第三章 数据的集中趋势和离散程度小结与思考

合集下载

九年级上第三章数据的集中趋势和离散程度小结与思考(苏科版)全面版

九年级上第三章数据的集中趋势和离散程度小结与思考(苏科版)全面版

例3:甲、乙两人在相同条件下各射靶10次,每次射靶 的成绩情况如图所示:
平 中 命中9环以 均 位 上的次数 数数 甲

(1)请填写右表: (2)请从下列三个不同的角度对测试结果进行分析: ①从平均数和中位数结合看(谁的成绩好些); ②从平均数和9环以上的次数看(谁的成绩好些); ③从折线图上两人射击环数的走势看(分析谁更有潜力).
基础训练
4.如图是一组数据的折线统计图,这组数 据的极差是______,平均数是______.
70 35
32
54 28
56 59 50
A1 A2 A3 A4 A5 A6
例1:某年北京与巴黎的年降水量都是630毫米,它们 的月降水量占全年降水量的百分比如下表:
(1)计算两个城市的月平均降水量 (2)写出两个城市的降水量的中位数和众数
尺码/ 22 厘米
销售量 1 /双
22.5 23 23.5 24 2 5 11 7
24.5 25 31
如果你是经理,请问你关注的是什么? 你打算怎样进货呢?
问题3:如何求一组数据的极差、方差.
说说它们作用,联系与区别.
基础训练
1.已知一组数据2, 1,-1,0, 3,则 这组数据的极差是______.
初中数学九年级上册 (苏科版)
第三章 小结与复习
问题1:有十五位同学参加竞赛,且他们的
分数互不相同,取八位同学进入决赛,某人 知道了自己的分数以后,还需知道这十五位 同学的分数的什么量,就能判断他能不能进 入决赛?
问题2:一家鞋店在一段时间内销售了某种女 鞋30双,各种尺码鞋的销售量如下表所示:
例2:(求平均数) 已知两组数据x1,x2,x3,…xn和
y1,y2,y3,…yn的平均数分别为 x 、y ,

数据的中心趋势和离散程度

数据的中心趋势和离散程度

数据的中心趋势和离散程度数据分析是现代社会中不可或缺的一部分,它帮助我们理解和解释各种现象。

在数据分析中,了解数据的中心趋势和离散程度是非常重要的。

本文将介绍数据的中心趋势和离散程度的概念,并提供几种用于测量的方法。

一、中心趋势中心趋势是一组数据集中的一个值,它代表了数据的平均水平或核心位置。

最常用的中心趋势度量是算术平均数或平均值。

平均数被定义为一组数值之和除以该组数值的数量。

例如,给定一组数值:2, 4, 6, 8, 10,它们的平均数为6。

另一个常用的中心趋势度量是中位数。

中位数是将一组数据按照大小顺序排列后,位于中间位置的值。

如果数据集中有偶数个数值,则中位数为中间两个数值的平均值。

例如,给定一组数值:2, 4, 6, 8,它们的中位数为5。

除了平均数和中位数,还有一种用于测量中心趋势的度量是众数。

众数是数据集中出现频率最高的数字。

如果数据集中存在多个众数,则称为多峰分布。

例如,给定一组数值:2, 2, 4, 6, 8,它们的众数为2。

二、离散程度离散程度描述了数据集中数值的分散程度或散布范围。

如果数据集中的数值都非常接近,那么离散程度很小;如果数值相差很大,那么离散程度很大。

最常用的离散程度度量是方差和标准差。

方差是每个数值与平均数之差的平方的平均值。

标准差是方差的平方根。

方差和标准差越大,表示数据集的离散程度越大。

例如,给定一组数值:2, 4, 6, 8, 10,它们的方差为8,标准差为2.83。

这意味着这组数据的离散程度相对较小。

而如果给定一组数值:2, 2, 4, 6, 20,它们的方差为56,标准差为7.48。

这组数据的离散程度较大。

除了方差和标准差,还有其他一些度量离散程度的方法,例如范围和百分位数。

范围是数据集的最大值和最小值之间的差值。

百分位数是将数据集按大小顺序排列后,某个百分比处的数值。

例如,第75百分位数是将数据集分为四个相等的部分后,处于第三个部分的数值。

总结:在数据分析中,了解数据的中心趋势和离散程度是非常重要的。

初中数学_《数据的分析》小结(二)教学设计学情分析教材分析课后反思

初中数学_《数据的分析》小结(二)教学设计学情分析教材分析课后反思

《数据的分析》小结(二)教学设计一、教学设计思想通过学生的合作交流总结出本节的知识结构,针对本章的主要内容,设计一组思考题,让学生在独立思考的基础上分组讨论交流,并用自己的语言来表达对问题的理解,以达到梳理知识,理解统计的思想和方法,增强统计意识的目的。

