初一数学绝对值综合专题--优选讲义.docx
初一数学绝对值精讲

第三讲 绝对值【思想方法.知识要点回顾与拓展】1.绝对值的定义正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.,(0)0,(0),(0)a a a a a a >⎧⎪==⎨⎪-<⎩或,(0),(0)a a a a a ≥⎧=⎨-<⎩或,(0),(0)a a a a a >⎧=⎨-≤⎩ 2.绝对值的几何意义a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .3.去绝对值符号的方法:零点分段法(1)化简含绝对值的式子,关键是去绝对值符号.先根据所给的条件,确定绝对值符号内的数a 的正负(即0a >,0a <还是0a =).如果已知条件没有给出其正负,应该进行分类讨论. (2)分类讨论时先假设每个绝对值符号内的数(或式子)等于0,得到相应的未知数的值;再把这些值表示在数轴上,对应的点(零点)将数轴分成了若干段;最后依次在每一段上化简原式.这种方法被称为零点分段法.【例题之 能力提升】例1. a ,b 是有理数,下列各式对吗?若不对,应附加什么条件?(1)||||||;a b a b +=+ (2)||||||;ab a b = (3)||||;a b b a -=-(4)若||a b =则a b = (5)若||||a b <,则a b < (6)若a b >,则||||a b >变式练习:x 是什么样的有理数时,下列等式成立?(1)|(2)(4)||2||4|x x x x -+-=-+- (2)|(76)(35)|(76)(35)x x x x +-=+-例2. 若m 是方程|2000|2000||x x -=+的解,则|2001|m -等于( )A. m −2001B. −m −2001C. m +2001D. –m +200例3. 已知关于x 的方程||(1)a x a x =+-的解是1,则有理数a 的取值范围是______________.例 4. 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac =+++++则321ax bx cx +++的值是多少?例5.如果在数轴上表示a ,b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )A.2aB.2a -C.0D.2b变式练习:已知有理数a ,b 的和a+b 及差a −b 在数轴上如图所示:化简:227a b a b +---。
初一数学第四讲绝对值

(不含包装) 可以有 0.002L 的误差, 现抽查 6 瓶食用调和油, 超过规定净含量的升数记作正数,不足规定净含量的升数记 作负数,检查结果如下表: +0.0018 -0.0015 -0.0023 +0.0012 +0.0025 +0.0010
请用绝对值的知识说明: (1)哪几瓶是合乎要求的? (2)哪一瓶净含量最接近规定的净含量?
例 13. 点 A、B 在数轴上分别表示实数 a、b,A、B 两点之间 的距离表示为︱AB︱.当 A、B 两点中有一点在原点时,不 妨设点 A 在原点,如图 1, ︱AB︱=︱OB︱=︱b︱=︱a-b︱;
图1
图2
图3
图4
当 AB 两点都不在原点时, ①图 2,点 A、B 都在原点的右边, ︱AB︱=︱OB︱-︱OA︱=︱b︱-︱a︱=b-a=︱a-b︱; ②如图 3,点 A、B 都在原点的左边, ︱AB︱=︱OB︱-︱OA︱=︱b︱-︱a︱=-b-(-a)=|a-b| ③如图 4,点 A、B 在原点的两边, ︱AB︱=︱OA︱+︱OB︱=︱a︱+︱b︱=a+(-b)= ︱a-b︱. 综上,数轴上 A、B 两点之间的距离︱AB︱=︱a-b︱. (2)回答下列问题: ①数轴上表示 2 和 5 的两点之间的距离是__________,数轴 上表示-2 和-5 的两点之间的距离是__________,数轴上
表示 1 和-3 的两点之间的距离是__________; ②数轴上表示 x 和-1 的两点 A 和 B 之间的距离是__________, 如︱AB︱=2,那么 x 为__________;
2 3 1 2
例 2.计算下列各数 (1)-|-3 |
2 1
(2)|-4|+|3|+|0| (3)-|+(-8)| (4)-|-(6)-(-8)|-(-9-4)
七年级绝对值专题讲义

绝对值专题绝对值性质,绝对值化简、绝对值方程一站到底1、绝对值等于本身的数是正数答案:绝对值等于本身的数是非负数2、绝对值等于本身的数是负数答案:绝对值等于本身的数是非负数(或绝对值等于其相反数的数是非正数)3、若a>0,则|a|=a4、若a<0,则|a|=-a5、若|a|=a,则a>0答案:若|a|=a,则a≥06、若|a|=-a,则a≤0答案:若|a|=-a,则a≤07、绝对值好难啊,难到怀疑人生模块一绝对值的非负性绝对值的非负性定义:|a|表示数轴上表示a的点到原点的距离.|a|≥0(非负性)|a|+|b|=0(24(1)3′)解:∵|a|≥0,|b|≥0,∴|a|+|b|≥0.又∵|a|+|b|=0,∴|a|=0,|b|=0.∴a=0,b=0.例1(1)若|x|+|y-3|=0,则x+y=________;答案:3(2)若2|x+5|+3y2=0,则xy=________;答案:0(3)若12(x-1)2与35|y-2|互为相反数,则x-y=________;答案:-1(4)若4|x+3|=-5|y-1.5|,则xy=________;答案:-2(5)若12|a-1|+3|b+4|=-2(c-2)2,则b-2a+3c的相反数是________.答案:0解:∵12|a-1|+3|b+4|=-2(c-2)2,∴12|a-1|+3|b+4|+2(c-2)2=0.又∵12|a-1|≥0,3|b+4|≥0,2(c-2)2≥0,∴12|a-1|=0,3|b+4|=0,2(c-2)2=0.∴a=1,b=-4,c=2.∴b-2a+3c=0.∴b-2a+3c的相反数是0.例2(1)若|x|+|y-2|=x,则y=________.答案:2(2)若|x-1|+|y+2|+|z-3|=y+2,求x-z的值.答案:解:∵|x-1|≥0,|y+2|≥0,|z-3|≥0,∴|x-1|+|y+2|+|z-3|≥0.