试验设计与分析
正交试验设计和分析

所以一般地,有 N dfi dfi j 1
i
i, j
如三原因四水平 43 旳正交试验至少应安排
34 1 1 10 次以上旳试验。
如三原因四水平 43 并涉及第一、二个原因旳交互 作用旳正交试验至少应安排旳试验次数为
34 1 4 14 1 1 19
又如安排 43 23 旳混合水平旳正交试验至少应安排
试验次数N旳拟定原则
N 由 dfT N 1 拟定。
其中: dfT dfi dfi j dfE ,
i
i, j
dfi dfi j 是可求出旳,而 dfE 是未知旳,
i
i, j
所以一般地,由 N dfi dfi j 1 拟定 N,
i
i, j
故 N 不是唯一旳。
当不考虑交互作用时:可取 N S q 1 1
所以要选择 LN 2S 型旳表,且不考虑交互作用时, S 4 ,而 L8 27 是满足条件旳最小旳正交表, 所以选用正交表 L8 27
若考虑A与B、A与C旳交互作用,则
S 6 ,L8 27 依然是满足条件旳最小旳正交表, 所以还可选用正交表 L8 27
注:也可由试验次数应满足旳条件来选择正交表。
正交表旳记号及含义
正交表是一种尤其旳表格,是正交设计旳基本工具。
我们只简介它旳记号、特点和使用措施。
记号及含义
L 正交表旳代号
S 正交表旳列数
(最多能安排旳原因个数,
涉及交互作用、误差等)
LN qS
q 各原因旳水平数
N 正交表旳行数
(各原因旳水平数相等)
(需要做旳试验次数)
如 L8 27 表达
7 2 2 1 1 2 2 1 275
8 2 2 1 2 1 1 2 375
正交试验设计及结果分析

2.1 试验方案设计 (1) 明确试验目的,确定试验指标
试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素
各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。
根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
3
上一张 下一张 主 页 退 出
如对于上述3因素3水平试验,若不考虑交互作用,可
利用正交表L9(34)安排,试验方案仅包含9个水平组合,就
能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
1.2 正交试验设计的基本原理
3
上一张 下一张 主 页
正交设计就是从选优区全面试验点(水平组合)中挑3ຫໍສະໝຸດ 上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
试验设计和统计分析 第三章 田间试验技术

九、设置保护行
指在试验地的周围设置保护行。小区与小区之间一般不设保护行,重复区之间一般也不设保护行。保护行的树种一般逸捧以不影响甙硷地树木生 长为壹。例如:杉木成發,用柳衫作保护行。
5. 进行区组及小区的区划;6. 试验材料的准备、编号;7. 根据设计图将各个处理对号安排到试验地里;8. 绘制田间栽植图,并且与设计图对照,查看是
否有错误,如果发现错误,要及时纠正;9.栽植保护行,并作地标。
试验布置中要注意以下几点:
1)设计一定要根据试验的要求和试验地的实际
进行选择;2) 试验材料一定要编号(处理号和区组号), 并且要反复校对,不要出现错误;3) 对试验地的面积计算要根据小区的面积和重
十、设置地标
田间试验在野外较长时间,为了观察管理方便,
便于查找,设置地标是必要的。特别是造林试验,一般在试验范围的四周的每 个角埋上水泥桩。并要钉一个牌子,写明试验用地, 以示警示。
十一、田间试验的步骤
1. 拟定试验计划2. 确定试验因素、处理数、重复数、小区面 积,计算区组面积。3. 选择一个适宜的设计方案(设计方案在下 一章介绍)4. 选择试验用地
试验因素和处理(水平)数的确定1、试验因素的确定:试验因素是根据试验目的来提出的,那么根据试验目的来确定试验因素的类型及多少。同时也要考虑试验的条件、人力、财力、技术水平。
2、试验处理(水平)数的确定1) 处理数的多少依据试验的实际和别人的经验确定。2) 各处理间的效应要有明显的差异3) 各处理间的间距尽量相等
8、试验孑旨标(experiment indicator):指试验中用来判断试验处理效果的性状或标准。
临床试验的研究设计与统计分析

临床试验的研究设计与统计分析临床试验是评估新药、新治疗方法或医疗器械安全性和疗效的关键环节,它对于指导临床决策和提高患者治疗效果具有重要意义。
本文将重点介绍临床试验的研究设计以及统计分析的相关方法和技巧。
一、临床试验研究设计1. 研究类型选择根据研究目的和数据获取方式,临床试验研究设计可分为观察性研究和干预性研究。
