SPSS实验报告 统计推断(参数假设检验)

合集下载

参数估计与假设检验SPSS

参数估计与假设检验SPSS

3
区别
参数估计更侧重于总体参数的估计和推断,而假 设检验更侧重于对总体参数的假设进行验证和决 策。
02
SPSS软件介绍
SPSS软件的特点与优势
强大的统计分析功能
SPSS提供了广泛的统计分析方法,包括描述性统计、推论性统计、 多元统计分析等,能够满足各种数据分析和科学研究的需求。
易用性
SPSS的用户界面友好,操作简单,使得用户可以快速上手,减少了 学习成本。
参数估计与假设检验的应用场景与注 意事项
参数估计与假设检验的应用场景
社会科学研究 在社会科学研究中,参数估计与 假设检验是常用的统计方法,用 于检验理论模型和假设,评估变 量之间的关系。
心理学研究 在心理学研究中,参数估计与假 设检验用于研究人类行为、认知 和情感等方面的规律和特点。
医学研究 在医学研究中,参数估计与假设 检验常用于临床试验和流行病学 研究中,以评估治疗效果、疾病 发病率和风险因素等。
04
05
根据输出结果判断假设是否 成立。
假设检验的实例分析
以一个实际研究问题为例,如比较两组人群的平均身高是否存在显著差异。
在SPSS中实现该实例分析,包括数据导入、选择统计方法、设置参数、运 行统计方法和结果解读等步骤。
根据SPSS的输出结果,判断提出的假设是否成立,并解释结果的实际意义。
05
数据处理技术,提高分析效率和准确性。
多变量分析方法
03
多变量分析方法的发展将促进参数估计与假设检验的进一步应
用,能够更全面地揭示变量之间的关系。
THANKS
感谢观看
使用SPSS进行参数估计,例如使用逻辑回归分 析来估计吸烟与肺癌之间的关系。
04
假设检验在SPSS中的实现

spss假设检验

spss假设检验

SPSS假设检验1. 简介SPSS(Statistical Package for the Social Sciences)是一种非常常用的统计软件,被广泛应用于社会科学研究中。

其中,假设检验是SPSS中常用的统计方法之一,用于验证研究者对总体或样本的某种假设。

2. 假设检验的概念假设检验是统计学中的一种重要方法,用于判断一个统计推断是否与样本数据一致。

在假设检验中,通常会提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据对两个假设进行检验,以确定是否拒绝原假设,从而对总体进行推断。

3. SPSS中的假设检验SPSS中提供了丰富的假设检验方法,涵盖了多种统计推断的情况。

下面将介绍几种常见的假设检验方法。

3.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与一个已知的常数有显著性差异。

在SPSS中,进行单样本 t 检验的步骤如下:1.导入数据:在SPSS中打开或导入数据文件。

2.选择变量:选择要进行 t 检验的变量。

3.进行检验:选择菜单栏上的“分析”-“比较均值”-“单样本 t 检验”。

4.设置参数:选择相关的变量和检验参数,点击“确定”进行分析。

5.查看结果:SPSS将显示 t 检验的结果,包括均值、标准差、t 值、自由度和显著性等。

3.2 独立样本 t 检验独立样本 t 检验用于判断两个独立样本的均值是否存在显著性差异。

在SPSS中,进行独立样本 t 检验的步骤如下:1.导入数据:在SPSS中打开或导入数据文件。

2.选择变量:选择需要进行对比的两个变量。

3.进行检验:选择菜单栏上的“分析”-“比较均值”-“独立样本 t 检验”。

4.设置参数:选择相关的变量和检验参数,点击“确定”进行分析。

5.查看结果:SPSS将显示独立样本 t 检验的结果,包括均值、标准差、t 值、自由度和显著性等。

3.3 配对样本 t 检验配对样本 t 检验用于判断同一组个体在两个不同时间点或条件下的均值是否存在显著性差异。

SPSS实验报告 统计推断(参数假设检验)

