第四章 气液分离

合集下载

汽车空调液气分离器的工作原理

汽车空调液气分离器的工作原理

汽车空调液气分离器的工作原理
汽车空调系统中的液气分离器是一个重要的部件,它起着关键
的作用。

液气分离器的主要功能是将空调系统中的液态制冷剂和气
态制冷剂分离开来,确保系统能够正常运行并提供高效的制冷效果。

液气分离器的工作原理基于液态制冷剂和气态制冷剂在不同压
力下的特性。

当制冷剂进入液气分离器时,由于分离器内部的设计,气态制冷剂会被分离出来并被排出系统外,而液态制冷剂则会被保
留在分离器内部。

液气分离器通常包含一个内部过滤器和一个膨胀阀。

当制冷剂
进入分离器时,气态制冷剂会通过过滤器被过滤出来,而液态制冷
剂则会通过膨胀阀被释放出来。

这样,液态制冷剂就可以继续流向
空调系统中的蒸发器,从而实现制冷效果。

通过液气分离器的工作原理,空调系统可以保持稳定的运行状态,避免气态制冷剂进入蒸发器和压缩机,从而提高系统的效率和
性能。

此外,液气分离器还可以保护蒸发器和压缩机不受气态制冷
剂的影响,延长它们的使用寿命。

总的来说,汽车空调液气分离器的工作原理是通过分离液态制冷剂和气态制冷剂,确保系统正常运行并提供高效的制冷效果。

这一关键部件在汽车空调系统中扮演着重要的角色,确保了驾驶者和乘客在炎热的夏季能够享受到舒适的驾驶环境。

油气集输复习资料

油气集输复习资料

第二章、油气性质和理论基础工程标准状态:压力101325Pa,温度20℃,是我国天然气计量的法定状态;标准状态:压力101325Pa,温度0℃;英美法等西方国家,以1atm、60。

F(15℃)为标准状态;三种状态之间的转换关系:1m3(20℃)=0.932m3(0℃)=0.985m3(15℃)胶质是原油内含硫、氮、氧的多环芳香烃化合物,相对分子质量约为l000~2000,为红褐色至暗褐色的半固体状粘稠物质,能溶于正构烷烃(如正戊烷)内。

粒径小于10 nm。

沥青质为原油内大分子质量(2000~100000)的多环芳香烃化合物,不能溶于低分子烷烃(如正戊烷)但能溶于芳香烃(如苯)内。

沥青质的粒径为10~35 nm,含有氧、硫化合物,有机、无机及金属盐类,是无定形固体物质。

胶质和沥青质对油水乳状液的稳定、原油表面发泡等性质起重要作用。

收缩系数:单位体积油藏原油在地面脱气后的体积数。

化学分类法是以原油的化学组成为基础的分类方法,常用的有特性因数分类法和关键馏分分类法两种。

(我国原油分类)通常把常态下矿场油库储罐中的原油称为脱气原油,把把高于大气压、溶有天然气的原油称为溶气原油。

天然气在原油内的溶解度主要取决于压力、还有温度、油气组成等。

原油相对密度大于0.966时用Lasater相关式,否则用Standing相关式。

单位体积脱气原油溶入天然气后具有的体积数称原油体积系数。

只要有气体溶入原油,原油体积系数总是大于1的。

原油内溶入天然气后,密度称为视密度,或表观密度。

与脱气原油相比,溶气原油的视密度较小。

倾点:在规定试验仪器和试验条件下,试管内油品在5s内能流动的最低温度。

凝点:油品在倾斜45角试管内停留1min不流动的最高温度。

倾点和凝点是衡量油品流动性的条件性指标。

由于规定的试验条件和仪器不同,同一原油的倾点比凝点高约2.5~3℃。

干气:在气藏和地面压力温度条件不产生液烃;湿气:在气藏条件下没有液相,但在地面条件下气体内出现液烃;凝析气:随气藏开采压力下降,气藏内出现液态烃;伴生气:包括油藏的气顶气和溶解气。