观察性研究主要通过观察人群的暴露与结果之间的关系,探索潜在的危险因素和保护因素。
干预性研究则通过对人群进行干预,评估干预措施的效果。
常见的干预性研究设计包括随机对照试验、非随机对照试验和自身对照试验。
2. 样本容量计算样本容量的确定是保证试验结果的可靠性和有效性的关键步骤。
通过样本容量计算,可以估算出适当的样本规模,以减少随机误差和提高统计检验的可靠性。
样本容量计算需考虑试验的研究问题、预计的效应大小、显著性水平、统计检验的类型等因素。
3. 随机化设计随机化是临床试验中的重要原则,它能够降低实验组与对照组之间的混杂因素的影响,提高试验结果的可靠性。
常见的随机化设计包括简单随机化、分层随机化和区组随机化等。
在随机化设计中,应根据试验的目的和实际情况选择适当的随机化方法。
4. 平行设计与交叉设计在干预性临床试验中,研究设计可以采用平行设计或交叉设计。
平行设计将受试者随机分配至实验组和对照组,在不同组中接受不同的干预措施;交叉设计则是将受试者分为不同顺序接受不同干预措施,并在每个干预阶段测量结果。
二、临床试验统计分析1. 描述性统计分析试验数据的描述性统计分析是对试验数据的基本特征进行总结和描述。
如平均数、标准差、中位数、分位数等。
通过描述性统计分析,可以了解试验数据的分布情况、集中趋势和离散程度,为进一步的推断性统计分析提供基础。
2. 推断性统计分析推断性统计分析是基于样本数据对总体进行推断,判断样本间差异是否代表总体间的差异。
常见的推断性统计分析包括假设检验和置信区间估计。
假设检验用于验证研究假设是否成立,置信区间估计则用于评估参数估计的精度。
综合实践实验设计与分析

综合实践实验设计与分析引言:在学生们的学习过程中,实践是非常重要的一部分。
通过实践,学生们能够将理论知识应用于实际问题,提高自己的解决问题的能力。
本教案围绕综合实践实验设计与分析展开,旨在培养学生的实践能力、创新思维和团队合作精神。
一、实践设计的流程与方法1.1 实践设计的重要性实践设计是将理论知识与实际问题相结合的过程,对学生的实践能力和创新思维起到重要的促进作用。
1.2 实践设计的流程实践设计包括问题定义、实验方案设计、实验操作、数据分析与解释以及结果总结等环节。
1.3 实践设计的方法灵活运用各种实验方法,如观察法、实验法、模拟法、对比法等,以达到实验目的。
二、实验设计与实验操作2.1 实验的目的与内容为了解决实际问题或验证理论的正确性,确定实验的目的和内容是最为重要的一步。
2.2 实验方案的设计根据实验目的和内容,制定详细的实验方案,包括实验的步骤、所需材料和设备、实验的时间和地点等。
2.3 实验操作的技巧正确地操作实验设备和仪器,严格遵守实验守则,保证实验过程的可靠性和安全性。
三、数据分析与解释3.1 数据的收集与整理在实验过程中,要注意准确地记录实验数据,并及时进行整理和归纳。
3.2 数据的分析与解释通过统计学方法和专业知识对实验数据进行分析和解释,得出合理的结论。
四、结果总结与讨论4.1 结果总结在实验结束后,对实验结果进行总结,包括实验目的是否达到、实验过程中遇到的困难以及实验结果的可行性等方面。
4.2 结果讨论与同学们进行讨论,交流实验过程中的经验和心得,以及对实验结果的看法和建议。
五、实验设计与分析的意义与启示通过参与实践实验设计与分析,学生们能够培养实践能力、创新思维和团队合作精神,提高解决问题的能力。
同时,实践实验设计与分析也有助于学生们将所学的理论知识应用到实际问题中,提高学习的有效性。
结语:综合实践实验设计与分析是培养学生实践能力和创新思维的重要环节。
通过实践实验的设计与分析,学生们能够不断提高自己的解决问题的能力,为未来的学习和工作打下坚实的基础。
试验设计与分析

1.2双因素试验的方差分析
-有交互作用
1.2双因素试验的方差分析
-有交互作用
1.2双因素试验的方差分析
-有交互作用
1.2双因素试验的方差分析
-有交互作用
一元线性
回归分析
一元线性回归
• 变量之间的相互关系:
确定性关系:即变量之间的关系可以用精确的函数
关系来表达;
非确定性关系, 称为相关关系
回归分析:处理变量之间相互关系的统计方法。
• 相关关系是一种统计关系,在大量的观察
下,往往呈现一定的规律性,可以借助散
点图或相应的函数式表达出来,这种函数
称为回归函数或回归方程。
• 回归分析:一元回归分析;
•
多元回归分析。
• (或者)回归分析:线性回归分析;
•
非线性回归分析。
三.有交互作用的正交试验设计
例6 某产品的产量取决于3 个因素A, B, C, 每个因素都有两个水平, 具体数值
如表例6.13 所示.每两个因素之间都有交互作用, 必须考虑. 试验指标为产量,
越高越好. 试安排试验, 并分析试验结果, 找出最好的方案.
