《四次数学危机与世界十大经典数学悖论》
数学中的十大悖论

2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺 用他的无穷、连续以及部分和的知识,引发出以下著名的 悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让 乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得 比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时, 乌龟仍前于他100米;当阿基里斯跑了下一个100米时, 乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
预料不到的考试的悖论:一位老师宣布说,在下一星期 的五天内(星期一到星期五)的某一天将进行一场考试, 但他又告诉班上的同学:‚你们无法知道是哪一天,只有 到了考试那天的早上八点钟才通知你们下午一点钟考。‛ 你能说出为什么这场考试无法进行吗?
电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控 制运行的,它每层楼都停,且停留的时间都相同。然而, 办公室靠近顶层的王先生说:‚每当我要下楼的时候,都 要等很久。停下的电梯总是要上楼,很少有下楼的。真奇 怪!‛李小姐对电梯也很不满意,她在接近底层的办公室 上班,每天中午都要到顶楼的餐厅吃饭。她说:‚不论我 什么时候要上楼,停下来的电梯总是要下楼,很少有上楼 的。真让人烦死了!‛ 这究竟是怎么回事?电梯明明在每层停留的时间都相同, 可为什么会让接近顶楼和底层的人等得不耐烦?
数学中的十大悖论
--人文1102班
张燕燕
学号:3110102114
N· 布尔巴基说过:
‚……古往今来,为数众多的 悖论为逻辑思想的发展提供了 食粮。‛
什么是悖论?笼统地说,是指这样的推理过程:它 看上去是合理的,但结果却得出了矛盾。悖论在很 多情况下表现为能得出不符合排中律的矛盾命题: 由它的真,可以推出它为假;由它的假,则可以推 出它为真。由于严格性被公认为是数学的一个主要 特点,因此如果数学中出现悖论会造成对数学可靠 性的怀疑。如果这一悖论涉及面十分广泛的话,这 种冲击波会更为强烈,由此导致的怀疑还会引发人 们认识上的普遍危机感。在这种情况下,悖论往往 会直接导致“数学危机”的产生。按照西方习惯的 说法,在数学发展史上迄今为止出现了三次这样的 数学危机。
数学上有哪些著名的悖论?

数学上有哪些著名的悖论?数学上的悖论很多,最著名的,就是导致了第三次数学危机的集合论悖论。
因是英国哲学家罗素在1902年写给数理逻辑学家弗雷格的一封信中最早提出来的,所以也经常被称之为“罗素悖论”。
该悖论直指集合论的基础问题,而集合论此时已经是整个数学大厦赖以建立的基础,如若基础不稳,则整个大厦为之震动。
所谓导致了所谓第三次数学危机之说,就是这个意思。
罗素与弗雷格及其1902年的通信罗素本人1919年对这个悖论进行了“科普”,提出了一个生动有趣的比喻性解释,称为“理发师悖论”。
从而使得这个悖论几乎家喻户晓,堪称是数理逻辑普及化的一个典范。
其他的著名数学悖论还包括:概率论悖论、几何学悖论、曲线悖论、统计学悖论和蠕虫悖论等。
荷兰画家埃舍尔笔下的永动水流城堡概率论悖论说的是从概率论的一般性原理出发所得到的结论,却与实际进行概率计算所得到的结果之间存在着很大矛盾。
几何学悖论则包含了视觉和计算错误、拓扑变换和不可能图形等内容。
曲线悖论来自于有数学家定义曲线是一条连续而光滑的线,而另有数学家发现按这个定义也可以形成一个面,从而使线和面难以分辨,导致矛盾结果。
而统计学悖论与概率论悖论有相似之处,一个看似概率很小的事件,实际发生的概率却非常大,从而形成悖论。
蠕虫悖论是说,一条每秒以一厘米的速度在一条一米长、但每秒都伸长一米的橡皮筋上爬行的蠕虫,能否最后爬到橡皮筋的另一尽头?以常识看这绝对是不可能的事情,但实际上从数学的角度看却是可能的,只不过需要很长时间而已。
这种悖论实际上是常识与数学之间的矛盾。
诸如此类的悖论还有豌豆和太阳体积相等悖论,即把豌豆切成无穷多的小块,再拼合起来,正好等于太阳的体积。
综上,数学中的悖论,有些是数学自身所存在的矛盾或特殊性质引起,这是真悖论。
有些则是对数学原理的误解所引起,还有些是数学与常识之间的矛盾所致。
后两类严格的说不能算是真数学悖论。
世界十大数学难题