∵|x-1|+|y+2|+|z-3|=y+2,∴y+2≥0.∴|y+2|=y+2.∴|x-1|+|z-3|=0.∴x=1,z=3.∴x-z=-2.练2若2|a+1|+|b|+3(c-2)2=b,求aca c-的值.答案:解:∵2|a+1|≥0,|b|≥0,3(c-2)2≥0,∴2|a+1|+|b|+3(c-2)2≥0.∵2|a+1|+|b|+3(c-2)2=b,∴b≥0.∴|b|=b.∴2|a+1|+3(c-2)2=0.∴a=-1,c=2.∴aca c-=1212-⨯--=23.模块二已知范围的化简已知范围的绝对值的化简(不重不漏)①|a|=00a aaa a⎧⎪=⎨⎪-⎩><②|a|=a aa a⎧⎨-⎩≥<③|a|=a aa a⎧⎨-⎩>≤⎧⎨⎩①给范围②给数轴答题器:请问|a|=________A.a B.-a C.以上都错答案:C例3(1)若a≥1,则|a-1|=________;若x>-1,则|x+1|=________;若a≤2,则|a-4|=________;若x<3,则|3-x|=________;若x≥-12,则|2x+1|=________.答案:a-1,x+1,-a+4,3-x,2x+1k(2)|12018-12017|+|12017-12016|+|12016-12015|-|12015-12018|=________.答案:0练3(1)若a≤-5,则|a+1|=________;若x>-1.5,则|x+4|=________;若a≥12,则|13-2a|=________;若x<-2,则|1-2x|=________.答案:-a-1,x+4,2a-13,1-2x(2)已知1<a<3,化简|a-1|-|3-a|.答案:解:∵1<a<3,∴a-1>0,3-a>0.∴|a-1|=a-1,|3-a|=3-a.∴原式=a-1-(3-a)=2a-4.拓展3(1)若a+b<0,则|2a+2b-1|-2|3-a-b|=________.答案:-5(2)若|a|=-a,b与a互为相反数,那么|b-a+1|-|a-b-5|=________.答案:-4课间小游戏猜谜语谜题:再见吧,妈妈(数学名词)分母谜题:1000×10=10000(成语)成千上万谜题:考试不作弊(数学名词)真分数谜题:朱元璋登基(数学名词)消元谜题:员(数学名词)圆心谜题:风筝跑了(数学名词)线段例4(1)已知有理数a、b、c在数轴上的位置如图所示:|b +c |=________;|a +c |=________;|b -c |=________;|a -b |=________. 答案:b +c ,-a -c ,-b +c ,-a +b(2)已知有理数a 、b 、c 在数轴上的位置如图所示,化简:2|a |+|b |+4|a +b |-3|b -c |.答案:解:由题意,得a <0,b >0,a +b >0,b -c <0,∴|a |=-a ,|b |=b ,|a +b |=a +b ,|b -c |=-b +c .∴原式=-2a +b +4(a +b )-3(-b +c )=-2a +b +4a +4b +3b -3c =2a +8b -3c . 练4 (1)(2017-2018外校七上期中)有理数a 、b 、c 在数轴上的位置如图所示,则|a -c |-|a -b |-|b -c |=________.答案:2a -2b(2)a 、b 、c 在数轴上的位置如图,若x =|a +b |-|b -1|-|a -c |-|1-c |,则1008x =________.答案:-2 例5 (1)(2017-2018武昌区七上期中)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b >0B .ab >0C .1a +1b>0 D .1a -1b<0 答案:C (2)(2017-2018二中七上期中)如图,a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是( )A .abc >0B .(c -a )b <0C .c (a -b )<0D .(b +c )a >0答案:BC 练5(2017-2018江汉区七上期中)数m 、n 在数轴上的大致位置如图所示,下列判断正确的是( )A .m -n >0B .m +n >0C .mn >0D .|m |-|n |>0 答案:A 拓展5已知x <0<z ,xy >0,|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值是( )ba01-1BAA.是正数B.是负数C.是零D.不能确定符号答案:C模块三绝对值方程绝对值方程(整体)|x|=1 |x|=0 |x|=-1解:x=1或x=-1 解:x=0 解:方程无解|x+1|=1 |x+1|=0 |x+1|=-1解:x+1=1或x+1=-1 解:x+1=0 解:方程无解x=0或x=-2 x=-1|3x-2|=1 |3x-2|=0 |3x-2|=-1例6解下列绝对值方程:若|x|=2,则x=________;若|x|=-2,则________;若|x+1|=0,则x=________;若|2x-1|=0,则x=________;若|x+1|=2,则x=________;若|2x-1|=2,则x=________.答案:±2,方程无解,-1,12,1或-3,32或-12练6解下列绝对值方程:|2x-3|=5 |13x+2|=1 |5x-3|=8答案:x=4或-1,x=-3或-9,x=115或-1拓展6解下列关于x的绝对值方程:1 2|x+1|+2=7-13|x+1|答案:解:12|x+1|+13|x+1|=5 56|x+1|=5|x+1|=6x+1=6或-6x=5或-711x--=1 11x--=0 11x--=-1 解:|x-1|-1=1或|x-1|-1=-1 解:|x-1|-1=0 解:方程无解|x-1|=2或|x-1|=0 |x-1|=1x-1=2或x-1=-2或x-1=0 x-1=1或x-1=-1x=3或x=-1或x=1 x=2或x=0例7解下列绝对值方程:①12x+-=0;②12x+-=1;解:|x+1|-2=0 解:|x+1|-2=1或|x+1|-2=-1 |x+1|=2 |x+1|=3或|x+1|=1x+1=2或x+1=-2 x+1=3或x+1=-3或x+1=1或x+1=-1 x=1或-3 x=2或-4或0或-2③12x+-=2;④12x+-=3.