第五章 稳健性设计
• 5.1 概述
• 2.
第四章 正交试验设计-等水平正交表
(2)多指标分析法
1)综合平衡法
例 2 为提高某产品质量, 要对生产该产品的原料进行配方试验. 要检验3 项指标:
抗压强度、落下强度 和裂纹度, 前两个指标越大越好, 第3 个指标越小越好.
根据以往的经验, 配方中有3 个重要因素: 水份、粒度和碱度. 它们各有3 个水平,
值。
• .
1.3.5利用回归方程进行预报
1.4多元线性回归
试验设计与分析

试验设计与分析试验设计与分析在实验科学中,试验设计和分析是非常重要的步骤,以确保实验结果的可靠性和有效性。
试验设计是指制定实验方案的过程,包括制定研究目的和假设、确定实验对象和变量、实验组和对照组、实验过程和数据收集方法等。
试验分析则是对实验数据进行统计和分析的过程,以确认实验结果是否符合预期和达到统计学意义。
本文将重点介绍试验设计和分析中的关键步骤和原则。
试验设计1. 确定研究目的和假设首先要明确实验的研究目的,即想要回答什么问题或明确想要证明或推翻什么假设。
研究假设应该明确和可验证,并且预计能够得到有意义的结果。
2. 确定变量确定实验变量是制定实验方案的关键一步。
变量可以分为自变量和因变量。
自变量是实验研究者可以控制和操作的变量,因而会对因变量产生影响。
因变量是实验中被观测或测量的变量,是实验研究的结果。
3. 分组设计分组设计是一种常见的实验设计方法。
在分组设计中,实验对象被随机分配到实验组和对照组中,以便进行比较。
实验组被暴露于自变量的影响下,而对照组则不受影响。
在实验中,研究者需要确保实验组和对照组除了自变量以外的其他条件相同。
4. 实验程序和数据收集方法实验过程需要详细描述,以确保实验的可重复性。
数据收集方法也应该明确,包括数据的类型、收集时间点和数据的分析方式。
试验分析1. 描述性统计分析首先,应该对实验数据进行描述性统计分析,包括计算平均值、标准差、中位数、众数等指标,以便了解数据的分布和变化情况。
2. 方差分析方差分析是用于比较两个或多个组之间差异的一种分析方法。
方差分析可以确定哪些组之间存在差异,同时可以检查因变量和自变量之间的关系。
3. 相关分析相关分析可以用来确定两个变量之间的相关性。
在实验中,研究者可以确定自变量和因变量之间的相关性以及自变量和其他变量之间的相关性。
4. 回归分析回归分析可以用来确定自变量和因变量之间的关系。
回归分析有很多种类型,包括线性回归、多元回归、逻辑回归等。
试验设计与分析课后习题解答及复习资料

田间试验与统计分析-习题集及解答1.在种田间试验设计方法中,属于顺序排列的试验设计方法为:对比法设计、间比法2.若要控制来自两个方面的系统误差,在试验处理少的情况下,可采用:拉丁方设计3.如果处理内数据的标准差或全距与其平均数大体成比例,或者效应为相乘性,则在进行方差分析之前,须作数据转换。
其数据转换的方法宜采用:对数转换。
4.对于百分数资料,如果资料的百分数有小于30%或大于70%的,则在进行方差分析之前,须作数据转换。
其数据转换的方法宜采用:反正弦转换(角度转换)。
5.样本平均数显著性测验接受或否定假设的根据是:小概率事件实际不可能性原理。
6.对于同一资料来说,线性回归的显著性和线性相关的显著性:一定等价。
7.为了由样本推论总体,样本应该是:从总体中随机地抽取的一部分8.测验回归和相关显著性的最简便的方法为:直接按自由度查相关系数显著表。
9.选择多重比较的方法时,如果试验是几个处理都只与一个对照相比较,则应选择:LSD法。
10.如要更精细地测定土壤差异程度,并为试验设计提供参考资料,则宜采用:空白试验11.当总体方差为末知,且样本容量小于30,但可假设==(两样本所属的总体方差同质)时,作平均数的假设测验宜用的方法为:t测验12.因素内不同水平使得试验指标如作物性状、特性发生的变化,称为:效应13.若算出简单相差系数大于1时,说明:计算中出现了差错。