最后通过练习巩固本章的知识点。

二、教学目标知识技能:回顾本章主要内容,说出知识之间的联系;说出各统计量在刻画数据特征方面的优点与局限。

会用计算器计算统计量;发展归纳与概括的能力。

体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程数学思考:经历总结与反思的过程,结合具体问题情境表述各统计量的意义,进一步发展建立数据分析观念。

问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

归纳解决实际问题的一般过程积累数学活动的经验。

情感态度:进一步感受知识点之间的联系,感受知识来源于生活又应用于生活。

敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。

三、教学重点和难点重点是分析数据的集中趋势和波动程度,体会样本估计总体的思想。

难点是能灵活运用本章知识点解题。

解决办法:通过阶梯式问题引导学生复习主要知识点,通过练习来巩固这些知识。

四、教学方法讨论法,在总结讨论的基础上,使学生掌握本章的内容。

五、课时安排1课时六、教具学具准备多媒体七、教学过程设计(一)情景导入:教师讲:用《啤酒与尿布》这一成功利用数据分析的经典营销案例,导入新课(教师板书课题)。

学生回顾在《数据的分析》里主要学习了哪些统计量?如何计算?有何异同?(二)问题(教师出示问题并板书;学生细心计算,并说说各统计量的计算方法:)数据2,1,2,4,2,1的平均数是______,中位数是_______,众数是_______,方差是_______.(1)加权平均数:(先让学生举几个生活中的例子,后教师出示案例,学生可分组讨论后交流):《招工启事》因我公司扩大规模,现需招若干名员工。

第三章数据的集中趋势和离散程度教案

第三章数据的集中趋势和离散程度教案

第三章 数据的集中趋势与离散程度-----第01课时课题:3.1平均数(1) 目标:1、了解平均数的意义,会计算一组数据的算术平均数,并会用频数计算平均数和选取适当基数计算平均数。

2、在求实际问题的平均数的过程中,体会简化平均数算法的必要性,能灵活地用3种方法求平均数。

3、感受数学来源于实践,又为实践服务这一过程,体验转化的数学思想,养成用数学的良好意识。

重点:计算一组数据的平均数 教学过程:一、基础训练1、数据17,19,16,21,19,22的平均数是_____;2、数据2、3、x 、4的平均数是3,则x=________;3、5个数的平均数是14,3个数的平均数是6,则这8个数的平均数是_____;4、若两组数x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别为x 和y ,则x 1+y 1,x 2+y 2,…,x n +y n 的平均数是_________;5、一场突如其来的地震给玉树带来了巨大的灾难! “一方有难,八方支援”,某校则全班平均捐款为________元;6、强烈某食品厂为加强质量管理,对某天生产的罐头抽查了10个,样本,净重如下(单位:克)342,348,346,340,344,341,343,350,340,342 求样本的平均数。

7、某班有50名学生,数学期中考试成绩90分有9人,84分的有12人,73分的有10人,65分有13人,56分有2人,45分有4人,计算这个班学生的数学期中考试平均成绩(保留到小数点后第一位)161cm ,B 组同学的平均身高约为163cm ,小明一定比小丽矮吗?(二)引入新课,梳理知识题1、2、3、4引入平均数的定义及直接算法,题5、6引入平均数的简便运算,题7是平均数的简单运用,体现平均数的实际意义。

通过学生对问题的回答与板演,教师适时点评、质疑、讨论、归纳,穿插引入新课: 1、平均数的概念和计算方法通常,我们用平均数表示一组数据的“平均水平”,即:这组数据都“接近”这个数。