解:|x+1|-2=2或|x+1|-2=-2 解:|x+1|-2=3或|x+1|-2=-3 |x+1|=4或|x+1|=0 |x+1|=5或|x+1|=-1x+1=4或x+1=-4或x+1=0 x+1=5或x+1=-5或方程无解x=3或-5或-1 x=4或-6练7解方程:321x--=2答案:解:3-|2x-1|=2或3-|2x-1|=-2|2x-1|=1或|2x-1|=52x-1=1或2x-1=-1或2x-1=5或2x-1=-5x=1或0或3或-2拓展7已知关于x的方程12x+-=a有三个解,则a=________.解:①a=0时,|x+1|=2(舍)②a>0时,|x+1|-2=a或|x+1|-2=-a|x+1|=a+2或|x+1|=2-a∵a>0,∴a+2>0.∴|x+1|=2-a有一个解.∴2-a=0.∴a=2.例8已知整数x、y满足|x|+|y|=1,求x、y的值.答案:解:∵|x|,|y|为非负整数,∴1xy⎧=⎪⎨=⎪⎩或1xy⎧=⎪⎨=⎪⎩.∴1xy=⎧⎨=⎩或1xy=-⎧⎨=⎩或1xy=⎧⎨=⎩或1xy=⎧⎨=-⎩.练8已知整数a、b满足|a+1|+|b-2|=2,求a、b的值.答案:解:∵|a+1|,|b-2|为非负整数,∴1022ab⎧+=⎪⎨-=⎪⎩或1121ab⎧+=⎪⎨-=⎪⎩或1220ab⎧+=⎪⎨-=⎪⎩.∴14ab=-⎧⎨=⎩或1ab=-⎧⎨=⎩或3ab=⎧⎨=⎩或1ab=⎧⎨=⎩或23ab=-⎧⎨=⎩或21ab=-⎧⎨=⎩或2ab=⎧⎨=⎩或42ab=-⎧⎨=⎩.。
初一数学绝对值综合专题课件

绝对值综合专题讲义绝对值的定义:绝对值的性质:(1) 绝对值的非负性,可以用下式表示(2) |a|=(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4) 若|a|=|b|,则(5) |a+b| |a|+|b| |a-b| ||a|-|b|||a|+|b| |a+b| |a|+|b| |a-b|【例1】(1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5) 若3|x-2|+|y+3|=0,则x y 的值是多少?(6) 若|x+3|+(y-1)2=0,求n xy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值?其值是多少?小知识点汇总:若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ;若|x-a|+|x-b|=0,则 ;【例2】(1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例3】(1) 已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值 (2) 若|a|=b ,求|a+b|的值(3) 化简:|a-b|(4) 有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)C B 0 A2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0>b a ,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0,试化简||3|||3|2a a a a --(7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义: ;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a2< a3< a4< a5,求|x- a1|+|x- a2|+|x- a3|+|x-a 4|+|x- a5|的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1|+|x-a2|+…+|x-an|的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是()A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1A B C D E【例4】设a ,b ,c 为实数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1|【例6】已知有理数a ,b ,c 满足1||||||=++c c b b a a ,求abc abc ||的值【例7】若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.3、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值4、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值5、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=86、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a||7、已知a 是非零有理数,求||||||3322a a a a a a ++的值8、化简|x-1|-|x-3|9、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若3+-y x 与1999-+y x 互为相反数,求yx y x -+2的值11、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
《绝对值》 讲义

《绝对值》讲义一、什么是绝对值在数学的广袤世界里,绝对值是一个非常基础且重要的概念。
简单来说,绝对值就是一个数在数轴上距离原点的距离。
无论这个数是正数还是负数,它的绝对值总是非负的。
例如,5 的绝对值是 5,-5 的绝对值也是 5。
这是因为 5 和-5 在数轴上到原点的距离都是 5 个单位长度。
用数学符号来表示,一个数 a 的绝对值记作|a| 。
二、绝对值的性质1、非负性绝对值的首要性质就是非负性,即对于任意实数 a ,都有|a| ≥ 0 。