14.田间试验要求各处理小区作随机排列的主要作用是:获得无偏的误差估计值15.正态分布曲线与轴之间的总面积为:等于1。
16.描述总体的特征数叫:参数,用希腊字母表示;描述样本的特征数叫:统计数,用拉丁字母表示。
17.确定分布偏斜度的参数为:自由度18.用最小显著差数法作多重比较时,当两处理平均数的差数大于LSD0.01时,推断两处理间差异为:极显著19.要比较不同单位,或者单位相同但平均数大小相差较大的两个样本资料的变异度宜采用:变异系数20.选择多重比较方法时,对于试验结论事关重大或有严格要求的试验,宜用:q测验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验方案:根据试验目的和要求所拟进行比较的一组试验处理的总称。
试验因素:在试验中所研究的影响试验指标的某一项目称为因素单因素试验:探索某一个因素对试验指标作用的试验多因素试验:探索多个因素对试验指标作用的试验(试验)处理:事先设计好的实施在试验单元上的具体项目,即试验中具体比较的项目称为实验处理处理组合:不同因素不同水平的组合。
试验指标:用于衡量试验效果的指示性状。
因素水平:实验因素所处的某种特定状态或数量等级称为因素水平显著水平:用来判断是否属于小概率事件的概率值称为显著水平,及拒绝零假设的概率,通常取0.05或0.01参数:用来描述总体的特征值称为参数随机化:试验处理的分配和各个试验进行的次序都是随机确定的,这个原理称为随机化试验单元:在试验中能够施以不同处理的最小的材料单元接受域:一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间试验效应:试验因素对试验指标所起的增加或减少的作用。
简单效应:在同一因素内两种水平间试验指标的相差。
平均效应:一个因素内各简单效应的平均数。
也称主要效应,简称主效。
交互作用效应:两个因素简单效应间的平均差异。
简称互作。
对照:试验方案中包括有对照水平或处理,简称对照。
(试验当中所设计的比较标准的处理)唯一差异原则:指在试验中进行比较的各个处理,其间的差别仅在于不同的试验因素或不同的水平,其余所有的条件都应完全一致。
(试验)误差:测量值与真实值之间的差异称为试验误差。
随机误差:由随机或偶然因素造成的试验结果与处理真值之间的差异称为偶然性误差或随机误差。
系统误差:由固定原因一起的试验结果与处理真值之间的差异称为系统误差。
错失误差:实验中由于试验人员粗心大意所发生的差错称为错失误差精确度:试验中同一性状的重复观察值彼此接近的程度。
(即试验误差的大小)准确度:试验中某一性状的观察值与其理论值真值的接近程度。
固定模型:仅考察参试处理均值差异或主效应差异的单因素等重复试验的模型试验控制:为了提高试验的准确度和精确度,必须使所有试验单元或区组内的试验单元的试验条件一致,叫试验控制局部控制:将整个试验空间分为若干个各自相对均与的局部,每一个局部叫一个区组,所有局部构成区组因素,在每一个区组内随机排列一套试验的所有处理,它等价于一个重复边际效应:小区两边或两端的植株,因占较大空间而表现的差异。
生长竞争:相邻小区种植不同品种或施用不同肥料时,由于株高、分蘖力或生长期的不同,通常有一行或更多行受到影响。
总体:具有共同性质的个体所组成的集团。
样本:从总体中随机抽取一些个体进行观察得到的总体变量称为样本小概率事件不可能性原理:概率很小的事件,在一次试验中几乎不可能发生或可认为不可能发生。
接受区域:指一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间一尾测验:备择假设只有一种可能性,假设检验只有一个否定区域,这类测验叫一尾测验。
