高光谱遥感

合集下载

高光谱遥感分解课件

高光谱遥感分解课件

端元提取的效果直接影响到后续的混合 像元分解和谱间关系分析的精度和可靠 性,因此是高光谱遥感分解中的关键步
骤。
混合像元分解方法
混合像元分解的方法包括基于物理模型的方法和基于 统计模型的方法等。这些方法通过建立地物光谱与像 元光谱之间的数学模型,利用优化算法对模型参数进 行求解,从而得到每个像元的纯组分和丰度信息。
高光谱遥感分解方法
端元提取方法
端元提取是高光谱遥感分解的基础,目 的是从高光谱数据中提取出纯净的地物 光谱,为后续的混合像元分解和谱间关
系分析提供基础。
端元提取的方法包括基于统计的方法、 基于空间的方法和基于变换的方法等。 这些方法通过不同的原理和算法,从高 光谱数据中提取出尽可能纯净的地物光
谱。
矿物与地质应用
总结词
高光谱遥感在矿物与地质应用中具有重要作用,可以用于矿产资源调查、地质构造分析 等。
详细描述
高光谱遥感能够通过分析地物的光谱特征差异,识别不同类型的矿物和地质构造。在矿 产资源调查中,高光谱遥感可以用于发现潜在的矿床和评估矿产资源的分布情况。同时 ,在地质构造分析中,高光谱遥感可以通过分析地物的光谱特征差异,揭示地质构造的
高光谱遥感分解课件
ቤተ መጻሕፍቲ ባይዱ
目录
CONTENTS
• 高光谱遥感概述 • 高光谱遥感技术原理 • 高光谱遥感分解方法 • 高光谱遥感应用实例 • 高光谱遥感技术展望
01
CHAPTER
高光谱遥感概述
高光谱遥感的定义
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测 的技术。它通过卫星或飞机搭载的高光谱成像仪获取地物辐 射的连续光谱信息,进而分析地物的成分、结构和动态变化 。
高光谱遥感技术的挑战与问题

高光谱遥感名词解释

高光谱遥感名词解释

高光谱遥感名词解释
1.高光谱遥感(Hyperspectral Remote Sensing):是遥感技术的一种,利用高光谱数据进行地物信息的提取。

高光谱遥感能够提供每个像元的数十至数百个波段的光谱数据,这些数据可以用来识别不同类型的地物,对地表的物理、化学和生物属性进行精确的定量分析。

2.光谱(Spectrum):是由不同波长的光组成的光线。

在高光谱遥感中,探测器可以测量出每个像元的光谱,也就是不同波长的光在该像元的反射率或辐射率的值。

3.反射率(Reflectance):是地物表面反射入射光的比率,是高光谱遥感中的一个重要参数。

不同地物的反射率在不同波段上表现出不同的特征,可以用来识别地物类型。

4.特征提取(Feature extraction):是高光谱遥感中的重要分析方法,通过数学和统计学方法对光谱数据进行处理,提取出地物的光谱特征,如反射率峰值、谷值和斜率等,用来识别地物类型和进行精确分类。

