人教版七年级的数学竞赛试题2.doc

合集下载

人教版七年级数学竞赛试题含答案

人教版七年级数学竞赛试题含答案

七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。

人教版七年级上册数学竞赛题(含答案)

人教版七年级上册数学竞赛题(含答案)

七年级上学期数学竞赛试题七年级上学期数学竞赛试题一、填空题(每小题4分,共40分)分)1. 甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.2.((-2124 +7113 ÷24113 -38 )÷)÷11512= =___。

___。

___。

3. 3. 已知已知与是同类项,则=__。

=__。

4. 4. 有理数有理数在数轴上的位置如图1所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____. 6. 6. 小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地米/分,则甲地到乙地的路程是__米。

的路程是__米。

7. 学校开运动会,班长想分批买汽水给全班50名师生喝,喝完的空瓶根据商店规定每5个空瓶又可换一瓶汽水,则至少要买 瓶汽水,才能保证每人喝上一瓶汽水. 8. 8. 有这样一个衡量体重是否正常的简单算法。

一个男生的标准体重(以公斤为有这样一个衡量体重是否正常的简单算法。

一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110110。

正常体重在标准体重减。

正常体重在标准体重减。

正常体重在标准体重减 标准体重的1010%和加标准体重的%和加标准体重的10之间。

已知甲同学身高161厘米,体重为W ,如果他的体重正常,则W 的公斤数的取值范围是的公斤数的取值范围是_____. _____.9. m 9. m、、n 、l 都是385385,则,则m+n+l 的最大值是__。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。

答案:±612. 一个数的立方是27,这个数是____。

答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。

答案:1214. 一个数的绝对值是7,这个数是____。

答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。

答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

初中数学竞赛试卷人教版

初中数学竞赛试卷人教版

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -1/2B. -√2C. √2D. 02. 下列各数中,绝对值最小的是()A. -1/2B. -√2C. √2D. 03. 若a=3,b=-3,则a-b的值为()A. 0B. 6C. -6D. -94. 已知等差数列{an}的前三项分别为1,4,7,则第10项an的值为()A. 19B. 23C. 27D. 315. 在直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标是()A. (1,-1)B. (3,2)C. (1,2)D. (2,3)6. 若x^2+4x+4=0,则x的值为()A. -2B. 2C. -4D. 47. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是()A. 105°B. 120°C. 135°D. 150°8. 若a+b=5,ab=4,则a^2+b^2的值为()A. 21B. 25C. 29D. 339. 已知一元二次方程x^2-3x+2=0的两个根为x1,x2,则x1+x2的值为()A. 1B. 2C. 3D. 410. 在等腰三角形ABC中,AB=AC,∠B=50°,则∠A的度数是()A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共25分)11. 若a=√2,b=√3,则a^2+b^2的值为______。

12. 已知等差数列{an}的前三项分别为2,5,8,则第10项an的值为______。

13. 在直角坐标系中,点P(3,4),点Q(-2,-1),则线段PQ的长度为______。

14. 若x^2-6x+9=0,则x的值为______。

15. 在△ABC中,∠A=40°,∠B=60°,则∠C的度数是______。

三、解答题(每题10分,共20分)16. (10分)已知等差数列{an}的前三项分别为1,4,7,求该数列的通项公式。

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。

A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。

则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。

七年级数学下学期优等生学科竞赛试题 新人教版(2021-2022学年)

七年级数学下学期优等生学科竞赛试题 新人教版(2021-2022学年)

育才竞赛数学试卷姓名:_______________班级:_______________考号:_______________四、选择题一、综合题1、国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?2、(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE =15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.3、【问题发现】如图1,△ACB和△DCE均为等边三角形,若B,D,E在同一直线上,连接AE.(1)请你在图中找出一个与△AEC全等的三角形: ;(2)∠AEB的度数为 ;CE,AE,BE的数量关系为.【拓展探究】如图2,△ACB是等腰直角三角形,∠AEB=90°,连接CE,过点C作CD⊥CE,交B E 于点D,试探究CE,AE,BE的数量关系,并说明理由.【解决问题】如图3,在正方形ABCD中,CD=5,点P为正方形ABCD外一点,∠APC=90°,且AP=6,试求点P到CD的距离.二、作图题4、 图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合. 具体要求如下:三、计算题5、如图,扇形OAB 的半径OA=3,圆心角∠AOB=90°,点C是上异于A 、B 的动点,过点C作CD⊥OA于点D,作CE⊥O B于点E,连结DE,点G 、H在线段DE 上,且DG=GH=HE (1)求证:四边形OGC H是平行四边形。