两尾测验:指概率分布下,显著水平按左边和右边两尾的概率的和进行检验假设检验有两个否定区第一类错误:指不同总体的参数间本来没有差异,而测验结果认为有差异,这种错误称为第一类错误(否定本来正确的无效假设)第二类错误:指参数间本来有差异,而测验结果认为参数间无差异,这种错误称为第二类错误。
(接受了本来错误的无效假设)置信度:保证区间能覆盖参数的概率。
置信区间:在一定概率保证下,能够覆盖参数的一个估计范围。
1.Fisher试验设计的三个基本原理:设置突变,随机化,局部控制2.数据资料变异度的表示方法:变异系数,极差,方差,标准差3.统计假设检验的一般步骤为:提出统计假设,确定显著水平的统计区间,计算μ值或t值,统计推断4.在直线回归分析中,检验回归关系是否显著的方法有:相关系数,回归方程,直线回归方程进行方差分析5.常用的随机排列试验设计有:完全随机,随机区组试验,拉丁方试验,裂区和条区试验6.实验因素对试验指标所起的增加或减少作用称为试验效应7.进行田间试验时设置重复的主要作用是降低误差8.样本容量>30时,认为是大样本9.番茄种子发芽试验的概率分布为二项分布10.统计假设测验中的第一类错误又可称为α错误,第一类错误的概率值为α11.中心极限定理认为,当样本容量增大时,从任意总体抽出的样本平均数的分布必趋近正态分布12.依据方差分析基本原理,对于成数或百分数资料适用的转换方式是反正弦转换13.计数资料的显著性测验采用F检验14.配对资料假设检验时,自由度为df=n-115.自变量X与因变量Y之间的相关系数r,那么Y的总变异中可由X与Y之间的回归关系解释的比例为r216.标准正态分布的方差为1,均值为017.统计推断包括有关总体的参数估计和假设检验两个方面18.不同指标之间比较变异大小可用变异系数反映19.同一性状同次的观察记载工作应在同一个工作日内完成20.实验因素所处的某种特定状态或数量等级称为水平21. .方差分析的三个基本假定是可加性,正态性,独立性,方差同质性22.试验精确度:同一处理的重复观察值彼此接近的程度23.参数:描述总体特征的数24.统计推断包括参数估计和假设检验两个方面25.试验处理之间应该遵循唯一差异原则26.不同指标之间比较变异大小用变异参数27.多重比较结果:列梯形表法,多重直线法,标记字母法28. 接受域:一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围29.离均差平方和最小是算术平均数的重要特征之一30.控制误差的途径有:选择同质一致的实验材料,改进操作和管理技术,是指标准化,控制引起变异的外界主要因素1.处理效应是可加的,随机误差是相互独立的,正态的和方差同质的。
2.正交表及表头设计:L9(34)其中“L”表示是正交表;9表示这张表有9行,即用这张表安排试验,要做9个处理,且处理自由度为9-1=8“4”表示正交表有4列,是用来安排试验因素、处理及各种变因的。
“3”表示参试因素皆为3水平,与此呼应的是每列皆有1,2,3,三个数码,表示该列因素的三个水平。
1、田间试验的误差来源与控制途径。
误差来源:(1)实验材料固有的差异。
(2)环境条件的差异(3)管理不一致所引起的差异(4)观察测定的不一致造成的差异控制途径:(1)使供试材料尽可能一致。
(2)讲究小区技术,增加重复数,增加对照等(3)实验管理规范,尽量减少人为因素的干扰(4)测定程序标准化,以对实验误差进行统计控制2、田间试验设计的原则与作用:(1)重复。
试验中同一处理种植的小区数即为重复次数。
作用:估计和降低试验误差,提高试验的精确度。
(2)随机排列。
随即排列是指一个区组中每一处理都有同等的机会设置在任何一个试验小区上。
作用:与重复结合,提供无偏的试验误差估计值。
(3)局部控制。