这是因为距离不能是负数。
2、互为相反数的两个数的绝对值相等如果 a 和 a 互为相反数,那么|a| =|a| 。
比如 3 和-3 ,它们的绝对值都是 3 。
3、若|a| = b (b ≥ 0 ),则 a = ±b这意味着当我们知道一个数的绝对值,就可以推断出这个数可能的值。
例如,若|x| = 4 ,那么 x 可能是 4 或者-4 。
三、绝对值的计算1、正数的绝对值是其本身对于正数 a ,|a| = a 。
比如|7| = 7 。
2、 0 的绝对值是 0这是一个特殊情况,|0| = 0 。
3、负数的绝对值是它的相反数对于负数 a ,|a| = a 。
例如,|-9| =(-9) = 9 。
四、绝对值的几何意义从几何角度看,绝对值表示的是数轴上两点之间的距离。
例如,|a b| 表示数轴上 a 点和 b 点之间的距离。
如果我们要计算|x 3| ,就可以理解为 x 这个点到 3 这个点的距离。
五、绝对值不等式1、当|a| < b (b > 0 )时, b < a < b比如,|x| < 5 ,那么-5 < x < 5 。
2、当|a| > b (b > 0 )时, a < b 或 a > b例如,|x| > 2 ,则 x <-2 或 x > 2 。
六、绝对值在方程中的应用在方程中,绝对值的出现常常会使问题变得复杂,但只要掌握了正确的方法,也能迎刃而解。
例如,方程|x 1| = 2 ,根据绝对值的性质, x 1 = 2 或 x 1 =-2 ,解得 x = 3 或 x =-1 。
(完整word)初一数学绝对值综合专题讲义

绝对值综合专题讲义绝对值的定义及性质绝对值的定义: ________________________________________________绝对值的性质:(1)绝对值的非负性,可以用下式表示f(2)|a|=《___________________________L ~(3)若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4)若|a|=|b|,则(5)|a+b| |a|+|b| |a-b|||a|-|b|||a|+|b|a+b| |a|+|b||a-b|【例1】(1)绝对值大于2.1而小于4.2的整数有多少个?(2)若ab<|ab|,则下列结论正确的是( )A.a v 0, bv 0B.a> 0, b v 0C.a v 0, b> 0D.ab v 0(3)下列各组判断中,正确的是( )A.若|a|=b,则一定有a=bB.若|a|>|b|,则一定有a>bC.若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2 =(-b) 2(4)设a, b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5)若3|x-2|+|y+3|=0,则翌的值是多少?x(6)若|x+3|+(y-1) 2=0,求(― )n的值y x【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a与b满足|a|>|b|,则下面哪个答案正确( )A.a> bB.a=bC.a<bD.无法确定3、若|x-3|=3-x,贝U x的取值范围是4、若a> b,且|a|<|b|,则下面判断正确的是( )A.av 0B.a> 0C.bv 0D.b >05、设a,b是有理数,则8 |a b |是有最大值还是最小值?其值是多少?小知识点汇总:若(x-a)2 +(x-b) 2 =0,贝U; 若|x-a|+(x-b) 2=0,贝(]若|x-a|+|x-b|=0,贝U;【例2】(1)已知x是有理数,且|x|=|-4|,那么x=(2)已知x是有理数,且-|x|=-|2|,那么x=(3)已知x是有理数,且-|-x|=-|2|,那么x=(4)如果x, y表示有理数,且x, y满足条件|x|=5, |y|=2, |x-y|=y-x,那么x+y的值是多少?、一3 一—一—- (5)解方程-|x 5| 5 02(6)解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求 【巩固】1、巩固|x|=4 , |y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-1.化简绝对式 ]【例3】(1) 已知 a=-1 , b=-1 ,求 | 2a 4b 2| —4一 -------------------- 2----------- 的值 2 3 (a 2b) |a 2b | 14b 3 12a 3||(2)若 |a|=b ,求 |a+b| 的值 (3) 化简:|a-b|(4) 有理数a, b, c 在数轴上对应点如图所示,化简 |b+a|+|a+c|+|c-b|_j ___________ LJ ______ l *C B 0 A【巩固】1、化简:(1) |3.14-兀 | (2) |8-x| (x>8)a ab b 皿,士----- 的值ab 13、已知|x-1|=2 , |y|=3,且x 与y 互为相反数,求 xy 4y 的值2、已知a, b, c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|a 0 cb >3、数a, b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||a 0 ba【例4】(1)右a<-b 且一0 ,化间|a|-|b|+|a+b|+|ab|b(2)若-2w a< 0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y| 的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|2a |3a| (6)若a<0,试化简||3a| a|.. a b c ,(7)右abc 乒0,贝U —— —— ——的所有可能值|a| |b| |c| 【巩固】1、如果 0<m<10 并且 mV x< 10,化简 |x-m|+|x-10|+|x-m-10|2、 有理数a, b, c, d,满足些! 1,求回凹凹回的值abcd a b c d3、 化简:|2x-1|4、 