3第三章 集中趋势和离散趋势

3第三章 集中趋势和离散趋势

f
2
Sm1 i
fm
式中: U ——中位数所在组的上限
Sm1 ——大于中位数组的各组次数之和
中位数最大的特点是:它是序列中间1项或2项的平均数,不受极 端值的影响,所以在当一个变量数列中含有特大值与特小值的情 况下,采用中位数较为适宜。正式由于中位数的这一特点,在统 计研究中,当遇到掌握统计资料不多而且各标志值之间差异程度 较大或频数分布有偏态时,为避免计算标志值所得的算术平均数 偏大或偏小,就可利用中位数来表示现象的一般水平。
返回本章
返回总目录
4. 中位数
中位数是一种按其在数列中的特殊位置而决定的平均数。把总 体各单位标志值按大小顺序排列后,处在中点位次的标志值就 是中位数,它将全部标志值分成两个部分,一半标志值比它大, 一半标志值比它小,而且比它大的标志值个数和比它小的标志 值个数相等。
要求得中位数,首先要确定中位数的位次。
返回本章
返回总目录
用偏度系数准确地测定分布的偏斜程度和进行比较分析。
※ Pearson偏度系数,用SK 表示。
SK X MO
SK 为无量纲的系数,通常取值在-3~+3之间。绝对值越大,
说明分布的倾斜程度越大。
SK =0 SK > 0 SK < 0
对称分布 右偏分布 左偏分布
返回本章
返回总目录
过给定的范围,就说明有不正常情况产伤。但极差受到极端是的影响,测
定结果往往不能反映数据的实际离散程度。
返回本章
返回总目录
2. 四分位差
四分位差是根据四分位数计算的。首先把变量各单位标志值从 小到大排序,再将数列四等分,处于四分位点位次的标志值就 是四分位数,记作 M1,M2,M3 ,M1 为第一四分位数(也称为下 四分位数),M2 为第二四分位数,就是中位数 Me ,M3 为第三 四分位数。 四分位差的计算公式为: 四分位差 M3 M1

集中趋势与离散趋势

集中趋势与离散趋势
交互式数据探索
允许用户自定义查询条件、筛选数据和调整图表 参数,以便更深入地探索数据的内在规律和关联 关系。
数据动画
将数据变化过程以动画形式展现出来,帮助用户 更直观地理解数据的变化趋势和动态特征。
06 总结与展望
CHAPTER
主要发现与结论
集中趋势描述
通过平均数、中位数和众数等指标,可以有 效地描述数据的集中趋势,反映数据分布的 中心位置。
众数
一组数据中出现次数最多的数。众数可能不唯一,也可能不存在。众数适用于分类数据和顺序数据,对于数值型 数据,如果数据分布的波动性较大,众数可能不能很好地代表数据的集中趋势。
03 离散趋势
CHAPTER
定义与概念
离散趋势
指一组数据中各数值之间的差异程度 或离散程度,是数据分布的另一个重 要特征。
直方图(Histogram)
将数据按照一定范围进行分组并用矩形条表示,通过矩形条的高度和宽度反映数据的分布 规律。
散点图(Scatter Plot)
用点的位置表示两个变量之间的关系,可通过观察点的分布情况和趋势线分析数据的集中 和离散趋势。
动态数据可视化在趋势分析中的应用
1 2 3
时间序列分析
通过动态展示数据随时间变化的情况,揭示数据 的长期趋势、季节波动和周期性规律。
• 关注数据质量和异常值处理:在实际数据分析中,异常值和数据质量问题是不 可忽视的。未来的研究可以关注如何有效地处理异常值和数据质量问题,以提 高集中趋势和离散趋势分析的准确性和可靠性。例如,可以采用稳健的统计方 法或者数据清洗技术对异常值进行处理,以保证分析结果的稳定性和可靠性。
谢谢
THANKS
Tableau
功能强大的数据可视化工具,支持交互式数据分析和动态图表展示, 适用于大数据处理。