SPSS实验报告 统计推断(参数假设检验)
四、实验心得
通过本实验项目,使我们熟悉点估计概念与操作方法,熟悉区间估计的概念与操作方法,熟练掌握T检验的SPSS操作以及学会利用T检验方法解决身边的实际问题。
专业班级:姓名:学号:实验日期:
实验报告
课程名称:2013/2014学年第一学期统计实验
实验名称:统计推断(参数假设检验)
一、实验目的:
1.熟悉点估计概念与操作方法
2.熟悉区间估计的概念与操作方法
3.熟练掌握T检验的SPSS操作
4.学会利用T检验方法解决身边的实际问题
二、实验内容:
1.某省大学生四级英语测验平均成绩为65,现从某高校随机抽取20份试卷,其分数为:72、76、68、78、62、59、64、85、70、75、61、74、87、83、54、76、56、66、68、62,问该校英语水平与全区是否基本一致?设α=0.05
假设方差相等,则t=0.937, df=21.976 ,双侧为0.359,均值差值为3.861,标准误差值为4.122,95%的置信区间是(-4.689,12.411)。所以男女不同。
第三题
从图3中可以看出两个独立样本各自的均值,标准差以及平均标准误差,其中女性的平均寿命要比男性的平均寿命要长。从图5中可以看出T检验P值=0.000按0.05检验水准,它们存在显著差异。P=0.000 <0.05。其差异的置信区间为(4.808,5.669)。
3.SPSS自带的数据文件world95.sav中,保存了1995年世界上109个国家和地区的部分指标的数据,其中变量“lifeexpf”,“lifeexpm”分别为各国或地区女性和男性人口的平均寿命。假设将这两个指标数据作为样本,试用配对样本T检验,女性人口的平均寿命是否确实比男性人口的平均寿命长,并给出差异的置信区间。(设α=0.05)

Spss统计软件操作2-t检验

Spss统计软件操作2-t检验
400 400
标准株(11人) 100 200 400 400 400 400 800 1600 1600 1600 3200 水生株(9人) 100 100 100 200 200 200 200
Analyze—Compare Means—Independent-Samples T Test
Thanks
计量资料的统计推断
目的要求
掌握:假设检验的基本步骤、均数假设检验的
常见类型及公式计算
学会:使用SPSS操作及对输出结果做恰当解释
假设检验的基本步骤
1.建立检验假设,确定检验水准
H0:(无效假设) µ =µ 0;μ1=μ2 H1:(备择假设) µ >µ 0或μ<μ0 ( µ≠µ0 ) μ1>μ2 或μ1<μ2 (μ1≠μ2)
检验水准 α=0.05 单、双侧检验的选择: (1)根据专业知识
事先不知道会出现什么结果 事先知道只能出现某种结果 双侧 单侧
(2)问题的提法
*通常用双侧(除非有充足的理由选用单侧之外, 一般选用 保守的双侧较稳妥)
2.选定检验方法或计算统计量
根据研究设计的类型、资料类型及分析目的
选用适当的检验方法。如样本均数与总体均数的
比较、配对资料的比较、成组设计两个样本均数
的比较等。
3.确定P值,做出统计推断
P值的含义:P值是在H0成立的条件下推断出的现 有统计量(第2步中计算出的统计量)的概率或更 极端的概率(尾部概率) 确定P值大小的方法:用公式求出的t值与 查表查出的t0.05, 比较
P
P=0.05 t
t0.05,ν
4.做出推断结论
(推断的结论=统计结论+专业结论)
P>0.05,按α=0.05检验水准,不拒绝H0,差异无统 计学意义,还不能认为……不同或不等。 P<0.05 ,按α=0.05检验水准,拒绝H0,接受H1设检验的注意问题