第四章裂解气的净化与分离详解

第四章裂解气的净化与分离详解

表1-23是表示轻柴油裂解气组成。
轻柴油裂解气组成
成分 H2 CO CH4 C2H2 C2H4 C2H6 丙二烯+丙炔 C3H6 %,mol 13.1828 0.1751 21.2489 0.3688 29.0363 7.7953 0.5419 11.4757 成分 C3H8 1,3-丁二烯 异丁烯 正丁烯 C5 C6~C8非芳烃 苯 甲苯 %,mol 0.3558 2.4194 2.7085 0.0754 0.5147 0.6941 2.1398 0.9296 成分 二甲苯+乙苯 苯乙烯 C9~200℃馏分 CO2 硫化物 H2O %,mol 0.3578 0.2192 0.2397 0.0578 0.272 5.04
裂解气预处理
脱CO
脱酸性气体
净化过程
脱炔
脱水
一、 酸性气体的脱除
酸性气体 主要指CO2和H2S。此外,还含有少量 有机硫化物,如:COS(羰基硫)、 CS2、RSR(硫醚)、RSH(硫醇)、 C4H4S(噻吩)等。
酸性气体的来源 CO2,H2S和其他气态硫化物 (1)气体裂解原料带入的气体硫化物和CO2 (2)液体裂解原料中所含的硫化物高温氢解生 成
Na2CO3+H2O Na2S+2H2O
碱洗工艺流程说明
塔分三段: I段水洗塔为泡罩塔板 Ⅱ段和Ⅲ段为碱洗段填料层 碱液浓度由上而下降低: 新鲜碱液含量为18%~20%, Ⅱ段循环碱液NaOH含量约为5%~7% Ⅲ段循环碱液NaOH含量为2%~3%
碱洗工艺流程图
, 加 热 碱 器 液 ; 循 环 碱 泵 洗 ; 塔 ; 水 洗 循 环 泵 453 1两 段 碱 洗 工 艺 流 程 2-
二、裂解气分离方法和深冷法流程