求 |m|+|m-1+|m-2| 的值【例 5】求 |x-3|+|x-5|+|x-2|+|x+1|+|x+7| 的最小值|a 的几何意义: __________________________ ; |a-b|的几何意义: ____________________【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?I II IIA B C D E2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a 2 < a 3 < a4 < a 5,求|x- a1 |+|x- a 2 |+|x- a 3 |+|x- a4 |+|x- a51的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1 |+|x-a2]+••• + |x-a n |的最小值:附加例题【例1】若|a|=1, |b|=2, |c|=3,且a>b>c,那么a+b-c=【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=【例3】对于|m-1|,下列结论正确的是( )A.|m-1| > |m|B.|m-1|< |m|C. |m-1| > |m|-1D. |m-1| < |m|-1【例 4】 设 a, b, c 为实数,且 |a|+a=O, |ab|=ab, |c|-c=0,化简 |b|-|a+b|-|c-b|+|a-c|【例 5】 化简:||x-1|-2|+|x+1|【例6】 已知有理数a, b, c 满足 也J 凹 1£1 1,求但竺|的值a b c abc【例7】 若a, b, c, d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d| 家庭作业b 、c 是有理数,并且有|2+ b|+(3 a+2c) 2=0.-的值.43、|m+3 |+|n-2 |+|2p-1|=0,求 p+2m+3n 的值4、若 a, b, c 为整数,且 | a-b | 19+ I c-a | 99=1,试计算 | c-a | + | a-b | + | b-c | 的值5、 ( 1)已知|x|=2, |y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=81、当b 为何值时,5-2b1有最大值,最大值是多少?2、已知a 是最小的正整数,(1)有理数a, b, c 在数轴上对应点如图所示,化简 |a-b|-|a+b|+|b-c|-|c|(2)若 av b,求 |b-a+1|-|a-b-51的值(3)右 av 0 , 化简 |a-|-a||8、化简 |x-1|-|x-3|9、6、设av bv c,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若x y 3与x y 1999互为相反数,求-— 的值11、若2x+ | 4-5x | + | 1-3x | +4的值恒为常数,求 x 该满足的条件及此常数的值。
初一数学绝对值综合专题讲义

初一数学绝对值综合专题讲义-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝对值综合专题讲义绝对值的定义:绝对值的性质:(1) 绝对值的非负性,可以用下式表示(2) |a|=(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4) 若|a|=|b|,则(5) |a+b| |a|+|b| |a-b| ||a|-|b|||a|+|b| |a+b| |a|+|b| |a-b|【例1】(1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值其值是多少(5)(6) 若3|x-2|+|y+3|=0,则xy 的值是多少?(7)(8) 若|x+3|+(y-1)2=0,求n xy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些它们的和为多少2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值其值是多少小知识点汇总:若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ;若|x-a|+|x-b|=0,则 ;【例2】(1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例3】(1) 已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值(2) 若|a|=b ,求|a+b|的值(3) 化简:|a-b|(4)|b+a|+|a+c|+|c-b|【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0 ba ,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0,试化简||3|||3|2a a a a -- (7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义:;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a2< a3< a4< a5,求|x-a 1|+|x- a2|+|x- a3|+|x- a4|+|x- a5|的最小值A B C D E3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1|+|x-a2|+…+|x-an|的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是()A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1【例4】设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1|【例6】 已知有理数a ,b ,c 满足1||||||=++cc b b a a ,求abc