的方程与不等式求解

高中数学公式大全指数对数函数的方程与不等式求解指数对数函数在高中数学中是一个重要的章节,其中方程与不等式的求解是其核心内容之一。

本文将为您详细介绍指数对数函数的基本概念以及方程与不等式的求解方法。

一、指数函数的性质与方程求解1. 指数函数的定义与性质:指数函数的定义形式为y=a^x,其中a为底数,x为指数,a>0且a≠1。

指数函数的性质包括:(1)当a>1时,指数函数是递增函数,即随着指数x的增加,函数值y也增加;(2)当0<a<1时,指数函数是递减函数,即随着指数x的增加,函数值y减小;(3)当x是整数时,指数函数的函数值相应为a的x次方;(4)当x是负数时,指数函数的函数值可以通过求倒数或取对数求得。

2. 指数函数的方程求解:当我们需要解决指数函数的方程时,我们可以使用对数的性质来将指数方程转化为对数方程,并进而求解。

例如,对于指数方程2^x=8,我们可以应用对数性质loga(a^x)=x,将方程转为对数方程log2(8)=x,求得x=3。

二、对数函数的性质与方程求解1. 对数函数的定义与性质:对数函数的定义形式为y=loga x,其中a为底数,x为实数,a>0且a≠1。

对数函数的性质包括:(1)对数函数与指数函数互为反函数,即y=loga x等价于a^y=x;(2)当0<a<1时,对数函数是递增函数,当a>1时,对数函数是递减函数;(3)对数函数的定义域为(0,+∞),值域为(-∞,+∞);(4)特殊地,若以e为底数,表示的对数函数为自然对数函数,记作y=lnx。

2. 对数函数的方程求解:对数函数的方程求解方法主要依赖于对数的性质和变换。

常见的求解方法包括:(1)利用对数的定义,将对数方程转化为指数方程,并置换求解;(2)应用对数性质loga(xy)=loga(x)+loga(y),将复杂的对数方程化简为多个简单的对数方程;(3)通过变换或代换,将对数方程转化为一次方程或二次方程,然后求解。

初中数学知识点指数函数与对数函数的方程与不等式

初中数学知识点指数函数与对数函数的方程与不等式

初中数学知识点指数函数与对数函数的方程与不等式初中数学知识点:指数函数与对数函数的方程与不等式指数函数和对数函数是数学中重要的函数类型。

在初中数学中,我们学习了如何解指数函数和对数函数的方程与不等式。

本文将对指数函数和对数函数的基本性质以及解方程和不等式的方法进行详细介绍。

一、指数函数的性质及方程解法指数函数具有以下基本性质:1. 指数函数的定义:指数函数是形如 y=a^x 的函数,其中 a 是底数,x 是指数。

2. 指数函数的图像特点:当底数 a 大于 1 时,函数呈现增长趋势;当底数 a 在 0 和 1 之间时,函数呈现递减趋势。

3. 指数函数的性质:指数函数有唯一性、零点、单调性和奇偶性等性质。

4. 指数函数的方程解法:解指数函数的方程一般可以通过对数函数进行解答。

通过取对数,将指数函数转化为对数函数,再用对数函数的性质解方程。

以解以下方程为例:1. 方程a^x=b,其中 a 和 b 是已知的实数,求解 x。

解法:取对数得到 x = log (b) / log (a)。

2. 方程a^x+b^x=c,其中 a、b 和 c 是已知的实数,求解 x。

解法:将方程转化为对数函数形式 log (a^x+b^x)=log (c),再利用对数函数的性质解方程。

二、对数函数的性质及方程解法对数函数具有以下基本性质:1. 对数函数的定义:对数函数是形如 y=loga(x)(a>0且a≠1)的函数,其中 a 是底数,x 是真数。

2. 对数函数的图像特点:对数函数的图像呈现递增趋势,且有一个特殊点 (1, 0)。

3. 对数函数的性质:对数函数有唯一性、单调性和奇偶性等性质。

4. 对数函数的方程解法:对数函数的方程解法一般是通过对数函数性质和指数函数的倒数关系进行运算。

以解以下方程为例:1. 方程loga(x)=b,其中 a 和 b 是已知的实数,求解 x。

解法:对数定义得到 x = a^b。

2. 方程loga(x)+loga(y)=c,其中 a 和 c 是已知的实数,求解 x 和 y。

高中数学备课教案指数函数与对数函数的方程与不等式

高中数学备课教案指数函数与对数函数的方程与不等式

高中数学备课教案指数函数与对数函数的方程与不等式高中数学备课教案指数函数与对数函数的方程与不等式一、引言指数函数与对数函数是高中数学中的重要内容之一,掌握其方程与不等式的解法对于学生的数学素养提升具有重要意义。