5.分类(Classification):是将地物根据其光谱特征划分为不同的类别的过程。

高光谱遥感中常用的分类方法包括基于像素的分类、基于物体的分类和基于混合像元的分类等。

6.多光谱遥感(Multispectral Remote Sensing):和高光谱遥感相似,但是只能提供少数几个波段的光谱信息。

多光谱遥感常用于地物类型的粗略分类,而高光谱遥感更加适用于地物的精细分类和属性分析。

高光谱遥感

高光谱遥感
遥感分类
多光谱遥感:国际遥感界的共识是光谱分辨率在λ /10数量级范围 的称为多光谱(Multispectral),这样的遥感器在可见光和近红外 光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等。 高光谱遥感:光谱分辨率在λ /100的遥感信息称之为高光谱遥感 (HyPerspectral)。它是在电磁波谱的可见光,近红外,中红外和 热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。 其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥 感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感 兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重 信息。高光谱遥感使本来在宽波段遥感中不可探测的物质,在高光 谱遥感中能被探测。 超高光谱遥感:而随着遥感光谱分辨率的进一步提高,在达到 λ /1000时,遥感即进入超高光谱(ultraspeetral)阶段。
土壤属性高光谱反演
土壤盐分
在土壤反射光谱中的特征光谱,从而对土壤营养状况和
土壤侵蚀状况做进一步检测与评价。有图可知,总氮在 0.55-0.60μm之间和0.80-0.85μm之间有较明显的反射峰 ,在1.4μm周围有较显著的吸收谷。
土壤水分
当土壤的含水率增加时,土壤的反射率下降,在水的吸
Hyperion/EO-1
Hyperion 传感器搭载于 EO-1 卫星平台,EO-1(Earth
Observing-1)是美国NASA 面向 21 世纪为接替 LandSat-7 而 研制的新型地球观测卫星,于 2000 年 11月发射升空,其卫 星轨道参数与 LandSat-7 卫星的轨道参数接近,之所以设计 相同轨道,目的是为了使 EO-1 和 LandSat-7 两颗星的图像 每天至少有 1~4 景重叠,以便进行比对。 传统的陆地资源卫星只提供为数不多的七个多光谱波段,远 远不能满足各种实际应用的需要,因此美国地质调查局 (USGS)与美国宇航局(NASA)合作发射了 EO-1 卫星, 并在该卫星上搭载了三种传感器分别是 ALI (the Advanced Land Imager), Hyperion, LEISA (the Linear Etalon Imaging Spectrometer Array)Atmospheric Corrector

高光谱遥感

高光谱遥感

高光谱遥感的基本概念
高光谱遥感的基础是波谱学,早在20世纪初波 谱学就被用于识别分子和原子的结构。由于物 质是由分子、原子构成的,组成物质的分子、 原子的种类及其排列方式决定了该物质区别于 其它物质的本质特征。当电磁波入射到物质表 面时,物质内部的电子跃迁,原子、分子的振 动、转动等作用使物质在特定的波长形成特有 的吸收和反射特征,能够通过物质的反射(或 吸收)光谱上反映出物质的组成成分与结构的 差异,然而这些吸收和反射特征在传统的多光 谱遥感数据上很难清楚地体现(童庆禧, 1990)。
10-1λ
>10-2λ
高光谱遥感的基本概念 2 Radiant
2 Spatial (2D)
高光谱图像立方体
2 Spectral
高光谱遥感的基本概念
z光谱分辨率高(λ×10-2)
特 点
z波段多⎯数十到数百 z谱⎯像合一的特点 z信息量大,一次数据获取达千兆(GB)级
z数据速率高,数十⎯数百兆比特/秒
10
ΕΟ−1/ΗΨ
220
ΠΕΡΙ ON
EO-1/ LAC
256
Landsat7
7/W TM+
Obv iew-4
MO DIS
MERIS
AR IES
400-2 500
2 5.4 12 0.0 1 6.5 <5.0 12.5 2 5.0 2 0.0-71.0 6 0.0 57 0.0 1 6.0 10 0.0 1 5.0 200 0.0 60 0.0 2 0.0 5 0.0 8.0 400/ 500
航天高光谱仪 Hyperion
遥感器 PLI-PMI C ASI S FSI AIS-1
AIS-2 AVI RIS (20 km) A SAS 改进 ASAS

