八年级数学上册:等腰三角形的判定定理及推论练习(含答案)
部编数学八年级上册专题04等腰三角形的判定(解析版)含答案

2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题04 等腰三角形的判定考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)V中,运用尺规作图的方法在BC边上取一点P,使1.(2分)(2022八上·西湖期末)如图,在ABCPA PB BC+=,下列作法正确的是( )A.B.C.D.【答案】C【完整解答】解:由作图可知,选项C中,∠C=∠PAC,∴PA=PC,∴PA+PB=PC+PB=BC.故答案为:C.【思路引导】根据作图步骤可得选项A中∠BAP=∠CAP,无法判断PA+PB=BC;选项B中AC=BC,则AC+BP=BC;选项C中∠C=∠PAC,则PA=PC,PA+PB=BC;选项D中BP=PC,据此判断.2.(2分)(2021八上·河东期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB 为等腰三角形,符合条件的M 点有( )A .6个B .7个C .8个D .9个【答案】C【完整解答】解:如图,①以A 为圆心,AB 为半径画圆,交直线AC 有二点M 1,M 2,交BC 有一点M 3,(此时AB =AM );②以B 为圆心,BA 为半径画圆,交直线BC 有二点M 5,M 4,交AC 有一点M 6(此时BM =BA ).③AB 的垂直平分线交AC 一点M 7(MA =MB ),交直线BC 于点M 8;∴符合条件的点有8个.故答案为:C .【思路引导】根据等腰三角形的判定方法求解即可。
3.(2分)(2021八上·昌平期末)如图,已知Rt △ABC 中,∠C =90°,∠A =30°,在直线BC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个【答案】B 【完整解答】解:以点A 、B 为圆心,AB 长为半径画弧,交直线BC 于两个点12P P ,,然后作AB 的垂直平分线交直线BC 于点3P ,如图所示:∵∠C =90°,∠A =30°,∴60ABC ∠=︒,∵33AP BP =,∴3ABP V 是等边三角形,∴点32P P ,重合,∴符合条件的点P 有2个;故答案为:B .【思路引导】先求出60ABC ∠=︒,再求出3ABP V 是等边三角形,最后求解即可。
人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。
【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。
初二等腰三角形性质及判定练习题

初二等腰三角形性质及判定练习题
等腰三角形是初中阶段的重要概念之一。
以下是等腰三角形的
性质及判定方法:
等腰三角形性质
- 定义:有两个角的角度相等的三角形被称为等腰三角形;
- 两边相等的角也是相等的;
- 等腰三角形的两条等边所对应的角被称为基角,另一个角被
称为顶角;
- 基角的角平分线也是等边三角形的高线;
- 等腰三角形的顶角的角平分线与底边垂直,并且将底边平分。
等腰三角形判定方法
- 角角边(AAS):已知等腰三角形两个角相等,且一个角的
对边(边长相等)与已知的一条边相等;
- 边边角(SAS):已知等腰三角形两边相等,且对应的角相等;
- 等边角(SSS):三角形三边相等。
判定题
练题如下:
1. 已知三角形ABC,其中AB = AC,角B = 40度,角A = 100度,求角C的度数;
2. 三角形DEF中,DE = EF,角F = 120度,角D = 30度,求角E的度数;
3. 三角形UVW中,UV = VW,VW = WU,求角U、角V、角W的度数;
4. 已知三角形XYZ,其中XZ = YZ,角X = 角Y = 70度,求角Z的度数。
以上是初二等腰三角形性质及判定练习题,希望对大家有所帮助!。
初中数学培优:等腰三角形(含答案)

等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
八年级数学竞赛例题专题讲解17:等腰三角形的判定(含答案)

专题17 等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等; ⑵从角入手,证明一个三角形的两个角相等. 2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明; ⑵当所证的两条线段位于同一个三角形,通过等角对等边证明; ⑶寻找某条线段,证明所证的两条线段都与它相等.善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.ABCABDM FC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .BCA D图2B CA D图1O ABCMD EEA BDCFBCAD能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b ac a c =+-,44422c a b a b =+-,则△ABC ()A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .300 B .300或1500 C .1200或1500 D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)第5题图 第8题图 第9题图ACDBB ′A ′(第2题)AB CDEF (第3题)(第4题)9915BACBCABCADFG E9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)B ACDA BDFE C图1A B D FE C图2A ′E ′D ′C ENMBDB 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 8 7.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题)ABC(第1题)(第2题)ABD E CA BPACBB ′图1图2A BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)ABQCABD CFE11.如图,在平面直角坐标系中,O为坐标原点,直线l:12y x m=-+与x轴、y轴的正半轴分别相交于点A、B,过点C(-4,-4)作平行于y轴的直线交AB于点D,CD=10.⑴求直线l的解析式;⑵求证:△ABC是等腰直角三角形;⑶将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形,请直接写出所有符合条件的点P的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).⑴求B点坐标;⑵如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=900,连接OD,求∠AOD度数;⑶如图3,过点A作y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连接FM,等式AM FMOF-=1是否成立?若成立,请证明;若不成立,说明理由.图1 图2 图3。