气液分离初中化学教案

气液分离初中化学教案

气液分离初中化学教案教学目标:1. 让学生了解气液分离的概念和原理。

2. 让学生掌握气液分离的方法和操作技巧。

3. 培养学生的实验操作能力和观察能力。

教学重点:1. 气液分离的概念和原理。

2. 气液分离的方法和操作技巧。

教学难点:1. 气液分离的原理的理解。

2. 气液分离操作的技巧的掌握。

教学准备:1. 实验室用具:烧杯、漏斗、玻璃棒、铁架台、滤纸等。

2. 实验试剂:水、酒精、盐等。

教学过程:一、导入(5分钟)1. 教师通过提问方式引导学生回顾之前学过的液体和气体的知识。

2. 教师介绍气液分离的概念和重要性。

二、新课讲解(15分钟)1. 教师讲解气液分离的原理,引导学生理解气体和液体之间的相互作用。

2. 教师介绍气液分离的方法,如蒸馏、萃取、吸附等,并解释每种方法的适用范围和操作步骤。

3. 教师通过示例演示气液分离的操作技巧,如蒸馏时的温度控制、萃取时的溶剂选择等。

三、实验操作(15分钟)1. 教师指导学生进行气液分离的实验操作,如蒸馏实验。

2. 学生按照实验步骤进行操作,观察实验现象,并记录实验结果。

四、总结与拓展(10分钟)1. 教师引导学生总结气液分离的原理和方法,并回答学生的疑问。

2. 教师提出一些拓展问题,引导学生思考气液分离在实际应用中的意义,如能源开发、环境保护等。

五、作业布置(5分钟)1. 教师布置作业,要求学生复习气液分离的知识,并完成一些相关的练习题。

教学反思:通过本节课的教学,学生应该能够理解气液分离的概念和原理,掌握气液分离的方法和操作技巧。

在实验操作环节,学生能够亲自进行实验,培养实验操作能力和观察能力。

在总结与拓展环节,学生能够思考气液分离在实际应用中的意义,培养解决问题的能力。

教师应及时给予学生反馈和指导,帮助学生巩固知识,提高学生的学习兴趣和自信心。

燃料气气液分离

燃料气气液分离

燃料气气液分离在石油化工行业中,燃料气气液分离技术主要是通过蒸馏、分级、吸附、萃取和结晶等方法来实现的。

其中,蒸馏是最常用的一种方法,它通过加热原油,使得不同沸点的化学物质蒸发,然后再通过冷凝将其冷凝成液体。

分级则是利用不同化学物质的密度差异进行分离,吸附则是利用吸附剂吸附分离物质,萃取则是利用溶剂将不同化学物质分离出来,结晶则是将不同物质通过结晶的方式进行分离。

燃料气气液分离技术在实际生产中存在一些技术难题,主要包括能耗高、设备复杂、成本昂贵、对原油成分要求高等问题。

因此,如何提高分离效率、降低能耗和成本,是燃料气气液分离技术发展的重要方向。

在提高分离效率方面,可以通过改进分离设备和工艺条件来实现。

例如,选择合适的分离设备和优化工艺参数,可以提高分离效率。

此外,还可以采用新型的分离技术,如膜分离和超临界流体提取等,来实现高效分离。

这些方法不仅能够提高分离效率,还能够降低能耗和成本。

在降低能耗和成本方面,可以通过改进能源利用方式和降低设备的能耗来实现。

例如,采用节能型设备和改进工艺,可以降低能耗。

此外,还可以采用余热回收、废热利用和多能联供等方式,来提高能源利用效率,降低成本。

在提高环保性方面,可以通过改进分离工艺和设备,减少废水排放和排放物排放,来实现绿色生产。

例如,采用无排放或少排放的工艺和设备,可以减少污染物排放,保护环境。

在提高原油利用率方面,可以通过改进炼油技术和工艺,提高原油的加工转化率,减少原油的损耗和浪费。

例如,可优化炼油工艺,提高产品收率和降低原油损耗,从而提高原油利用率。

综合来看,燃料气气液分离技术在石油化工行业中具有重要的作用,但也存在一些技术难题。

未来,可以通过改进技术和工艺条件,降低能耗和成本,提高环保性和原油利用率等方面来进一步发展。

相信在不久的将来,燃料气气液分离技术将在石油化工行业中发挥越来越重要的作用。

气液分离初中化学教案

气液分离初中化学教案

气液分离初中化学教案教学内容:气液分离教学目标:1. 了解气液分离的原理和方法。

2. 掌握常见的气液分离装置。

3. 能够应用气液分离技术解决实际问题。

教学重点:1. 气液分离的原理和方法。

2. 常见的气液分离装置。

教学难点:1. 如何使用气液分离技术解决问题。

教学准备:1. 教学用具:幻灯片、实验器材等。

2. 教学内容:气液分离的相关知识。

教学过程:一、导入(5分钟)教师介绍气液分离的概念,并引导学生思考:在生活中我们经常会遇到哪些气液混合物?如何将气液分离?二、讲解气液分离的原理和方法(15分钟)1. 教师结合幻灯片介绍气液分离的原理和方法,重点讲解冷凝法、吸收法和过滤法等气液分离的方法。

2. 教师通过实例讲解气液分离技术在工业生产和生活中的应用。

三、讲解常见的气液分离装置(15分钟)1. 教师介绍常见的气液分离装置,如冷凝器、吸收塔和过滤器等,并分别说明其原理和应用。

2. 教师通过示意图和实例向学生展示这些气液分离装置的结构和工作原理。

四、实验演示(15分钟)教师通过实验演示气液分离的方法和过程,让学生亲自操作并观察气液分离的现象,加深他们对气液分离原理的理解。

五、讨论交流(10分钟)教师组织学生讨论气液分离技术在实际生活中的应用,并引导学生思考:气液分离技术对环境保护和资源利用有何重要作用?六、作业布置(5分钟)布置作业:请同学们写一份关于气液分离的实验报告,包括实验目的、过程、结果和总结。

教学反思:通过本次教学,学生应该对气液分离的原理和方法有了更深入的了解,能够应用气液分离技术解决实际问题。

在以后的教学中,可以通过更多的实验演示和案例分析,帮助学生进一步巩固和拓展所学知识。

气液分离

气液分离

第四章气液分离知识点概述:本章主要讲述油气分离方式和操作条件的选择、油气两相分离器、油气水三相分离器等方面的知识。

通过本章的学习,使学员能了解分离方式的选择对油田生产的影响,掌握分离器的结构、原理和设计方法,并且也应该对特殊场合应用的分离器有一个粗略的了解,了解其应用特点。

本章的重点为多级分离与一级分离的比较、两相分离器的工艺计算(包括油滴的沉降速度计算、气体的允许流速和液体停留时间确定等)以及油气水三相分离器中液相停留时间的确定和其界面控制方法等部分的知识。