数据的集中趋势和离散程度内容解读

数据的集中趋势和离散程度内容解读

数据的集中趋势和离散程度内容解读作者:何春华来源:《初中生世界·九年级》2015年第10期数据的集中趋势和离散程度包括两方面内容,一是表示一组数据集中趋势的统计量,有平均数、中位数和众数;二是表示一组数据离散程度(刻画数据的波动大小)的统计量,有极差和方差,今天何老师就带领大家一起走进数据的世界,正确认识“三数”和“两差”.一、平均数1. 算术平均数:数据x1,x2,x3,…,xn的算术平均数为=(x1+x2+…+xn),这是最简单的平均数,平均数反映的是一组数据中各个数据的平均水平,它与这组数据中的每个数据都有关系.例1 (2014·江苏盐城)数据-1,0,1,2,3的平均数是().A. -1B. 0C. 1D. 5【解析】直接利用算术平均数公式求解,得=1,故选C.2. 加权平均数:一般地,如果一组数据中共有n个不同的值,记它们分别为x1,x2,…,xn,并且x1有w1个,x2有w2个,……,xn有wn个,则w1,w2,…,wn分别叫作x1,x2,…,xn的权,数值=叫作这n个数值的加权平均数.例2 (2015·浙江湖州)在“争创美丽校园,争做文明学生”示范评比活动中,10位评委给某校的评分情况如下表所示:则这10位评委评分的平均数是_______分.【解析】由于本题中这10位评委给某校的评分情况的“权重”不同,因此本题需用加权平均数公式计算.这10位评委评分的平均数是=89(分).【点评】算术平均数是加权平均数的特例,加权平均数实质上就是考虑不同权重问题的平均数,当加权平均数中各项的权相等时,就变成了算术平均数.二、中位数把n个数据从小到大排列,相同的数重复进行排列.当n是奇数时,处于正中间位置的数叫作这n个数的中位数;当n是偶数时,处于中间位置的两个数的平均数叫作这n个数的中位数.中位数体现了一组数据中间位置的数据水平,它反映了具有不确定性的研究对象在中等状态下的水平.例3 (2015·山东东营)在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83. 则这组数据的中位数为_______.【解析】将这组数据从小到大排列为:72,77,79,81,81,81,82,83,85,89,处于中间位置的第5、6个数据的平均数就是这组数据的中位数,即×(81+81)=81.【点评】由于一组数据的中位数与最大和最小的数据无关,因此,确定一组数据的中位数只需将这组数据从小到大排列(即使相等的数也要全部参加排序),然后根据数据个数的奇偶性确定中位数的值.三、众数一组数据中出现的次数最多的数,叫作这组数据的众数. 众数表现了一组数据的热点,当一组数据中有较多的重复数据时,常用众数来描述这组数据的集中趋势.例4 (2015·江苏扬州)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的众数是_______.【解析】∵数据中9出现的次数最多,∴这组数据的众数是9.【点评】众数是一组数据“多数水平”的重要数据代表,一组数据的众数有时不止一个,若几个数据出现的次数相同,并且比其他数据出现的次数都多,则这几个数据都是这组数据的众数.四、极差与方差1. 极差一组数据中最大值与最小值的差叫作极差,它反映了一组数据的变化范围.例5 (2014·四川凉山)某班数学学习小组某次测验成绩(单位:分)如下:63,72,70,49,66,81,53,92,69,则这组数据的极差是().A. 47B. 43C. 34D. 29【解析】这班数学学习小组某次检测成绩数据中,最大值是92,最小值是49,所以这组数据的极差是92-49=43.故选B.【点评】极差只跟一组数据中的两个极端数据(最大值、最小值)有关,跟其他数据无关,因此极差只能粗略地反映数据的离散程度.2. 方差为了精确地反映一组数据的离散程度,我们把一组数据中的全部n个数据x1,x2,…,xn的平均数作为基准,计算各数据与的差的平方,这些平方的平均数s2=[(x1-)2+(x2-)2+…+(xn-)2]就叫作这组数据的方差. 方差可以从整体上反映数据偏离平均数的程度,所以它成了反映研究对象离散程度的数值.例6 (2015·山东莱芜)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是_______.【解析】数据2,3,a,5,6的平均数是4,所以2+3+a+5+6=20,解得a=4,因此这组数据的方差s2=[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.【点评】计算方差的步骤是先计算该组数据的平均数,然后代入方差公式进行计算.例7 (2015·江苏连云港)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是().A. 甲B. 乙C. 丙D. 丁【解析】从表格中可知乙、丙的平均成绩要比甲、丁高,而乙的方差比丙小,说明乙的成绩比较稳定,所以应选择学生乙,故选B.【点评】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.最后,同学们在学习这部分知识时应注意结合一些具体事例去理解它们,要逐步体会这些知识在实际生活中的应用,而不是仅仅关注一些具体的计算.(作者单位:江苏省海门市实验学校初中部)。

第三章 数据的集中趋势和离散程度(小结与思考)(课件)九年级数学上册课件(苏科版)

第三章 数据的集中趋势和离散程度(小结与思考)(课件)九年级数学上册课件(苏科版)