人教版八年级上册数学等腰三角形的性质与判定练习题及答案

13.3.1 第1课时等腰三角形的性质一.选择题(共8小题)1.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A. 3.5 B. 4.2 C. 5.8 D.7第1题第2题第3题2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C. 5 D. 2.53.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为()A.25 B.30 C.35 D.404.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cm B.2cm C.1cm D.m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB第5题第6题第7题第8题6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5m B.8m C.10m D.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米 B.9米C.12米 D.15米8.如图,已知∠ABC=60°,DA是BC的垂直平分线,BE平分∠ABD交AD于点E,连接CE.则下列结论:①BE=AE;②BD=AE;③AE=2DE;④S△ABE=S△CBE,其中正确的结论是()A.①②③B.①②④ C.①③④ D.②③④二.填空题(共10小题)9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.10.如图,∠AO E=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.11.如图,在△ABC中,∠C=90°,∠B=60°,AB=10,则BC的长为_________.12.如图,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,底边上的高AD=_______cm.第9题第10题第11题第12题13.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=_________cm.第13题第14题第15题第16题14.如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD=_________cm.15.如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为_________米.16.在△ABC中,已知A B=4,BC=10,∠B=30°,那么S△ABC=_________.17.如图,△ABC是等边三角形,AD⊥BC,DE⊥AC,若AB=12cm,则CE=______cm.18.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B 处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是_________海里.三.解答题(共5小题)19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.20.如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.21.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求AC的长.22.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.23.如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.一、DABCCABC二、9、2;10、2;11、5;12、6;13、2;14、18;15、6;16、10;17、3;18、10三、19、(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△A ED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.20、解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°﹣30°=90°,∴BD=DC,∴AD=DC.21、解:∵△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,∴∠2=∠3=30°;在Rt△BCD中,CD= BD,∠4=90°﹣30°=60°(直角三角形的两个锐角互余);∴∠1+∠2=60°(外角定理),∴∠1=∠2=30°,∴AD=BD(等角对等边);∴AC=AD+CD=AD;又∵AD=6,∴AC=9.22、解:∵△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=×4=2,∵CD是△A BC的高,∴∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,∴在Rt△BCD中,BD=BC=×2=1,∴BD=1.23、(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴AD+AB=AC;(2)解:结论AD+AB=AC成立.理由如下:在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.13.3.1 第2课时等腰三角形的判定一、填空题1.如图(1),△ABC 中,AB=AC ,DE 是AB 的中垂线,△BCE 的周长为14,BC=6,则AB 的长为 。