知识点1:烟的粒径小于1μm,雾的粒径1~100μm,雨的粒径100~4 000μm。

不同粒径的油滴,应有不同的有效分离方法,重力沉降:分离50μm以上的油滴;离心分离:2~1000 μm;碰撞分离:5μm以上油滴;布织物:0.5~50μm;空气过滤器:2~50μm的尘埃。

知识2:综合型卧式三相分离器的结构下图为综合型卧式三相分离器。

下表是综合型卧式三相分离器主要内部构件及其作用特点。

综合型卧式三相分离器主要特点是增加内部构件并将其有效组合,提高分离器对油气水的综合处理能力。

1-入口;2-水平分流器;3-稳流装置;4-加热器;5-防涡罩;6-污水出口;7-平行捕雾板;8-安全阀接口;9-气液隔板;10-溢流板;11-天然气出口;12-出油阀;13-挡沫板知识3:几种高效三相分离器高效型三相分离器是将机械、热、电和化学等各种油气水分离工艺技术融合应用在一个容器,通过精选和合理布设分离器内部分离元件,达到油气水高效分离的目的。

其优点是成撬组装,极大地减少现场安装的工作量和所需的安装空间,具有较大的机动性以适应油田生产情况变化的需要,使流程简化,方便操作管理,这些对海上油田显得尤为重要。

1、HNS三相分离器图2-2-12为HNS型高效三相分离器简图。

其内部结构进行了优化设计,有优良的分离元件,为油气水分离提供良好的内部环境,避免存在明显的短路流和返混现象,保证介质流动特性接近塞状流。

气液分离器原理及结构

气液分离器原理及结构

气液分离器原理及结构
气液分离器是一种常用于气体和液体分离的设备。

其原理是利用气体和液体的不同密度和惯性,通过引导和设计的流动路径,使气体和液体分离并分别排出。

气液分离器一般由进气口、分离室和出口组成。

进气口通常位于设备的上部,使气体和液体混合物进入分离室。

分离室内通常设置了导流板或纤维等装置,以增加气液分离的效果,并防止液体回流到出口。

在分离室内,由于液体重力作用下的惯性力,液滴会向下沉积,而气体则继续向上流动。

分离室的底部通常设有排液口,用于排出沉积的液体。

为了提高气液分离的效果,分离室内还可能设置了气液分离元件,如细孔板、旋流器等。

细孔板通常由多个小孔组成,通过孔径和孔距的设计,使气体能通过而液体不能通过,从而实现气液分离。

旋流器则通过旋转流体产生离心力,使气体和液体分离。

在气液分离器的设计中,还应该考虑气液混合物的流速、压力、温度等因素。

流速过大可能导致未完全分离,而流速过小则可能导致堵塞。

压力的设计则应保证在分离室内压力的变化不过大,以避免气体和液体再次混合。

同时,设备的材料选择也很重要,要能耐受液体的腐蚀和气体的高温。

总之,气液分离器通过利用气体和液体的密度和惯性差异,通过设计好的流动路径,使气体和液体分离并分别排出。

该设备的结构包括进气口、分离室和出口,通常还会增加气液分离元
件来提高分离效果。

在设计和选择方面,需要考虑流速、压力、温度等因素,并选择适合的材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•已知重力沉降区气体允许流速Vg和分离条件下的气体处 理量Qg 2 对于立式分离器: Qg D vgv , D 4Qg
4
vgv
对于卧式分离器:液面控制在0.5D处
Qg
D2
8
vgh , D
8Qg
vgh
•考虑进入分离器的油气两相比例随时间的变化以及混合 物流量的波动,引入载荷波动系数β (1.2~1.5)。 •采用标准状态下的气体处理量Qgs以及工程单位(m3/d)
v d d2 g o g 18 g
0.153g 0.714 d 1.143 o g d
0.428 0.286 g g 0.714
v
gdd o g v 1.74 g
0.5
可见,油滴的匀速沉降速度与油滴直径、分离压力和温度有关。
第一节 油气两相分离器
在油气集输的过程中,油气混合物的分离总是
在一定的设备中进行的。这种根据相平衡原理,利
用油气分离机理,借助机械方法,把油井混合物分 离为气相和液相的设备称为气液分离器,或称油气 分离器。
(一)分离器的类型
按外型分:立式,卧式 按功能分:油气两相分离器、油气水三相分离器、计 量分离器、生产分离器。 按工作压力分:真空(<0.1MPa)、低压(<1.5MPa) 、中压(1.5~6MPa)、高压(>6MPa)分离器 按工作温度分:常温、低温分离器 按实现分离主要利用的能量分:重力式、离心式和混 合式
分离器质量检验指标
平衡分离效果
o
Go1 Go 2 100% Gl1 G g 2 Gg 1 Gg 2