abc ||的值【例7】 若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、3、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.4、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值5、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值6、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=87、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a||8、已知a 是非零有理数,求||||||3322a a a a a a ++的值9、化简|x-1|-|x-3|10、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值11、若3+-y x 与1999-+y x 互为相反数,求y x y x -+2的值12、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
武汉七年级数学培优讲义——第1讲 绝对值(word版)

第1讲 绝对值一、知识要点绝对值是是初中代数中的一个基本概念,是学习有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解决代数式化简求值、解方程(组)、解不等式(组)等问题中有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手:1.去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质①非负性:|a |≥0;②|a |=|-a |;③|ab |=|a |·|b |;④|ba |=b a (b ≠0);⑤|a |2=|a 2|=a 2. 3.绝对值的几何意义 (从数轴上看)|a |指的是数轴上表示数a 的点到原点的距离(长度,非负);|a -b |指的是表示数a 、数b 的两点间的距离.二、基础能力测试1.小明家去年收入为20 000元记作+20 000元,那么支出15 000元记作__________;如果向西100米记作-100米,那么400米表示__________,0米表示_________.2._____和____统称有理数;正整数、零、_________统称整数,_________和________统称分数.3.把-722,π,∙3.0,-21,+5,-6.3,0,-254,6.9,-7,210,0.031,-10%,填在相应的括号内. 正有理数集合:{ …};整数集合:{ …}; 非负有理数集合:{ …};负分数集合:{ …};4.规定了_______、________和________的直线叫做数轴.5.把-2,321,0,-421,1,-31,用“<”号连接起来:__________________. 6.有理数中,最大的负整数是________,最小的正整数是__________.7.-5.4的相反数是_________,________和3.5互为相反数;-(-2)=_______,-[+(-31)]=_______. 8.(1)若2x +1是-9的相反数,在x =_______.(2)已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b (a <b ),并且A 、B 两点间的距离是4.8,则a =_______,b =________.9.一般地,在数轴上表示数a 的点与原点的距离叫做a 的________,记作|a |.若a 是正数,则|a |=______,若a 是负数,则|a |=_______,|0|=________,若|x |=6,则x =______.10.若|a |=a ,则a ______0;若|a |=-a ,则a _______0.11.绝对值不大于3的整数有______________________.三、例题解析【例1】填空:(1)已知a ,b 互为相反数,c ,d 互为负倒数,x 的绝对值是2,则x 2-(a +b +cd )x +(a +b )99+(-cd )100=____________.(2)若a >0,b <0,且a <|b |,用“<”号连接比较a ,b ,-a ,-b _____________.(3)已知|a |=5,|b |=3,且|a -b |=b -a ,则a +b =__________.【例2】(1)计算:|20161-20151|+|20171-20161|-|20171-20151|=_________. (2)已知a -|a |=0,b +|b |=0,且|a |<|b |,则|a +b |+|-a +b |-|a -b |-|b -|b |=_________.(3)若a 、b 、c 均不为0,且a +b +c =0,求a a +b b +cb a =___________.〖练〗如图,有理数a <b <0<c ,化简|c -b |+|a -c |+|b +c |=_________.【例3】将1,2,3,…,100这100个自然数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,50组都代进后可求得50个值,求这50个值的和的最大值.【例4】(1)化简:|x +5|+|2x -3|.(2)化简:|3+|x -1||.(3)a ,b 为有理数,且|a |>0,方程||x -a |-b |=3有三个不相等的解,求b .〖练〗(1)①已知a=1,|b|=2,若a>b,求b的值;②已知a=2,|b|=1,若a>b,求b的值;(2)①已知|a|=1,|b|=2,若a>b,求a、b的值;②已知|a|=2,|b|=1,若a>b,求a、b的值;(3)①已知|a|=1,|b|=2,|c|=3,若a>b>c,求a、b、c的值;②已知|a|=3,|b|=2,|c|=1,若a>b>c,求a、b、c的值.【例5】(1)已知|ab+2|与|a+1|互为相反数,则a+b的值为___________.