等腰三角形的判定(分层作业)(解析版)-八年级数学上册

13.3.2等腰三角形的判定夯实基础篇一、单选题:1.在△AB C中,∠A:∠B:∠C=2:2:5,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形【答案】A【知识点】等腰三角形的判定【解析】【解答】解:∵△AB C中,∠A:∠B:∠C=2:2:5,∴设∠A=2x,则∠B=2x,∠C=5x,∵∠A+∠B+∠C=180°,∴2x+2x+5x=180°,解得x=20°,∴∠A=∠B=40°,∠C=5x=5×20°=100°.∴AC=C B.∴△ABC是钝角三角形,等腰三角形.故答案为:A.【分析】设∠A=2x,则∠B=2x,∠C=5x,再由三角形内角和定理求出x的度数,进而可得出∠C的度数,由此判断出△ABC的形状即可2.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为()A.2.5B.1.5C.2D.1【答案】D【知识点】等腰三角形的判定与性质;角平分线的定义【解析】【解答】解:∵CD平分∠ACB,BE⊥CD,∴BC=CE.又∵∠A=∠ABE,∴AE=BE.∴BD=12BE=12AE=12(AC-BC).∵AC=5,BC=3,∴BD=12×(5-3)=2.故答案为:D【分析】角平分线得出线段相等,等角对等边,在根据相对垂直平分线的性质求BD 3.如图,在△AB C中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【答案】D【知识点】等腰三角形的判定与性质【解析】【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=12∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BC D中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.,则经过三角形的一个顶点的一条直线能4.已知:如图,下列三角形中,AB AC够将这个三角形分成两个小等腰三角形的有()A.1个B.2个C.3个D.4个【答案】C【知识点】等腰三角形的判定【解析】【解答】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:C.【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形. 5.如图,AC,BD相交于点O,∠A=∠D.若请你再补充一个条件,使得△BOC是等腰三角形,则你补充的条件不能是()A.OA=OD B.AB=CDC.∠ABO=∠DCO D.∠ABC=∠DCB【答案】C【知识点】等腰三角形的判定;三角形全等的判定(ASA );三角形全等的判定(AAS )【解析】【解答】解:A 、在△AOB 和△DO C 中A D OA OD AOB COD=∴△AOB ≌△DOC (ASA )∴OB =OC∴△BOC 是等腰三角形,故A 不符合题意;B 、在△AOB 和△DOC 中A D AOB COD AB CD=∴△AOB ≌△DOC (AAS )∴OB =OC∴△BOC 是等腰三角形,故B 不符合题意;C 、补充∠ABO =∠DCO ,不能证明△AOB ≌△DOC ,因此不能证明△BOC 是等腰三角形,故C 符合题意;D 、在△ACB 和△DB C 中A D ABC DCB BC CB==∴△ACB ≌△DBC (AAS )∴∠ACB =∠DBC∴OB =OC∴△BOC 是等腰三角形,故D 不符合题意;故答案为:C.【分析】图形中的隐含条件为:∠AOB=∠DOC,BC=CB,利用ASA可证得△AOB≌△DOC,利用全等三角形的对应边相等,可证得OB=OC,可对A作出判断;利用AAS可证得△AOB≌△DOC,利用全等三角形的性质,可证得OB=CO,可对B作出判断;再根据证明两三角形全等至少要有一组对应边相等,可对C作出判断;利用AAS证明△ACB ≌△DBC,利用全等三角形的对应角相等,可证得∠ACB=∠DBC,利用等角对等边,可证得OB=OC,可对D作出判断.6.如图,在△AB C中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A.35°B.40°C.45°D.50°【答案】B【知识点】三角形内角和定理;线段垂直平分线的性质;等腰三角形的判定与性质【解析】【解答】解:∵∠BAC=110°,∴∠C+∠B=70°,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=70°,∴∠EAF=40°,故答案为:B.【分析】根据三角形内角和定理求出∠C+∠B的度数,根据线段垂直平分线定理得出EC=EA,FB=FA,从而求出∠EAC+∠FAB的度数,即可求得∠EAF的度数。
湘教版八年级数学上册《2.3.2等腰三角形的判定》同步测试题及答案

湘教版八年级数学上册《2.3.2等腰三角形的判定》同步测试题及答案班级:___________姓名:___________得分:__________(满分:100分,考试时间:40分钟)一.选择题(共5小题,每题8分)1.下列推理中,错误的是( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形2.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形3.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则图中共有等腰三角形( )A.8个B.7个C.6个D.5个第3题图第5题图4.下列能判定三角形是等腰三角形的是( )A.有两个角为30°、60°B.有两个角为40°、80°C.有两个角为50°、80°D.有两个角为100°、120°5.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB于M点,交AC于N点,则△AMN的周长为( )A.7 B.8 C.9 D.10二.填空题(共4小题,每题5分)6.如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________第6题图第7题图第8题图7.如图,已知OC平分∠AOB,CD∥OB,若OD=6㎝,则CD的长等于____________ .8.小明从A处出发,要到北偏东60°方向的C处,他先沿正东方向走了200米到达B处,再沿北偏东30°方向走恰能到达目的地C处. 则B、C两地的距离为________9.