原油的脱气程度 g
100% ↑
天然气通过分离器后的质量增加率
机械分离效果
气体带液率 ko ↓ 液体带气率 k g ↓ 分离器外形尺寸 处理能力的大小
停留时间
分离器的工艺计算
油滴流态的判断
层流变为过渡流时
v1d1 g 2
v1 2 g d1 g
1 3
g

d12 g o g 18 g
d1 3.3 g g o g
2 g
过渡流变为湍流时
v2 d2 g
g
500
v2
500 g d2 g
6.其他形式的分离器
离心式分离器
•优点:占空间小,效率高。 •缺点:分离效果受油气混 合物流速的影响敏感,有较 大的压力降。 •常用于天然气甘醇脱水塔 气体出口下游,回收甘醇溶 液。也常应用其原理作重力 式分离器的入口分流器。
油气
离心式分离器
(二)对分离器的要求
•要求:分离器应创造良好条件,使溶解于原油中的气体 及气体中的重组分在分离压力和温度下尽量析出和凝析, 使油气两相接近平衡状态。这就要求在分离器内的气液接 触面积大,气液在分离器内有必要的停留时间。 •分离器内油气接近平衡状态的程度可用原油脱气程度和 天然气通过分离气后的质量增加百分数表示。
上式中,油滴沉降阻力系数CD与油滴形状、周围气体流动状 态有关。 • 流态用雷诺数判断,雷诺数的表达式为:
d d d g Re g
CD
• 阻力系数与雷诺数的关系
1.按相关式计算油滴匀速沉降速度(阻力系数法)
CD 24 3 0.5 0.34 Re Re
计算粒径为dd的阻力系数CD时,需用迭代法。步骤为: ①设CD=0.34,由式(4-4)计算该油滴的沉降速度vd; ②由求得的vd按式(4-5)求Re; ③由Re按式(4-6)求CD; ④由CD按式(4-4)求vd,与上一个vd进行比较,若在控制误 差范围内,计算所得的即为欲求的沉降速度; ⑤否则,返回步骤②直至前后两次求得的vd在控制误差范 围内。
vgv 0.7 ~ 0.8 v
d
卧式
Levgv Lev d vgh 0.7 ~ 0.8 1 hD D 1 hD D
液位在一半直径处,即hD=0.5 俄罗斯 立式
vgh
d
2 Le vgv D
vgv 0.75 ~ 0.8 v
按气体处理量确定分离器尺寸
o g
Go1 Go 2 Go1 Gg1 Gg 2 Gg1
式中
Go1 , Go 2
Gg1 , Gg 2
——分离前、后原油的质量流量; ——分离前、后天然气的质量流量;
•油气混合物组成、分离压力、温度相同条件下,ηo 和ηg 越大,表示分离器内气液两相越接近平衡状态,分离器的 平衡分离作用越完善。 •影响分离性能的因素: –油气最大流量、最小流量和平均流量; –分离压力和温度; –油气混合物进入分离器时形成段塞流的倾向; –油气物性; –原油发泡倾向; –砂、铁锈等固体杂质含量; –油气混合物的腐蚀性等。
1.74[
gd 2 o g
g
]0.5
d 2 43.5 g g o g
2 g
1 3
当d≤d1时为层流,d1<d≤d2为过渡流,d>d2时为湍流。
3.图解法求油滴匀速沉降速度
联立式(4-4)和式(4-5):
C D (Re)2
★公式推导
Qg
D 2
4
gv

D 2
1 gv 1 4 24 60 60 D 2 gv
(1)
考虑载荷波动系数 :
Qgvs PQg Z s Ts PTs Qg (4) ZT Ps PsTZ
24 60 60 67858 2 gv D