高光谱遥感的概念

高光谱遥感的概念

遥感的发展趋势 (1)随着热红外成像、机载多极化合成孔径雷达、高分辨力表层穿透雷达和星载合成孔径 雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波红外、热红外、微波方向发 展,波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。
(波段范围扩展从可见光、近红外、发展到中 远红外、微波)
(6)建立适用于遥感图像自动解译的专家系统,逐步实现遥感图像专题信息提取自动化。 (遥感图像自动解译的专家系统)
(7)3S一体化
(8)随着高空间分辨力新型传感器的应用,遥感图像空间分辨率从1KM、500m、250m、 80m、30m、20m、10m、5m发展到1m,军事侦察卫星传感器可达到15cm或者更高的分辨 率。空间分辨率的提高,有利于分类精度的提高,定位和目标识别,但也增加了计算机分类 的难度。
总结起来,高光谱分辨率遥感信息的分析与处理,侧重于从光 谱维角度对遥感图像信息进行展开和定量分析,其图像处理模式的 关键技术,例如:
(1) 光谱重建,即:成像光谱数据的定标、定量化和大气纠正模 型与算法,恢复地物光谱的真实面目;
一些针对传统遥感数据的图像处理算法和技术,如:特征选择与提取、图像分类等技术 面临挑战。如:用于特征提取的主分量分析方法,用于分类的最大似然法、用于求植被 指数的NDVI算法等等,不能简单地直接应用于高光谱数据。
3、如何处理高光谱遥感数据?
高光谱遥感技术的发展来自于成像技术的不断完善,成像光谱仪有其独特的优越性,但同时 海量数据也给应用和分析带来了不便。
➢ 常规遥感的局限:波段太少;光谱分辨率太低;波段宽一般>100nm;波段在光谱上不连续, 不能覆盖整个可见光至红外光(0.4~2.4nm)光谱范围。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光成像光谱仪(AVIRIS)记录这一波 段范围内的光谱信息用10个以上数据点。