本教案将重点介绍指数函数与对数函数的方程与不等式的基本概念、求解方法和相关应用。

二、指数函数的方程1. 指数函数方程的基本性质指数函数方程是以指数函数为未知数的方程,一般形式为\[a^x = b\]其中\(a\)为底数,\(b\)为常数。

指数函数方程的解即为\(x\)的取值,使得指数函数表达式等于常数\(b\)。

2. 指数函数方程的解法(1)对数法:将指数形式转化为对数形式,通过对数的性质求解。

(2)换底公式:当底数不同但为正实数时,可通过换底公式将方程化简为相同底数的形式,然后求解。

3. 指数函数方程的应用指数函数方程常见于各种科学问题中,如物质的自然衰变、人口增长问题等。

通过对指数函数方程的求解,能够帮助学生分析解决这些实际问题。

三、对数函数的方程1. 对数函数方程的基本性质对数函数方程是以对数函数为未知数的方程,一般形式为\(\log_a{x} = b\)其中\(a\)为底数,\(b\)为常数。

对数函数方程的解即为\(x\)的取值,使得对数函数表达式等于常数\(b\)。

2. 对数函数方程的解法(1)指数与对数互逆性质:将对数形式转化为指数形式,通过指数函数的性质求解。

(2)换底公式:当底数不同但为正实数时,可通过换底公式将方程化简为相同底数的形式,然后求解。

3. 对数函数方程的应用对数函数方程常见于财务管理、生物科学等领域中,如利润的计算、酶的催化作用等。

通过对对数函数方程的求解,能够帮助学生应用数学解决实际问题。

四、指数函数的不等式1. 指数函数不等式的基本性质指数函数不等式是以指数函数为未知数的不等式,一般形式为\[a^x > b\]或\[a^x < b\]其中\(a\)为底数,\(b\)为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 选择题
1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是
( )
A. 1a b <<
B. 1b a <<
C. a b 1<<
D.
b a 1<<
2. 如果1a 0<<, 那么下列不等式中正确的是
( ) A. 2
131)a 1()a 1(->- B. 23)a 1()a 1(+>- c. 1)a 1()a 1(>-+
343的结果为() A 、5 B 、5 C 、-5 D 、-5
4、函数y=5x +1的反函数是
A 、y=log 5(x+1)
B 、y=log x 5+1
C 、y=log 5(x -1)
D 、y=log (x+1)5
5、函数f x x ()=-21,使f x ()≤0成立的x 的值的集合是
A 、{}x x <0
B 、{}x x <1
C 、{}x x =0
D 、{}x x =1 6、设
5.1344.029.01)21(,8,4-===y y y ,则
A 、y 3>y 1>y 2
B 、y 2>y 1>y 3
C 、y 1>y 2>y 3
D 、y 1>y 3>y 2 7、25532lg
2lg lg 16981-+等于 A 、lg2 B 、lg3 C 、lg4 D 、lg5
8. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的
( )
二、填空题:
1、已知21366log log x =-,则x 的值是 。

2、计算:21
0319)41()2(4)21(----+-⋅- = . 3、函数y=lg(ax+1)的定义域为(-∞,1),则a= 。

4、当x ∈[-2,2)时,y =3-x -1的值域是 _ .
5. 若函数=y 2x l o g 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 .
三、解答题:
1、(8分)已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -1(x )的图象过(2,0)
点,试确定f (x )的解析式.
2、(8分)设A ={x ∈R |2≤ x ≤π},定义在集合A 上的函数y =log a x
(a >0,a ≠1)的最大值比最小值大1,求a 的值
3. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=.
(1) 若≤-)x (f 1)x (g ,求x 的取值范围D;
(2) 设函数)x (f 2
1)x (g )x (H 1--
=,当∈x D 时, 求函数)x (H 的值域.。

相关文档
最新文档