(2)已知(a+1)2+|b-2|=1-c,且c为正整数,求a+b-c.(3)已知有理数x、y满足(y-2)2+|x|=x,且|x-2y+5|=2,求xy.【例6】(1)当x=_____时,|x-2|有最小值;当x=_____时,3-|x-2|有最大值,最大值为_______.(2)|x+2|+|x-3|的最小值为___________,此时x需满足的条件为_____________.(3)已知|x+2|+|1-x|=10-|y-5|-|2+y|,求x+y的最大值和最小值.〖练〗(1)当x取什么值时,|x-1|+|x-2|+|x-3|+|x-4|有最小值,并求出这个最小值.(2)试求|x-1|+|x-2|+|x-3|+…+|x-2017|的最小值.(3)公共汽车运营线路AD段上有A、B、C、D四个汽车站,如图,现在要在AD段上修建一个加油站M,为了使加油站选址合理,要求A、B、C、D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好.四、反馈练习一、填空题1.(1)如果温度上升10℃记作+10℃,那么下降5℃记作____________.(2)高出正常水位0.5米记作+0.5米,则低于正常水位0.3米记作________,正常水位记作________.(3)负债2000元,可以说成拥有_____________元.(4)一潜艇所在高度是-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在的高度是____米.2.2002,-3.1416,310,0,190%,0.2,1,+3.2,-5%,34中 属正数集合的是_______________________,属负数集合的是______________________,属整数集合的是_______________________,属分数集合的是______________________,属正整数集合的是_____________________,属负分数集合是______________________,属有理数集合的是______________________.3.点A 表示-3,从点A 出发,沿数轴移动4个单位长度到达B 点,则点B 表示的数是_______.4.与原点距离5个单位长度的点共有__________个,它们分别可以表示有理数______________________.5.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6,则这个数是_____.6.化简-{+[-(-1)]}=___________,|-(5)|=__________,-|-6.7|=_______.7.绝对值不大于5.5的整数有______________________.8.已知|x |>|y |,x <0,y >0,把x ,y ,-x ,-y 从小到大排列,可得__________.(用“<”连接)9.已知|a |=5,|b |=3,且|a -b |=b -a ,那么a +b =__________.10.已知|2a -1|+|3b -2|=0,则a =_______,b =_________.11.已知b 为正整数,且a ,b 满足|2a -4|+b =1,则a b =___________.12.若a <0,ab <0,|a |>|b |,则a ,b ,-a ,-b 的大小关系为______________;化简|a +b |+|a -b |-|a |-|b |=___________.二、解答题1.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于2,p 的绝对值是最小的数,求p 2000-cd +abcdb a +m 2的值.2.有理数a ,b ,c 均不为0,且a +b +c =0,设x =|c b a++a c b++b a c+|,试求:x 19+2x +13的值.3.化简|x -1|-|3x -6|.4.将1,2,3,…,200这100个自然数任意分成100组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,100组都代进后可求得100个值,求这100个值的和的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值综合专题讲义
绝对值的定义及性质
绝对值的定义:
绝对值的性质:
(1)绝对值的非负性,可以用下式表示
(2) |a|=
( 3)若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,
(4)若 |a|=|b| ,则
( 5)|a+b||a|+|b||a-b|||a|-|b||
|a|+|b||a+b||a|+|b||a-b|
【例 1】
( 1)绝对值大于而小于的整数有多少个
( 2)若 ab<|ab|,则下列结论正确的是()
< 0, b< 0> 0, b< 0< 0, b> 0< 0
( 3)下列各组判断中,正确的是()
A.若 |a|=b,则一定有 a=b B.若|a| > |b|,则一定有 a> b
C. 若 |a| >b,则一定有 |a|> |b|
D.若 |a|=b,则一定有 a 2 =(-b)2
( 4)设 a, b 是有理数,则 |a+b|+9 有最小值还是最大值其值是多少
( 5)若3|x-2|+|y+3|=0,则y
的值是多少x
( 6)若|x+3|+(y-1) 2 =0,求( 4 ) n的值
y x
【巩固】
1、绝对值小于的整数有哪些它们的和为多少
2、有理数 a 与 b 满足 |a|>|b|,则下面哪个答案正确()
>b =b <b D.无法确定
3、若 |x-3|=3-x,则x的取值范围是____________
4、若 a> b,且 |a|<|b|,则下面判断正确的是()
<0 > 0<0>0
5、设a,b是有理数,则8 | a b | 是有最大值还是最小值其值是多少
小知识点汇总:
若 (x-a) 2 +(x-b)2 =0, 则;若 |x-a|+(x-b)2 =0, 则;
若 |x-a|+|x-b|=0,则;
简单的绝对值方程
【例 2】
( 1)已知 x 是有理数,且 |x|=|-4|,那么 x= ____