spss 假设检验

spss 假设检验

H0: µ = 0⋅ 081mm
___
H1: µ ≠ 0⋅ 081mm
Z=
x − µ0 n
σ
=
0.076 − 0.081 0.025 200
= −2.83
拒绝域
接受域
拒绝域
α = 0.025 2
1−α = 0.95
α = 0.025 2
− 2.83
−1.96
0
1.96
方差已知的均值检验
某批发商欲从厂家购进一批灯泡,根据合同规定,灯泡的使用寿命平均不能低于1000小时。 已知灯泡使用寿命服从正态分布,标准差为20小时。在总体中随机抽取了100个灯泡,得其均值为 960小时,批发商是否应该购进这批灯泡。
H0: µ ≤ 40000km
___
H1: µ f 40000km
t=
x − µ0 41000 − 40000 = ≈ 2.91 s n 5000 120
接受域
拒绝域
1−α = 0.95
α = 0.05
0
t0.05(119) ≈1.658
2.91
一个正态总体的参数检验
一个正态总体均值检验的统计量与拒绝域列表 总体 方差 检 验 统计量
H0: µ ≤1200
H1: µ f1200
接受域
拒绝域
1−α = 0.95
α = 0.05
Z0.05
0
右侧检验
假设检验中的P值
拒绝域
接受域
拒绝域
α = 0.025 2
α = 0.025 2
− Zα = −1.96
2
P = 0.015
0
Zα =1.96 Z = 2.17
2

spss参数与非参数检验实验报告

spss参数与非参数检验实验报告
基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验

参数假设检验

参数假设检验

假设检验的一般步骤
1. 给出检验问题的零假设;
2. 选择检验统计量. 均值检验常用t分布,F分布; 3. 承认零假设正确的前提下,计算检验统计量的观测值及其
发生的概率值p; **p值就是零假设成立时检验统计量的观测值发生的概率,
依据显著性水平判定小概率是否发生.
4. 在给定显著性水平的条件下,作出统计推断. **p小于显著性水平拒绝零假设, p大于显著性水平接受零假设
N
(

1,
2 1
),
N
(
2,
2 2
),来自两总体的样本
容量分别为n1, n2 ,样本方差分别为S1, S 2构造检验统计量考虑两种情形:
*
2 1
2 2
时,构造检验统计量
t

X1
X 2 (1 2)
t(n1 n2 2), S 2

(n1

1)
S2 1

Байду номын сангаас
(
n
2

1)
S
选用检验统计量: t X t(n 1) Sn
两独立样本T检验
两独立样本的T检验用于检验两个独立样本是否来自具有相同 均值的总体,也就是检验两个独立正态总体的均值是否相等.
例如:男女生成绩差异分析.
零假设:H 0 : 1 2 ,这里 1, 2 分别为两总体的均值
假设两个独立的总体分别服从
两独立样本T-检验结果分析
分组统计,S.E.Mean=S/n1/2
Independent Samples Test表中先是做Levene F-方差齐性检验,再做独立 样本T-检验. 因此此例结论显示两种情形: 方差齐性: Levene F-方差齐性检验显著概率0.006<0.05,所以男女方差 不齐

SPSS实验报告

SPSS实验报告

《统计分析与SPSS的应用》实验报告班级:090911学号:09091141姓名:律江山评分:南昌航空大学经济管理学院南昌航空大学经济管理学院学生实验报告实验课程名称:统计分析与SPSS的应用专业经济学班级学号09091141 姓名律江山成绩实验地点G804 实验性质:演示性 验证性综合性设计性实验项目名称基本统计分析(交叉分组下的频数分析)指导教师周小刚一、实验目的掌握利用SPSS 软件进行基本统计量均值与均值标准误、中位数、众数、全距、方差和标准差、四分位数、十分位数和百分位数、频数、峰度、偏度的计算,进行标准化Z分数及其线形转换,统计表、统计图的显示。

二、实验内容及步骤(包括实验案例及基本操作步骤)(1)实验案例:居民储蓄存款。

(2)基本步骤:1、单击菜单选项analyze→descriptive statistics→crosstabs2、选择行变量到row(s)框中,选择列变量到column(s)框中3、选择dispiay clustered bar charts选项,指定绘制各变量交叉分组下的频数分布棒图。