在△ABC中,∠A=80°,当∠B=__________时,△ABC是等腰三角形.三.解答题(共3小题,第10题10分,第11、12题各15分)10.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.11.如图,在△ABC中,∠BAD=∠B,∠EAC=∠C,若△ADE的周长是12,则BC的长是多少?12.如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.参考答案与解析1.B【解析】A∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B条件重复且条件不足,故不正确;C∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.2.A【解析】∵这个三角形是轴对称图形∴一定有两个角相等∴这是一个等腰三角形.∵有一个内角是60°∴这个三角形是等边三角形.故选A.3.A【解析】△ABC, △BCE,△CDB, △BFC,△BFD,△CEF,△AEB,△ADC,故选A.4.C【解析】A、因为有两个角为30°、60°,则第三个角为90°,所以此选项不正确;B、因为有两个角为40°、80°,则第三个角为60°,所以此选项不正确;C、因为有两个角为50°、80°,则第三个角为50°,有两个角相等,所以此选项正确;D、因为100°+120°>180°,所以此选项不正确;故选:C.5.D【解析】利用角平分线及平行线性质,结合等腰三角形的判定得到MB=MO,NC=NO,将三角形AMN 周长转化为AB+AC,求出即可.解:∵BO为∠ABC的平分线,CO为∠ACB的平分线,∴∠ABO=∠CBO,∠ACO=∠BCO.∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠BCO,∴∠ABO=∠MOB,∠NOC=∠ACO,∴MB=MO,NC=NO,∴MN=MO+NO=MB+N C.∵AB=4,AC=6,∴△AMN周长为AM+MN+AN=AM+MB+AN+NC=AB+AC=10.故答案为:10.6.3【解析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D∴∠ABD=∠DBC=36°∵∠A=∠ABD=36°∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.7.6cm【解析】∵OC平分∠AOB∴∠AOC=∠BOC;又∵CD∥OB∴∠C=BOC∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.8.200米【解析】根据题中的角的关系证明∠BAC=∠C.解:根据题意得,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°所以∠C=30°,所以∠BAC=∠C,所以BC=AB=200.故答案为200米.9.80°或50°或20°【解析】分三种情况分析解:∵∠A=80°∴①当∠B=80°时,△ABC是等腰三角形;②当∠B=(180°﹣80°)÷2=50°时,△ABC是等腰三角形;③当∠B=180°﹣80°×2=20°时,△ABC是等腰三角形;故答案为:80°或50°或20°10.证明见解析.【解析】根据△ABC是等边三角形得出∠A=∠B=∠C=60°,利用DE∥AC,求得∠B=∠BED=∠BDE 即可得出结论.解:△BDE是等边三角形理由:∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC∴∠BED=∠A=60°,∠BDE=∠C=60°∴∠B=∠BED=∠BDE∴△BDE是等边三角形.11.12.【解析】结合图形,利用等腰三角形的判定,可所求出BC的长度.解:∵∠BAD=∠B∴BD=AD∵∠EAC=∠C∴AE=CE.∵AD+DE+DE=12∴BC=BD+DE+EC=12.12.(1)△ABC是等腰三角形,∠B=40°;(2)见解析.【解析】分析:(1)、根据Rt△ADE的内角和得出∠DAC=70°,根据平行线的性质得出∠C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册:等腰三角形的判定定理及推论练习(含答案)
一.选择题(共8小题)
1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()
A.5个B.6个 C.7个 D.8个
第1题第2题第4题
7.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()
A.2 B. 3 C. 4 D. 5
3.下列条件中不能确定是等腰三角形的是()
A.三条边都相等的三角形D.一条中线把面积分成相等的两部分的三角形
B.有一个锐角是45°的直角三角形C.一个外角的平分线平行于三角形一边的三角形4.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;
②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()
A.2种 B.3种 C.4种 D.6种
5.下列能断定△ABC为等腰三角形的是()
A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°
C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为13
6.下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()
A.1个 B.2个 C.3个 D.4个
7.已知下列各组数据,可以构成等腰三角形的是()
A.1,2,1 B.2,2,1 C.1,3,1 D. 2,2,5
8.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()
A.①③④ B.①②③④C.①②④ D.①③
二.填空题(共10小题)
9.用若干根火柴(不折断)紧接着摆成一个等腰三角形,底边用了10根,则一腰至少要用
_________ 根火柴.
10.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3,则CD= _________
第10题第11题第14题第18题11.如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE经过点M,且DE∥BC,则图中有_________ 个等腰三角形.