( 2)已知 x 是有理数,且 -|x|=-|2|,那么 x=____
( 3)已知 x 是有理数,且 -|-x|=-|2|,那么 x=____
(4)如果 x, y 表示有理数,且 x,y 满足条件 |x|=5 ,|y|=2 , |x-y|=y-x ,那么 x+y 的值是多少
( 5)解方程3
| x 5 | 5 0 2
(6)解方程 |4x+8|=12
( 7)若已知 a 与 b 互为相反数,且 |a-b|=4,求
a
ab
b
的值a2ab1
【巩固】
1、巩固 |x|=4 , |y|=6 ,求代数式 |x+y| 的值
2、解方程 |3x+2|=-1
3、已知 |x-1|=2,|y|=3,且x与y互为相反数,求
1 x 2xy 4 y的值
3
化简绝对式
【例 3】
( 1)已知 a=- 1
, b=-1 ,求 | 2a4b |42的值23(a2b)2| a 2b || 4b 3 | 2a 3 ||
(2)若 |a|=b ,求 |a+b| 的值
(3)化简: |a-b|
( 4)有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|
C B 0A
【巩固】
1、化简:(1) | π |(2)|8-x|(x≥ 8)
2、已知 a, b, c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|
a0 c b
3、数 a, b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||
a0 b
【例 4】( 1)若 a<-b 且a
0 ,化简|a|-|b|+|a+b|+|ab| b
(2)若 -2 ≤ a≤ 0,化简 |a+2|+|a-2|
( 3)已知 x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知 x<-3, 化简 |3+|2-|1+x|||
(5)化简 |x+5|+|2x-3|
(6)若 a<0,试化简
2a |3a |
||3a | a |
( 7)若 abc ≠ 0,则a
b c的所有可能值| a || b || c|
【巩固】
1、如果 0<m<10并且 m≤ x≤ 10,化简 |x-m|+|x-10|+|x-m-10|
2、有理数 a, b, c, d,满足| abcd |
1 ,求
| a |
| b || c || d | 的值abcd a b c d
3、化简: |2x-1|
4、求 |m|+|m-1+|m-2|的值
绝对值几何意义的应用
|a| 的几何意义:;|a-b|的几何意义:【例 5】求 |x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值
【巩固】
1、如,在接到上有A、 B、C、 D、 E 五居民楼,在立一个筒,使五楼的居
民到筒的就努力之和最短,局立于何
A B C D E
2、 a 1、a 2、a
3、a
4、a 5五个有理数,足 a 1 < a 2< a 3 < a 4< a 5 ,求 |x- a 1 |+|x- a 2|+|x-
a 3 |+|x- a 4 |+|x- a 5 |的最小
3、 a<b<c<d, 求 y=|x-a|+|x-b|+|x-c|+|x-d|的最小,并求出此x 的取
后小:
求 |x-a 1 |+|x-a 2 |+⋯+|x-a n|的最小:
附加例
【例 1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______
【例 2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______
【例 3】于 |m-1|,下列正确的是()
≤
A.|m-1|≥ |m|
B.|m-1|≤ |m|
C. |m-1|≥ |m|-1
D. |m-
1|
|m|-1
【例 4】设 a , b , c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|
【例 5】化简:||x-1|-2|+|x+1|
【例 6】已知有理数 a,b, c 满足| a |
| b || c | 1 ,求
| abc|
的值a b c abc
【例 7】若a,b,c,d为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|
家庭作业
1、当 b 为何值时, 5- 2b 1 有最大值,最大值是多少
2、已知a是最小的正整数,b、 c 是有理数,并且有|2+ b|+(3 a+2c) 2=0.
求式子4ab c的值 .
a2c24
3、 |m+3 |+|n-7
|+|2p-1|=0,求p+2m+3n的值2
4、若 a,b, c 为整数,且| a-b |19+| c-a |99=1,试计算| c-a |+| a-b |+| b-c |的值
5、( 1)已知 |x|=2 , |y|=3且x-y>0,则x+y的值为多少
(2)解方程: |4x-5|=8
6、( 1)有理数a,b, c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|
a c0b
( 2)若 a< b,求 |b-a+1|-|a-b-5|的值
( 3)若 a< 0,化简 |a-|-a||
7、已知 a 是非零有理数,求
a a2a3
的值| a || a
2
|| a
3
|
8、化简 |x-1|-|x-3|
9、 6、设 a< b< c,求当 x 取何值时 |x-a|+|x-b|+|x-c|的最小值
10、若x y 3 与 x y 1999 互为相反数,求x2y
的值x y
11、若 2x+| 4-5x |+| 1-3x |+4 的值恒为常数,求x 该满足的条件及此常数的值。
12、不相等的有理数a, b,c在数轴上的对应点分别为A, B,C,如果|a-b | +| b-c | =|a-c |,那么 B 点应为 ().
(1) 在 A,C 点的右边;(2) 在 A, C点的左边;
(3)在 A,C 点之间;(4) 以上三种情况都有可能
13、设 T=| x-p | +| x-15 | +| x-p-15 |,其中 0< p<15,对于满足p≤ x≤ 15 的 x 来说, T 的最小值是多少。