人教版七年级数学上册竞赛试卷.doc

人教版七年级数学上册竞赛试卷.doc

21-31-第一学期人教版七年级数学竞赛试卷一、选择题(12个小题,每个小题3分,共36分。

) 1. 下列说法不正确的是( )A.分数都是有理数B.-a 是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数 2. .已知ab ≠0,则+的值不可能的是( )A . 0B .1C .2D . ﹣23.给出下列式子:0,3a ,π,错误!未找到引用源。

,1,3a 2+1,-错误!未找到引用源。

+y.其中单项式的个数是( )A.5B.1C.2D.34、计算:-2+5的结果是( )A. -7B. -3C. 3D. 7 5、2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功,它的飞行高度距离地球350千米,350千米用科学记数法表示应为( ) A. 3.5×102 B. 3.5×105 C. 0.35×104 D. 350×1036、下列各组数中,结果相等的是( )A. -22与(-2)2B. 与 ( )3C. -(-2)与-|-2|D. -12017与(-1)2017 7、已知b a m 225-和n b a -347是同类项,则2m - n 的值是( )A 、6B 、4C 、3D 、2 8.在有理数-4,0,-1,3中,最小的数是( ) A .-4 B .0 C .-1 D .39. 已知22(3)0a b -++=,则a b 的值是( )A .-6B . 6C . -9D .910.已知a ≤2,b ≥-3,c ≤5,且a -b +c =10,则a +b +c 的值等于( )。

(A )10 (B )8 (C )6 (D )411.若1x =时,式子37ax bx ++的值为4.则当1x =-时,式子37ax bx ++的值为( )A.12B.11C.10D.7 12. 8.四个图形是如图的展开图的是( )A 、B 、C 、D 、二、填空题(6个小题,每个小题4分,共24分)13、当正整数m= _________ 时,代数式的值是整数.14、(3a +2b)-2(a - )= a +4b ,则横线上应填的整式是 .15、已知(x+3)2与|y -2|互为相反数,z 是绝对值最小的有理数,则代数式(x+y)y +xyz 的值为 .16.在-2 ,-15,9, 0 ,10- 这五个有理数中,最大的数是 ,最小的数是 . 17.若23m ab +与43(2)n a b -是同类项,且它们的和为0,则mn = .18.已知3232572A x x x m =+-++,223B x mx =+-,若多项式A B +不含一次项,则多项式A B +的常数项是 .三、解答题 :(9个小题共90分) 19. (10分)计算:(1)5×(-2)+(-8)÷(-2); (2)71123627()3927-⨯-+;20.(10分)求下列未知数的值(1)x 2=25 (2)y 3= - 6421.(10分)计算:(1)8a +7b -12a -5b ; (2) 111111*********200523200422005232004⎛⎫⎛⎫⎛⎫⎛⎫+++++++-++++++⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭23 5322、(8分)在数轴上表示下列各数:321,-3,0,—1.5,并把所有的数用“<”号连接起来.23.(8分).先列式再计算: -1 减去 与 的和所得差是多少?24.(10分).先化简,再求值:(2-a 2+4a)-(5a 2-a -1),其中a =-2.25.(10分).已知x 、y 互为相反数,且|y -3|=0,求2(x 3-2y 2)-(x -3y)-(x -3y 2+2x 3)的值.26.一根长度为1米的木棍,第一次截去全长的12 ,第二次截去余下的13 ,第三次截去第二次截后余下的14 ,……,第n 次截去第(n-1)次截后余下的1n+1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学竞赛试题 2 一.填空题 ( 每题 2 分, 共 10 分 )
1.-1
的倒数的负相反数是 _______;3
2. 若 | x-y+6|+ (y+8)2=0, 则xy = ;
3. 近似数 3.6 亿精确到 _________ 位;
4.
(-3)2009×(- 1 )2010 = ;
3
5. 设有理数 a,b, 若 ab<0, a+ b<0 则 a_______0?( 用 <,> 填空 )
6.有一个正方体 , 在它的各个面上分别标上字母A、 B、C、D、E、 F, 甲、乙、丙三位同学从
不同方向去观察其正方体, 观察结果如图所示。