高光谱遥感的原理与应用

高光谱遥感的原理与应用

高光谱遥感的原理与应用1. 高光谱遥感技术简介•高光谱遥感是一种用于获取地面物体光谱信息的遥感技术。

•与传统遥感技术相比,高光谱遥感具有更高的波段分辨率和更丰富的光谱信息。

•高光谱遥感技术的原理是通过采集地面物体在可见光和近红外波段的光谱反射信息,来获取物体的光谱特征。

2. 高光谱遥感的原理•高光谱遥感利用高光谱仪器来收集地面物体在一系列窄波段上的光谱反射数据。

•高光谱仪器通常由特定波段的传感器阵列组成,每个传感器负责收集一个波段的光谱数据。

•地面物体的光谱特征可以通过分析被收集到的光谱数据来确定。

3. 高光谱遥感的应用领域•农业:利用高光谱遥感技术可以监测作物的生长状态、优化农田管理以及检测病虫害等问题。

•矿产资源勘探:高光谱遥感可以检测矿产资源的类型和分布,有助于矿产资源勘探和开发。

•环境监测:高光谱遥感可以监测水体质量、土壤污染程度等环境参数,有助于环境保护和资源管理。

•森林火灾监测:通过高光谱遥感技术可以实时监测森林火灾的扩散情况,有助于及时采取灭火措施。

•城市规划:高光谱遥感可以提供城市土地利用信息,有助于城市规划和土地管理。

4. 高光谱遥感技术的优势•高光谱遥感技术具有较高的波段分辨率,可以获取更详细的光谱信息。

•高光谱遥感技术可以提供更准确的地物分类和识别能力。

•高光谱遥感技术可以探测隐蔽的物体特征,对物体的构成和结构提供更深入的了解。

•高光谱遥感技术具有较高的空间分辨率,可以提供更精细的地物信息。

5. 高光谱遥感技术的挑战和发展方向•数据处理:高光谱遥感技术生成的数据量巨大,对数据处理的算法和技术提出了新的挑战。

•传感器技术:高光谱遥感仪器的性能和稳定性需要不断提升,以满足复杂环境下的需求。

•数据标定和校正:高光谱遥感数据需要进行标定和校正,来消除传感器和大气等因素对数据的影响。

•数据分析和解释:高光谱遥感技术生成的数据需要进行分析和解释,以提取有用的地物信息。

6. 结论高光谱遥感技术是一种重要的遥感技术,具有广泛的应用前景。

高光谱遥感第二章ppt课件

高光谱遥感第二章ppt课件

第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
我校现有设备 Headwall
- 成像光谱仪的光谱与辐射定标技术
第二章 高光谱遥感成像机理与 成像光谱仪
- 成像光谱信息处理技术
海量数据非失真压缩技术 高速化处理技术 辐射量的定量化和归一性 图像特征提取及三维谱像数据的可视化
第二章 高光谱遥感成像机理与 成像光谱仪
5 成像光谱仪的空间成像方式 高光谱遥感成像包括空间维成像和光谱维成
第二章 高光谱遥感成像机理与 成像光谱仪
1 基本概念
光谱学 成像技术
成像 光谱学
第二章 高光谱遥感成像机理与 成像光谱仪
(1) 光谱分辨率 —指探测器在波长方向上的记录宽度,又称为
波段宽度。
第二章 高光谱遥感成像机理与 成像光谱仪
(2) 空间分辨率—对于成像光谱仪,其空间分辨率 是由仪器的角分辨力,即仪器的瞬时视场角 (IFOV)决定的。
第二章 高光谱遥感成像机理与 成像光谱仪
- 二元光学元件成像光谱技术
二元光学元件沿轴向色散,利用面阵CCD 探测器沿光轴方向对所需波段的成像范围进行 扫描,每一位置对应相应波长的成像区。
- 三维成像光谱技术
三维成像光谱仪是在光栅色散型成像光谱 仪的基础上改进而来的,其核心是一个像分割 器,将二维图像分割转换为长带状图像。
(3)仪器的视场角(FOV)—指仪器的扫描镜在空中 扫过的角度。
第二章 高光谱遥感成像机理与 成像光谱仪