三、实验结论(包括SPSS输出结果及分析解释)实验结论:较大部分储户认为在未来收入会基本不变,收入会增加的比例高于会减少的比例;城镇储户中认为收入会增加的比例高于会减少的比例,但农村储户恰恰相反;可见城镇和农村储户在对该问题的看法上存在分歧。

城镇户口较内存户口收入有明显的增加,但未来收入减少的比例差距不大。

其中二者未来收入大部分基本保持不变。

实验课程名称:统计分析与SPSS的应用专业经济学班级学号09091141 姓名律江山成绩实验地点G804 实验性质:演示性 验证性综合性设计性实验项目名称参数检验(两独立样本T检验)指导教师周小刚一、实验目的掌握利用 SPSS 进行单样本 T 检验、两独立样本 T 检验和两配对样本 T 检验的基本方法,并能够解释软件运行结果。

利用来自两个总体的独立样本,推断两个总体的均值是否存在显着差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.分析某班级学生的高考数学成绩是否存在性别上的差异。数据如表所示:
某班级学生的高考数学成绩
性别
数学成绩
男(n=18)
85 89 75 58 86 80 78 76 84 89 99 95 82 87 60 85 75 80
女(n=12)
92 96 86 83 78 87 70 65 70 65 70 78 72 56
:
专业班级:姓名:徐彤彤学号:实验日期:2013-11-4
三、实验过程:
第一题
选择区间估计选项
所以,该高校英语水平高于全省大学生平均成绩。
第ቤተ መጻሕፍቲ ባይዱ题
分析中的比较均值
专业班级:姓名:学号:实验日期:
由图所知,男性有十八人,均值为81.28,标准差为10.369,均值的标准误为2.444,女性有十二人,均值为77.24,标准差为11.501,均值的标准误为3.320。假设方差相等,则t=0.957, df=28 ,双侧为0.347,均值差值为3.861,标准误差值为4.035,95%的置信区间是(-4.405,12.127);
实验报告
课程名称:2013/2014学年第一学期统计实验
实验名称:统计推断(参数假设检验)
一、实验目的:
1.熟悉点估计概念与操作方法
2.熟悉区间估计的概念与操作方法
3.熟练掌握T检验的SPSS操作
4.学会利用T检验方法解决身边的实际问题
二、实验内容:
1.某省大学生四级英语测验平均成绩为65,现从某高校随机抽取20份试卷,其分数为:72、76、68、78、62、59、64、85、70、75、61、74、87、83、54、76、56、66、68、62,问该校英语水平与全区是否基本一致?设α=0.05
假设方差相等,则t=0.937, df=21.976 ,双侧为0.359,均值差值为3.861,标准误差值为4.122,95%的置信区间是(-4.689,12.411)。所以男女不同。
第三题
从图3中可以看出两个独立样本各自的均值,标准差以及平均标准误差,其中女性的平均寿命要比男性的平均寿命要长。从图5中可以看出T检验P值=0.000按0.05检验水准,它们存在显著差异。P=0.000 <0.05。其差异的置信区间为(4.808,5.669)。
四、实验心得
通过本实验项目,使我们熟悉点估计概念与操作方法,熟悉区间估计的概念与操作方法,熟练掌握T检验的SPSS操作以及学会利用T检验方法解决身边的实际问题。
专业班级:姓名:学号:实验日期:
3.SPSS自带的数据文件world95.sav中,保存了1995年世界上109个国家和地区的部分指标的数据,其中变量“lifeexpf”,“lifeexpm”分别为各国或地区女性和男性人口的平均寿命。假设将这两个指标数据作为样本,试用配对样本T检验,女性人口的平均寿命是否确实比男性人口的平均寿命长,并给出差异的置信区间。(设α=0.05)
相关文档
最新文档