问: F 的对面是;
F
D B E
A A
D C
C
7. 若a,b,c,d是互不相等的整数,abcd=169,则a+b+c+d=。

ab
2010n
2010m x
. a,b 互为倒数 ,m,n 互为相反数 ,x=-x,则 2 。

8
9. 已知有理数 a、b、c 在数轴的对应位置如下图, 则 |a-1|+|a-c|+|a-b| 可化简为。

10. 2 2 222 , 3 3 32 3 , 4 4 4 24 若 10 b 102b
符合前面
3 3 8 8 15 15 a a
式子的的条件 , 则 a+b=________。

二. 选择题(每题 5 分, 共 50 分)
11. 若 |(3a-b-4)x|+|(4a+b-3)y|=0, 且 xy ≠ 0. 则 |2a|-3|b| 等于 ( ).
(A)-1 (B)0 (C)1 (D)2
12. (- 1)2010是()
A.最大的负数 B .最小的非负数C.最大的负整数 D .绝对值最小的正整数
13. 某粮店出售三种品牌的面粉 , 袋上分别标有质量为 (25 0.4)kg 、( 25 0.2 ) kg 、
(25 03)kg 的字样 , 从中任意拿出两袋 , 它们的质量最多相差()
A. 0.8kg
B. 0.6kg
C. 0.5kg D . 0.4kg
14. 当代数式 x2+ 3x+8 的值等于7 时 , 代数式3x2+ 9x- 2 的值等于()
A .5
B .3
C . - 2
D . - 5
15. 若 |a|=8,|b|=6, 且 |a+b|=a+b, 那么 a- b 的值只能是 ( )
A.2
B. 14
C. 6
D.2
或 14
16. 单项式 3 xy 2z 3 的系数和次数分别是(

A. -π ,5
B. - 1,6
C. - 3π ,6
D. - 3,7
17. 关于 x 的方程 mx+1=2(m -x) 的解满足 |x+2|=0 则 m 的值为 ( )
A.
4
B. 4
C.
3 D.
3 3
3
4
4
1
2
18. 若 0<x < 1, 则x 、x 、x
的大小关系是
( )
1
2
2
1 2
1
2
1
A.
x < x < x
B.x < x < x
C. x < x < x
D. x < x <x
19. 观察这一列数:
3 5
9
17
,
33


,
,
10 ,
, 依此规律下一个数是
4 7
13
16
A.
45
B.
45 C.
65
D.
65
21
19
21
19
20. 缸内红茶菌的面积每天长大一倍
, 若 17 天长满整个缸面 , 那么经过

)天
长满缸面的一半
A.8
B.9
C . 15 D. 16
三 . 解答题 ( 共 8 0 分 )
21. 规定一种关于 a,b 的运算 :a*b=a(a - b) 试根据规定 . 求 2*3+(6 -2)*4 的值 .
22. 已知:︱ m ︱ =3/4, ︱ n ︱=4/3, 且 mn ﹥ 0,m+n ﹤ 0.
求代数式 2
2 2 2
4mn+{-3mn +mn-[-2mn +(7mn-8m n)]} 的值
23. 化简求值 , (2x 2
2 y 2 ) 3( x 2 y 2 x 2 ) 3( x 2 y 2 y 2 ) , 其中 x
1, y
2
2 / 4
24.已知多项式x23k1xy 3y2k2 y 4 x与多项式3y2 1 xy 4y 4x -8的和中不
3
含 xy 项和y的一次项,求k1,k2的值.
25.小明小亮进行100 米赛跑 , 第一次比赛时小明胜10 米 , 在进行第二次比赛时, 小明的
起跑线比原来起跑线推后10 米 , 如果两次他们速度不变, 则第二次结果谁胜, 你能用计
算说明吗?
26. 某人乘船由 A 地顺流而下到 B 地 , 然后又逆流而上到 C 地 , 共用 4 小时 , 已知船在静水中的速度
为 7.5 千米 / 时 , 水流速度为 0.5 千米 / 时 , 若 A、C 两地的距离为 10 千米 , 求 A、B 两地的距离。

27.右图中 , 在长方形内画了一些直线 , 已知边上有三块面积分别是 13,35,49. 求图中阴影部分的面
积?
28.某城市自来水收费实行阶梯水价, 收费标准如下表所示:
月用水量不超过 12 吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元 / 吨) 2.00 2.50 3.00 某户 5 月份交水费45 元 , 则该用户 5 月份的用水量是多少?。

相关文档
最新文档