世界十大数学难题数学是科学中最古老和最重要的学科,它是科学技术进步的基础,更是人类发现和理解自然规律的重要工具。
在各种数学领域中,学者们发现不少难题,它们对现代数学的发展至关重要。
接下来,我们将介绍世界十大数学难题:第一,毕达哥拉斯假设(Pythagorean Hypothesis):毕达哥拉斯假设指的是被认为是十分重要的几何定理。
该定理认为,任意一个三角形的直角边上的两条边之和,等于对角线的平方。
在古希腊,人们却怀疑这一定理是否成立,故而未能得出证据证明它,而到了现代,也仍未能有效地证明它,因此它被认为是当之无愧的世界十大数学难题之一。
第二,泛函分析中的Riemann猜想(Riemann Hypothesis):Riemann猜想是一个有关质数的函数的重要问题。
它指的是质数的分布可以用函数ζ(s)=1/1^s+1/2^s+1/3^s+……来表示。
Riemann猜想认为,当s=1/2时,该函数为无穷,其图形右半部分具有零点。
至今,这一猜想仍未能令人满意地证明,被认为是数学史上最重要的问题之一,由此也成为世界十大数学难题之一。
第三,卡尔贝-比尔金猜想(Goldbach Conjecture):卡尔贝-比尔金猜想是指,任意一个大于2的偶数,都可以由两个质数之和构成。
这一猜想已经有约两个世纪的历史,至今仍未能得到证明。
这一猜想的证明将引发数学史上最重大的突破,因此也被认为是当之无愧的世界十大数学难题之一。
第四,维度理论(Dimension Theory):维度理论是指研究拓扑空间中每一点的特性所组成的理论,这些特性决定了空间的维度,如空间中存在环路则维度为一,存在平面则维度为二,存在立体则维度为三等。
这一理论至今尚未能得到有力的证明,因此也成为世界十大数学难题之一。
第五,米勒假说(Mills Conjecture):米勒假说指的是,当10的一次幂次数的形式为n+1时,其中n为一个素数,那么n也为一个素数。
数学十大著名悖论

十大数学著名悖论1. 二分法悖论概述:运动的不可分性,由古希腊哲学家芝诺提出。
每次到达一个点都需要先到达中点,形成无限过程,直到19世纪数学家解决了无限过程的问题。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,探讨物质、时间和空间的无限可分性。
2. 飞矢不动概述:箭在瞬间位置不动,暗示了时间的瞬间性。
关联到量子力学和相对论,强调运动在特定时刻的相对性。
脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。
咳咳,飞矢不动,我没心动。
3. 忒修斯之船概述:船上的木头逐渐替换,引发同一性的哲学争议。
讨论木头替换后船是否仍然是原来的船。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
4. 托里拆利小号概述:体积有限的物体,表面积可以无限。
源自17世纪的几何悖论,涉及到平凡的几何图形和无限的概念。
脑洞:平胸不一定能为国家省布料的时候。
5. 有趣数悖论概述:将数字的特征定义为有趣或无趣,涉及质数、斐波那契数列等。
引出无趣数概念,研究整数的有趣属性。
脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,你想起数列是个什么鬼了吗?6. 球与花瓶概述:无限个球和一个花瓶进行操作,放10个球再取出1个,引发花瓶内球的数量无限和可变的讨论。
脑洞:小学奥林匹克暗袋摸球概率题终极版。
7. 土豆悖论概述:土豆的含水量和干物质之间的矛盾,涉及百分比的计算。
展示了百分比在特定情境下的谬误。
脑洞:理科生们笑到内伤。
8. 饮酒悖论概述:酒吧里的人是否都在喝酒,引出实质条件的悖论。
通过逻辑演绎表明酒吧中的每个人都在喝酒。
脑洞:一人喝酒导致全场人喝酒,数学的实质条件逻辑。
9. 理发师悖论概述:小城理发师的承诺,引出对自己刮脸的矛盾。
赫赫有名的罗素悖论,影响了数学领域的发展。
脑洞:对于不刮胡子的女理发师不成立。
10. 祖父悖论概述:通过时光机回到过去,引发关于杀死祖父的时间旅行悖论。
涉及对时间和平行宇宙的思考。
脑洞:时间旅行中的命运操纵与平行宇宙的可能性。
数学四大悖论