4
Ps Q gvs Z s Ts
油滴匀速沉降速度
重力 浮力 阻力
3 d d
6
3 d d
o g
g g
2 d d2 vd
6
R CD
4
2
g
油滴匀速沉降时,合力为零:
3 d d
6
( o g ) g CD
2 d d2 vd
4 2
g
vd [
4 gdd ( o g ) 3C D g
]0.5
•立式分离器:
pTS 1 QgVs psTZ 0.5 QgvS 67858 D 2 v gv D [ ] 或 pSTZ vgV pTs 260
•液位0.5D处卧式分离器:
QgHS 67858 DL e v gv pTS pSTZ
卧式分离器的气体处理能力为同直径立式分离器的Le/D倍。
3 4 gdd g ( o g ) 2 3 g
由上式求得CDRe2后,由上图查得CD,代入式(4-4)可 求得油滴的匀速沉降速度Vd。
4.阿基米德准数法求油滴匀速沉降速度
A 令:r d d ( o g ) g g
3
2g
,Ar 为无因次数,称为阿基米德准数,
与雷诺数有关,其值见表4-2。 表4-2 Re与Ar数的关系
•用阿基米德准数求油滴沉降速度时,先根据欲求沉降 速度的油滴直径dd 和分离条件下的油气物性参数,求 出 Ar 后,在表4-2选择相应的公式算出Re,再按Re定 义式(4-5)计算出油滴沉降速度Vd,这样避免了繁琐 的迭代。
Re
vd d d g
g
(二)气体允许流速和处理量
•立式分离器中气流方向与油滴沉降方向相反。立式分离 器油滴沉降的必要条件:油滴匀速沉降速度大于或等于气 体在流通截面上的平均流速,即
涤气器使用的场合:
在生产分离器气体出口管线下游,回收气流中因温 度、压力变化而产生的凝液; 在压缩机上游捕集气流内液滴,提高压缩机效率和 寿命; 气体冷却器下游从气流中分离产生的凝液; 天然气脱水、脱酸气的设备上游,分离气流中的游 离液体和固体杂质,以免影响脱水、脱酸气的效率并 损坏设备; 废气排放管或火炬上游应安装涤气器(也称分液罐 ),否则可能产生火雨。
第四章 气液分离
第一节 第二节 第三节 第四节 油气两相分离器 油气水三相分离器 分离器结构、控制和安全 多级分离
两个重要概念
★平衡分离:根据相平衡原理,组成一定的石油在某一压 力和温度下,就有确定的气液相组成和数量,压力温度改 变时,气液相组成和数量也随之而变,这就称为~,为自 发过程。 ★机械分离:为满足油气井产品计量、矿场加工、储存和 管道输送的需要,将已形成的气液两相分开,用不同的管 线输送,称之为~。
•集液区:为液体提供必要的停留时间使液体进一步脱气 ,收集从重力沉降区和捕集器分出的液体,平衡进液量 和排液量的不均衡,有一定的缓冲作用。 •捕雾器:利用折板、丝网垫或能产生离心力的部件,除 去气体中仍然携带的直径在10~100 μm之间的液滴。分 离器中常用的捕雾器有折板式和丝网式等。 •压力、液位控制: •安全防护部件:分离器是压力容器,按规定应在容器上 安装防止超压的安全阀,有时还装有易爆片与安全阀一 起保护分离器的安全运行。
4.卧式与立式分离器的比较: ①在立式分离器重力沉降和集液区内,分散相运动的方 向与连续相运动的方向相反,而在卧式分离器中两者是 垂直的。显然,卧式分离器的气液机械分离性能优于立 式。 ②在卧式分离器中,气液界面面积较大,有利于分离器 内气体达到相平衡。 ③无论是平衡分离还是机械分离,卧式分离器均优于立 式,即:在相同气液处理量下,卧式分离器尺寸较小、 制造成本较低。同时,卧式分离器有较大的集液区体积 ,适合处理发泡原油和伴生气的分离以及油气水三相分 离。 ④卧式分离器还有易于安装、检查、保养,易于制成撬 装装置等优点。
vd vg
•卧式分离器中气体流向和油滴沉降方向垂直。卧式分离 器油滴沉降的必要条件:油滴沉降至集液区所需的时间应 小于或等于油滴随气体流过重力沉降区所需的时间,即
Le (1 hD ) D Le vd 或v g vg vd (1 hD ) D
相关文档
最新文档