12.在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度数是
_________ .
13.在△ABC中,∠A=100°,当∠B= _________ °时,△ABC是等腰三角形.
14.如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=_________ 度,图中有
_________ 个等腰三角形.
15.若三角形三边长满足(a﹣b)(a﹣c)=0,则△ABC的形状是_________ .
16.如果一个三角形有两个角分别为80°,50°,则这个三角形是_________ 三角形.17.在平面上用18根火柴首尾相接围成等腰三角形,这样的等腰三角形一共可以围攻成_________ 种.
18.如图,已知AD平分∠EAC,且AD∥BC,则△ABC一定是_________ 三角形.
三.解答题(共5小题)
19.如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.
(1)求证:△ABC≌△DCB;
(2)△OBC的形状是_________ .(直接写出结论,不需证明)
20.已知:如图,OA平分∠BA C,∠1=∠2.
求证:△ABC是等腰三角形.
21.如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?
(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.
22.如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.
23.如图,四边形ABCD中,AB∥CD,AD∥BC,连接AC,△AB′C和△ABC关于AC所在的直线对称,AD 和B′C相交于点O,连接BB′.
(1)求证:△ABC≌△CDA.
(2)请直接写出图中所有的等腰三角形(不添加字母);
(3)图中阴影部分的△AB′O和△CDO是否全等?若全等请给出证明;若不全等,请说明理由.
答案:一、DCDCBABA
二、9、6;10、3;11、5;12、80°或50°或20°;13、40度;14、72,3;15、等腰三角形;
16、等腰;17、4;18、等腰
三、19、(1)证明:在△ABC和△DCB中,
∴△ABC≌△DCB(SSS).
(2)解:∵△ABC≌△DCB,
∴∠OBC=∠OCB.
∴OB=OC.
∴△OBC为等腰三角形.
故填等腰三角形.
20、解答:证明:作OE⊥AB于E,OF⊥AC于F,
∵AO平分∠BAC,
∴OE=OF(角平分线上的点到角两边的距离相等).
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB .
∴AB=AC .
∴△ABC 是等腰三角形.
21解:(1)①③,①④,②③和②④;
(2)以①④为条件,理由:
∵OB=OC,
∴∠OBC=∠OCB .
又∵∠DBO=∠ECO,
∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,
∴AB=AC,
∴△ABC 是等腰三角形.
22解:△ABC 中
∵AB=AC,∠A=36°
∴∠B=∠ACB=21(180°﹣∠A )=72° ∵CD 平分∠ACB
∴∠DCB=2
1∠ACB=36° 在△DBC 中
∠BDC=180°﹣∠B ﹣∠DCB=72°=∠B
∴CD=CB
即△BCD 是等腰三角形.
23、解:(1)证明:∵AB ∥CD,AD ∥BC,
∴∠DAC=∠BCA,∠ACD=∠BAC,
在△ABC 和△CDA 中,
,
∴△ABC ≌△CDA (ASA );
(2)图中所有的等腰三角形有:△OAC,△ABB′,△CBB′;∵AD∥BC,
∴∠DAC=∠ACB,
又∵△AB′C和△ABC关于AC所在的直线对称,
∴△AB′C≌△ABC,
∴∠ACB=∠ACB′,AB=AB′,即△ABB′为等腰三角形,
∴∠DAC=∠ACB′,
∴OA=OC,即△OAC为等腰三角形,
∵CB=CB′,
∴△CBB′为等腰三角形;
(3)△AB′O≌△CDO,理由为:
证明:∵△AB′C≌△ABC,且△ABC≌△CDA,
∴△AB′C≌△CDA,
∴B′C=DA,AB′=CD,
又OA=OC,
∴DA﹣OA=B′C﹣OC,即OB′=OD,
在△AB′O和△CDO中,,
∴△AB′O≌△CDO.。