数学四大悖论
1.费马大定理悖论:费马大定理是一个世界闻名的问题,它被认为是数学史上最伟大的问题之一。
然而,费马大定理也是数学史上最大的悖论之一。
费马大定理的证明一直是数学界的一个未解之谜,即使是最聪明的数学家也无法证明它。
虽然有许多人声称已经证明了费马大定理,但这些证明都被证明是不正确或存在错误。
2. 托勒密定理悖论:托勒密定理是一个基本的几何定理,它断言在一个凸四边形中,两对对立的角的积相等。
然而,在20世纪初期,一些数学家发现了一个托勒密定理的悖论。
他们发现了一个凸四边形,可以被划分成两个凸四边形,使得两个凸四边形的两对对立的角积都相等,但整个凸四边形的两对对立的角积不相等。
这个发现震惊了整个数学界,并引起了数学家对几何学的讨论和重新审视。
3. 无穷小悖论:无穷小是微积分中的一个基本概念。
一个数列如果极限为0,那么它被称作是无穷小。
然而,在数学中,出现了一些无穷小的悖论。
例如,当一个无穷小被乘以无穷大时,结果可以是任何值,这与我们通常的数学直觉相矛盾。
这些悖论引发了数学家的思考和讨论,并促进了微积分的发展。
4. 齐比奥悖论:齐比奥悖论是一个古老的悖论,它与集合论有关。
它的内容是:“如果所有的马都是有毛的,那么所有没有毛的动物都不是马”。
这个悖论的问题在于,它可以被应用于任何一个动物,而不仅仅是马。
因此,它导致了集合论中的悖论,这个悖论在数学中引发了一场集合论的危机。
数学家们不得不重新审视集合论的基础,
并开发了新的集合论,来避免这种悖论的出现。
数学悖论、数学危机及其对数学的推动作用

数学悖论、数学危机及其对数学的推动作用导读:本文数学悖论、数学危机及其对数学的推动作用,仅供参考,如果觉得很不错,欢迎点评和分享。
数学悖论、数学危机及其对数学的推动作用悖论是让数学家无法回避的问题。
悖论出现使得数学体系出现不可靠性和失真理性,这就逼迫数学家投入最大的热情去解决它。
而在解决悖论的过程中,各种理论应运而生了,因而悖论在推动数学发展中的巨大作用。
现在我作如下简单阐述:毕达哥拉斯学派认为“万物皆数”,而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。
这却在当时的数学界掀起了一场巨大风暴。
这一伟大发现不但对毕达哥拉斯学派的致命打击,也对于当时所有古希腊人的观念这都是一个极大的冲击。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”.二百年后,欧多克索斯提出的新比例理论暂时消除悖论。
一直到18世纪,当数学家证明了圆周率是无理数时,拥护无理数存在的人才多起来。
到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。
伴随着人们科学理论与实践认识的提高,十七世纪微积分诞生,但是微积分理论是不严格的。
理论都建立在无穷小分析之上,作为基本概念的无穷小量的理解与运用却是混乱的。
因而,从微积分诞生时就遭到了一些人的反对与攻击。
其中攻击最猛烈的是英国大主教贝克莱。
数学史上把贝克莱的问题称之为“贝克莱悖论”.笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。
世界十大数学难题

世界十大数学难题难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三:庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨—米尔斯(Yang-Mills)存在性和质量缺口难题”之六:纳维叶—斯托克斯(Navier-Stokes)方程的存在性与光滑性难题”之七:贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题”之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个千僖年数学难题”的每一个悬赏一百万美元。
以下是这七个难题的简单介绍。
干僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文考克(StephenCook)于1971年陈述的。
干僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
世界上十大数学难题