高光谱遥感技术综述

高光谱遥感技术综述

四、高光谱遥感成像技术的发展趋势
伴随着成像光谱技术的逐渐成熟,高光谱影像分析研究的 不断深入,应用领域日益广泛,高光谱遥感技术发展呈现以下 趋势: 1、成像光谱仪的光谱探测能力将继续提高 2、成像光谱仪获取影像的空间分辨率逐步提高 3、正在由航空遥感为主转为航空和航天遥感相结合阶段,逐 步从遥感定性分析阶段发展到定量分析阶段
谢谢!
三、高光谱遥感成像技术发展现状
高光号 检测、计算机技术、信息处理技术于一体的综合性技术。技术成 果主要表现在成像光谱仪研制、高光谱影像分析两方面。 1、国外发展现状 国外的发展大致可以分为机载成像光谱仪和星载成像光谱仪。 随着美国的三代机载成像光谱仪的问世,现在更多的倾向于在航 空领域的发展。美国的JPL研制的中分辨率成像光谱仪搭载TERRA卫星的发射,成为第一颗在轨运行的星载成像光谱仪。2000 年发射的高光谱成像仪地面分辨率为30m,2002年美国海军测绘 观测卫星携带的成像光谱仪具有自适应性信号识别能力,能够满 足军民两用,2007年美国又向空军交付的基地的高光谱成像传感 器通过TacSat-3卫星送入太空。
2、国内发展现状 20世纪80年代,我国开始着手研制自己的高光谱成像系统。 相继成功研制出推扫式成像光谱仪(PHI)系列,实用型模块 化成像光谱仪(OMIS)系列等。中科院上海技术物理研究所研 制的中分辨率成像光谱仪于2002年搭载神舟三号发射升空,成 功获取航天高光谱影像,从可见光到近红外30个波段,空间分 辨率在500m。2007年10月发射的嫦娥一号携带干涉成像光谱仪 升空,用于月球的探测。2007-2010年,我国组建了环境和灾 害监测预报小卫星星座,携带超光谱成像仪,采用0.450.95um波段,平均光谱分辨率在5nm,地面分辨率在100m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光谱范围 400~850nm 采样间隔 1.8nm 光谱分辨率 <5nm 瞬时视场角 1.5mrad 行象元数 376 信噪比 ~200
• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。
植被/ 植被/土壤原始光谱曲线
植被/ 植被/土壤一阶微分光谱曲线
(5)混合光谱分解技术 )
A 凸面几何光谱分解模型
• N个光谱通道表示 维光谱矢量空间; 个光谱通道表示N维光谱矢量空间 个光谱通道表示 维光谱矢量空间; • 任一最终象元(Endmember)的光谱 任一最终象元( ) 值可在N维光谱空间上用一个点表示 值可在 维光谱空间上用一个点表示 • 例如 : A、B、C三目标的最终象元光 例如: 、 、 三目标的最终象元光 谱可在二维空间上表示,并可建立一 谱可在二维空间上表示, 个三角形
(1)定量反演技术 )
遥感信息定量化: 是指从不同波段内的遥感信息中给出地表物质 遥感信息定量化: 或大气)定量的物理量, (或大气)定量的物理量,再通过实验的或物理的模型将其信息与地 或大气)参数联系起来, 学(或大气)参数联系起来,定量地反演或推算研究目标的某些特征 参量。定标、大气订正、反演是定量化研究的三个主要方面。 参量。定标、大气订正、反演是定量化研究的三个主要方面。 定标 前提) 大气订正( 必要条件) 反演(目的) ( 前提); 大气订正( 必要条件); 反演(目的) 对高光谱遥感而言:一般是将高光谱辐射亮度图像转换为反( 对高光谱遥感而言:一般是将高光谱辐射亮度图像转换为反(发)射 率图像,以此为基础进行地物的识别和定量化分析研究。 率图像,以此为基础进行地物的识别和定量化分析研究。即通过光谱 重建、 谱合一技术特点 谱合一技术特点, 重建、图-谱合一技术特点,可将重建地物光谱与标准波谱数据库波 谱数据进行计算机自动匹配和识别,实现自动解译的目的, 谱数据进行计算机自动匹配和识别,实现自动解译的目的,提高解译 精度。 精度。
原理:对每个象元,寻找与它夹角最小的终端单元。这一算法是通过计算波谱间 的角度(将它们处理为具有维数等于波段数的空间矢量),判定两个波谱间的类似 度。 将终端单元波谱矢量和每一个像元矢量放在n维空间比较角度,较小的角度代 表与参照波谱匹配紧密。远离指定的弧度阈值最大角度的像元被认为无法分类 。
(4)光谱微分(导数)技术 )光谱微分(导数)
光谱微分技术就是通过对反射光谱进行数学模拟, 光谱微分技术就是通过对反射光谱进行数学模拟,计算不同阶数的微分值 以提取不同的光谱参数。应用光谱微分技术能够部分消除大气效应、 ,以提取不同的光谱参数。应用光谱微分技术能够部分消除大气效应、植被 环境背景(阴影、土壤等)的影响,以反映植物的本质特征。所得的数据, 环境背景(阴影、土壤等)的影响,以反映植物的本质特征。所得的数据, 可以用于植被生物化学信息的提取。 可以用于植被生物化学信息的提取。