+ +⋯+


用样本平均数估
计总体平均数
加权平均数 −= + +⋯+

(k≤n,f1+f2+f3+…+fk=n)
一般地,将一组数据按大小顺序排列,
中位数
如果数据的个数是奇数,那么处于中间位置的数叫做这组数据的中位数;
如果数据的个数是偶数,那么处于中间位置的两个数的平均数叫做这组数据的中位数.
食情况,调查数据整理如下:
中国营养学会推荐的三大营养素供能比参考值
蛋白质
10%~15%
脂肪
20%~30%
碳水化合物
50%~65%
注:供能比为某物质提供的能量占人体所需总能量的百分比.
考点分析
(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)
抽样调查
(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,
践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是
3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会
实践人数最多的是4天,从众数看,B县区要好.
考点分析
考点三
极差、方差的计算及应用
例(2023·山东)为备战东营市第十二届运动会,某县区对甲、乙、丙、
丁四名射击运动员进行射击测试,他们射击测试成绩的平均数(单位:
2.(2023·四川眉山)已知一组数据为2,3,4,5,6,则该组数据的
方差为( A )
A.2
B.4
C.6
D.10
巩固练习
3.(2023·广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 数据的集中趋势和离散程度小结与思考
一、基础知识:
1、平均数:如果有n 个数x 1
,x 2
,…,x n
,那么:=
x 叫做这n 个数
的 ,简称为 .
2、中位数: 一般地,将一组数据按 顺序排列,如果数据的个数是奇数,那么处于 位置的数叫做这组数据的中位数;如果数据的个数是偶数,那么处于 位置的 数的 叫做这组数据的中位数.
3、众数:一组数据中出现次数最 的数据叫做这组数据的众数。

4、方差:用一组数据x 1,x 2,…,x n 与它们的平均数x 差的平方的平均数,即
s =2 叫做这组数据的方差。

5、极差:一组数据的最 数与最 数的差叫做这组数据的极差。

二、经典例题:
例1、在“感恩一日捐”捐赠活动中,某班40位同学捐款金额统计如下,则在这次活动中,
该班同学捐款金额的平均数是 元.
金额(元) 20 30 36 50 100 学生数(人) 3 7 5 15 10
例2、某户家庭今年1-5月的用电量分别是:72,66,52,58,68,这组数据的中位数是( )
A .52
B .58
C .66
D .68
例3、某校六个绿化小组一天植树的棵数如下:10 , 11 , 12 , 13 ,9 , x .若这组数据的平均数是11,则这组数据的众数是 。

例4、为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )
A 、平均数
B 、加权平均数
C 、中位数
D 、众数
例5、小明和小刚两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数 1 2 3 4 5 小明 13 14 13 12 13 小刚 10
13
16
14
12
n
x x x n
+⋯++21
三、巩固练习:
1、体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数是 。

2、在50,20,50,30,50,25,35这组数据中,众数和中位数分别是( )
A .50,20
B .50,30
C .50,35
D .35,50 3、数据-2,-2,2,2 的中位数及方差分别是( )
A.-2,-2
B.2,2
C.0,2
D.0,4
4、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

四、课后作业:
1、 某家电商场近来一个月卖出不同功率的空调总数见下表:
那么这一个月卖出空调的众数是 .
2、甲、乙两支足球队,每支球队队员身高数据的平均数都是 1.70米,方差分别为
2
.29s =甲,20.35s =乙,其身高较整齐的球队是 队. 3、一组数据:2、3、4、x 中,如果中位数与平均数相等,那么数x 不可能是
(A )1; (B )2; (C )3; (D )5. 4、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 2号 3号 4号 5号 总
甲89 100 96 118 97 500 乙100 95 110 91 104 500
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考. 请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小.(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.
功率(匹) 1 1.5 2 3
销量(台) 80 78 90 25
5、某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),经确认扇形统计图是正确的,而条形统
计图尚有一处错误.
回答下列问题:
(1)写出条形统计图中存在的错误,
并说明理由.
(2)写出这20名学生每人植树量的
众数、中位数.
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
第一步:求平均数的公式是
12n
x x x
x
n
+++
=

第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;
第三步:
4567
55
4
x.
+++
==(棵).
①小宇的分析是从哪一步开始出现错误的?
②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
6、一次期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如下信息:
A B C D E 平均分标准差
数学71 72 69 68 70 2
英语88 82 94 85 76
(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.
从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?
7、某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进
行民主评议,三人得票率(没有弃权票,每位职工只能推荐1
人)如图所示,每得一票记作1分.
(1)请算出三人的民主评议得分.
(2)如果根据三项测试的平均成绩确定录用人选,那么谁将
被录用(精确到0.01)?
(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按3:2:1的比例确定个人成绩,那么谁将被录用?
8、(1)观察下列各组数据并填空
A:1,2,3,4,5 x= ,s2=
B:11,12,13,14,15 x= ,s2=
C:10,20,30,40,50 x= ,s2=
D:3,5,7,9,11 x= ,s2=
(2)比较A与B、C、D的计算结果,你能发现什么规律?
(3)若已知一组数据X
1、X
2
…X
n
的平均数为x,方差为s2,那么另一组数据3X1-2、
3X
2-2 (3X)
n
-2的平均数是,方差是。

测试项目
测试成绩(分)
甲乙丙笔试75 80 90
面试93 70 68。

相关文档
最新文档