局部控制就是将整个试验环境分成若干个相对最为一致的小环境,再在小环境内设置成套处理,即在田间分范围分地段地控制土壤差异等非处理因素,使之对各试验处理小区的影响达到最大程度的一致。
作用:降低误差。
3、简述实验设计的基本原则。
1目的明确 2结果可靠 3实验条件要有代表性 4结果能够重复4、t测验和u测验分别在什么条件下应用?t检测的应用条件:1.总体方差未知且n较小。
2.样本取自正态总体3.两样本均数比较时,两样本的总体方差相等;U检验的应用条件:(u检验为t检验在样本含量较大时的近似计算法)1总体方差未知但n较大2.总体方差已知但n较小5. t测验与u测验的异同。
(1)相同之处:①都是根据抽样平均数进行的统计测验;②分布曲线都是以y= μ =0向左右两侧延伸;③当n→∞时,t分布曲线与u分布的正态曲线“合二为一”。
(2)不同之处:①两者标准差不同:②适用条件不同,n不同,t分布是自由度n-1.③概率密度函数不同;④正态曲线是一个曲线簇,t分布曲线是一条与自由度相关的曲线。
5、假设测验的两类错误的概念与控制。
假设测验的第一类错误:无效假设正确即H0正确,可是由于假设测验结果否定了无效假设。
称为弃真错误,概率为α假设测验的第二类错误:无效假设错误,备择假设正确即Ha正确,可是由于假设测验结果接受了无效假设。
称为纳伪错误其概率为β。
控制途径:(1)采用一个较低的显著水平;同时适当增加样本容量,或适当减小总体方差,或两者兼之。
(2)若显著水平已定,则可通过改进试验技术和增加样本容量来降低犯第二类错误的概率。
6、一尾测验与两尾测验的异同。
(1)相同之处:测验的方法相同。
(2)不同之处:①两尾测验考虑的概率为正态曲线左边一尾概率和右边一尾概率的总和,它有两个否定区域;一尾测验的统计假设只有一个否定区域,即正态曲线的左边一尾或右边一尾。
②一尾测验的临界正态离差Uα小于两尾测验的正态离差Uα,所以一尾测验容易否定假设。
7、对比法与间比法的异同。
(1)相同之处:①都是顺序排列的试验设计;②都设有对照区。
(2)不同之处:对比法设计的特点是每一供试品种均直接排列于对照区旁边,每一小区可与邻旁的对照区直接比较;间比法设计的特点是一条地上,排列的第一个小区和末尾的小区一定是对照区,每二对照区之间排列相同数目的处理小区。
8、完全随机设计的优缺点?优点:简单、容易,处理数与重复数都不受限制,适用于实验条件、环境、试验材料差异较小的试验;统计分析简单,无论所获得的试验资料各处理重复数相同与否,都可用t检验或方差分析法进行统计分析;实验误差自由度大于处理数和重复数相等的其他设计缺点:由于完全随机设计未应用实验设计三原则中的局部控制原则,非实验因素的影响被归入实验误差,实验误差较大,试验的精确度较低;在试验条件、环境、试验材料差异较大时,不宜采用此种设计方法。
9、什么是随机区组设计?以及优缺点?是根据“局部控制”和“随机排列”原理进行的,将试验地按肥力程度等性质不同划分为等于重复次数的区组,使区组内环境差异最小而区组间环境允许存在差异,每个区组即为一次完整的重复,区组内各处理都独立地随机排列。
优点:设计与分析方法简单易行:体现了试验设计三原则,在对实验结果进行分析时,能将区组间的变异从试验误差中分离出来,有效地降低了试验误差,因而试验的精确度较高;把条件一致的试验单元分在同一区组,再将同一区组的试验单元随机分配到不同处理组内,加大了处理组之间的可比性缺点:当处理数目过多时,各区组内的试验单元数目同样也过多,要使各区组内试验材料的初始条件一致会有一定难度,因而在随机区组设计中,处理数以不超过20为宜;仅实行单方面局部控制,精确度不如拉丁方设计。
10、裂区设计的优缺点?优点:a.田间实施比较方便。
b.能利用原有的试验地及试验材料,进行进一步研究。
c.某个因子可获得较高的精确度缺点:a.资料的统计分析比较复杂,不易掌握。