世界上十大数学难题(原创实用版)目录1.世界近代三大数学难题2.世界七大数学难题3.其他著名数学难题4.几何尺规作图问题5.蜂窝猜想正文数学是一门充满挑战和神秘的学科,自古以来,人们一直在探索数学的奥秘。
在世界数学史上,有许多著名的数学难题一直困扰着数学家们。
本文将介绍一些世界上著名的数学难题,包括世界近代三大数学难题、世界七大数学难题以及其他著名数学难题。
首先,我们来了解一下世界近代三大数学难题。
这三大数学难题分别是:费尔马大定理、四色问题和哥德巴赫猜想。
费尔马大定理是法国数学家费尔马于 1637 年提出的,他猜想对于任何大于 2 的整数 n,方程x^n + y^n = z^n 没有正整数解。
这个猜想经过数学家们长达 358 年的努力,最终在 1994 年被英国数学家安德鲁·怀尔斯证明正确。
四色问题是指在地图上,是否存在一种方法,使得任意两个相邻的国家用四种颜色就可以区分开来。
这个问题在 1852 年被提出,经过数学家们的努力,最终在 1976 年由肯尼思·阿佩尔和沃尔夫冈·哈肯宣告解决。
哥德巴赫猜想是德国数学家哥德巴赫于 1742 年提出的,他猜想任何一个大于 2 的偶数都可以表示成两个质数之和。
这个猜想至今尚未被证明,但它已经在许多数学研究中得到了验证。
接下来,我们来看看世界七大数学难题。
这些难题是:P(多项式时间)问题对 NP(nondeterministicpolynomialtime,非确定多项式时间)问题、霍奇 (Hodge) 猜想、庞加莱 (Poincare) 猜想、黎曼 (Riemann) 假设、杨米尔斯 (Yang-Mills) 存在性和质量缺口、纳维叶斯托克斯(Navier-Stokes) 方程的存在性与光滑性以及贝赫 (Birch) 和斯维讷通戴尔 (Swinnerton-Dyer) 猜想。
这些难题都是数学领域中久负盛名的难题,它们在数学家的努力下,部分已经得到了解决,但仍有许多问题尚待破解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《“四次”数学危机与世界十大经典数学悖论》“四次”数学危机第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。
两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。
很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。
但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
第二次数学危机发生在十七世纪。
十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。
其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。
微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。
柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。
无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。
那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。
”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。
事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。
一个集合真包含它自己,这样的集合显然是不存在的。
因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。
因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。
这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。
归根结底,R也就是包含一切集合的“最大的集合”了。
因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。
首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic 集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来得。
而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
中国数学爱好者李明波,根据他所发现的纯数学及应用数学中种种意想不到的错误现象,精辟地在警示人们:数学中的错误,正在关系到公众的安危。
李明波在1997年7月的辽宁省数学年会上首次指出,人类历史上的“第四次数学危机”已经在中国开始了。
但是,由于当时他的论文印数不多,而没能产生太大的影响。
时隔8年之后的2005年9月,李明波在他原文章的基础上,增添了“重重反例的爱希阿引理”,并整理出了专题文章《第四次数学危机》。
这篇堪称宣布第四次数学危机已经在中国开始的经典论文,已被本人以《李明波与第四次数学危机》为题投放到东陆论坛。
世界著名数学疑难问题之哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图1所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
这就是七桥问题,一个著名的图论问题。
图 1图 2这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里。
欧拉以深邃的洞察力很快证明了这样的走法不存在。
欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,如图2所示。
于是“七桥问题”就等价于图3中所画图形的一笔画问题了。
欧拉注意到,每个点如果有进去的边就必须有出来的边,从而每个点连接的边数必须有偶数个才能完成一笔画。
图3的每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次的走法。
欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。
哥德巴赫猜想1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。
这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。
实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于7的奇数显然可以表示为一个大于4的偶数与3的和。
1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。
但是第一个问题至今仍未解决。
由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。
1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c 是常数。
1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。
60年代前半期,中外数学家将命题推进到“1+3”。
1966年中国数学家陈景润证明了“1+2”,这一结果被称为“陈氏定理”,至今仍是最好的结果。
陈景润的杰出成就使他得到广泛赞誉,不仅仅是因为“陈氏定理”使中国在哥德巴赫猜想的证明上处于领先地位,更重要的是以陈景润为代表的一大批中国数学家克服重重困难,不畏艰险,永攀高峰的精神将鼓舞和激励有志青年为使中国成为21世纪世界数学大国而奋斗!世界十大经典数学悖论1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。
试问:理发师给不给自己理发?如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。
这样,理发师陷入了两难的境地。
2.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。
”如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。
”同上,这又是难以自圆其说!说谎者悖论至今仍困扰着数学家和逻辑学家。
说谎者悖论有许多形式。
如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。
”又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
3.跟无限相关的悖论:{1,2,3,4,5,…}是自然数集:{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?4.伽利略悖论:我们都知道整体大于部分。
由线段BC上的点往顶点A 连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。
为什么?5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。