• 加拿大: CASI 加拿大:
• 德国:ROSIS 德国: • 法国:IMS 法国: • 芬兰:AISA 芬兰: • 日本:GLI 日本:
波段数 244
波段数 128
HYMAP主要性能指标 主要性能指标
光谱范围(um)
0.45 ~0.89 0.89 ~1.35 1.40 ~1.80 1.95 ~2.48
局限2: 局限 :易受大气的影响
局限3: 局限 :波段间相关性强
• 典型的高光谱遥感器
• 美国:AIS,AVIRIS、 WIS(812波段)、 美国: 波段)、 , 、 ( 波段)、PROBE、TEEMS、 、 、 MODIS 、 Hyperion、 FTHSI 、 AHI(256个热波段)、 ( 个热波段)、 个热波段) 个热波段)、SEBASS( 242个热波段) ( 个热波段 • 澳大利亚:Hymap、ARIES、TIPS(100个热波段) 澳大利亚: 个热波段) 、 、 ( 个热波段
高 光 谱 分 辨 率 成 像 光 谱 遥 感 ( Hyperspectral Remote Sensing): 将成像光谱技术应用于遥感 , 对于一个给定的 ) 将成像光谱技术应用于遥感, 观察区域中的像素, 观察区域中的像素,足以从这些探测的数据中获取所对应地 物的精细光谱特性,通过分析处理, 物的精细光谱特性,通过分析处理,实现对地物的鉴别及其 环境的分析。围绕成像光谱仪所获取数据及其分析处理方法 环境的分析。 和应用的研究,已形成为遥感中的一个独特领域。 和应用的研究,已形成为遥感中的一个独特领域。 由于与常规的多光谱遥感( 由于与常规的多光谱遥感(multispectral remote sensing) ) 相比,成像光谱数据具有通道数量多、 相比,成像光谱数据具有通道数量多、光谱分辨率高的显著 特点,所以, 特点,所以,人们把由此产生的遥感领域称作为高光谱遥感 (hyperspectral remote sensing)。 。
方解石 白云石 菱铁矿
2.19-2.24微米 Al-OH 对称性>1 对称性<1
蒙 脱 石 2.34-2.36 白 云 母 2.31-2.33 蛇 纹 石
对称性<1 2,31-2.34微米
有:绿高岭石 无:绿泥石
2,38-2,40 (无) 黑 云 母 伊 利 石 2,15-2,19 2,31-2.34 高 岭 石 绢 云 母
TM通道参数
中心波长(μm) 半响应高度光谱范 围
0.8 0.6 0.4 0.2 0 0.4 0.9 1.4 wavelength(um) 1.9 2.4
• 矿物的精细光谱特征
2160-2220 nm
• 高光谱遥感信息特征
高光谱遥感影像包含了丰富的空间、辐射和光谱三重信息,即能 高光谱遥感影像包含了丰富的空间、辐射和光谱三重信息, 表现地物空间展布的几何影像特征, 表现地物空间展布的几何影像特征,又可以表现像元尺寸地物目标的 谱合一是高光谱遥感 辐射亮度和光谱信息。波段多; 数据量大; 谱合一 辐射亮度和光谱信息。波段多; 数据量大; 图-谱合一是高光谱遥感 信息的最主要特点。 信息的最主要特点。 通过遥感信息反演技术可从连续光谱段高光谱遥感影像中任一像元 或相临像元组合获得类似实验室测量的相应地物光谱曲线, 或相临像元组合获得类似实验室测量的相应地物光谱曲线,通过与实 验室光谱匹配技术实现地物的计算机自动识别, 验室光谱匹配技术实现地物的计算机自动识别,这是多光谱遥感信息 所不能具备的特有能力。 所不能具备的特有能力。 巨大的数据量和信息量是高光谱遥感信息的一主要特点。 巨大的数据量和信息量是高光谱遥感信息的一主要特点。假如一个 100个通道 地面分辨率为25 个通道、 25米 图像幅宽100 100公里的高光谱遥感器 有100个通道、地面分辨率为25米、图像幅宽100公里的高光谱遥感器 作业,当卫星在地球轨道上以7.5公里/秒的速度运动时, 7.5公里 作业,当卫星在地球轨道上以7.5公里/秒的速度运动时,每秒中采集 的总像元数目为1.2 1.2× 如果每一像元的辐射量化为8 bit, 的总像元数目为1.2×108个。如果每一像元的辐射量化为8 bit,则一 景影像信息为每秒约1 bit。 景影像信息为每秒约1G bit。
FA=100%
CH1 B CH2
FA=75% FA=50% FA=25%
C
FA= 0%
p = k
1
* a + k
2
* b + k
3
* c + k
4
* d
k 1, k 2 , k 3 , k 4 > 0 k1 + k 2 + k 3 + k 4 = 1
p p 1p 2
p 4
二维平面矢量三角型
p 3
(6)光谱角度制图技术 )
采样间隔 (nm)
15~16 15 ~16 15 ~16 18 ~20
光谱分辨率 (nm)
15 15 13 17
瞬时视场角 (mrad) 航向 2.5 旁向 2.0
相关文档
最新文档