初中数学竞赛几何主要定理

合集下载

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。

2. 对顶角定理:对顶角相等。

3. 同旁内角定理:同旁内角互补。

4. 外角定理:与一个多边形任意一内角相对的外角相等。

5. 内角和定理:n边形的内角和为180度×(n-2)。

6. 相关角定理:相邻角互补,对顶角互相相等。

7. 垂直直角定理:垂线与直线相交,形成直角。

8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。

9. 三角形内角和定理:三角形内角和为180度。

10. 等腰三角形定理:等腰三角形的底角相等。

11. 等边三角形定理:等边三角形的三个内角均为60度。

12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。

13. 等角定理:两角相等的两个三角形全等。

14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。

15. 中线定理:连接三角形两边的中线相等。

16. 中位线定理:连接三角形两边中点的线段平分第三边。

17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。

18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。

19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。

20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。

三条边为大圆弧。

21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。

22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。

23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。

24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。

初中数学竞赛重要定理公式(平面几何篇)

初中数学竞赛重要定理公式(平面几何篇)

初中数学竞赛重要定理公式(平面几何篇)初中数学竞赛中,平面几何是一个重要的考点。

以下是一些重要的定理、公式和结论。

三角形面积公式(包括海伦公式):三角形的面积S可以用以下公式计算:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中$p=\frac{1}{2}(a+b+c)$,$a$,$b$,$c$分别为三角形的三条边长。

另外,三角形的面积也可以用以下公式计算:$S=\frac{1}{2}ab\sin C$,其中$a$,$b$为两边,$C$为两边之间的夹角。

还有一个海伦公式:$S=\frac{1}{2}ah_a$,其中$h_a$为三角形顶点$A$到边$BC$的垂线长度,$a$为边$BC$的长度。

XXX定理:对于三角形$\triangle ABC$及其底边上的一点$D$,有$AB^2\cdot DC+AC^2\cdot BD-AD^2\cdotBC=BC\cdot DC\cdot BD$。

XXX定理:对于一个内接四边形,其对角线之积等于两组对边乘积之和,即$AC\cdot BD=AB\cdot CD+AD\cdot BC$。

逆命题也成立。

同时还有广义托勒密定理:$AB\cdotCD+AD\cdot BC\geq AC\cdot BD$。

蝴蝶定理:如果$AB$是圆$O$的弦,$M$是$AB$的中点,弦$CD$,$EF$经过点$M$,$CF$,$DE$交$AB$于$P$,$Q$,则$MP=QM$。

勾股定理(毕达哥拉斯定理):对于一个直角三角形,锐角对边的平方等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍;钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍。

同时还有广义勾股定理。

中线定理(巴布斯定理):对于一个三角形$\triangleABC$,如果$BC$的中点为$P$,则有$AB^2+AC^2=2(AP^2+BP^2)$。

同时,中线的长度可以用以下公式计算:$m_a=\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$。

数学竞赛-平面几何四个重要定理

数学竞赛-平面几何四个重要定理
15.(96 全国竞赛)⊙O1 和⊙O2 与 ΔABC 的三边所在直线 都相切,E、F、G、H 为切点,EG、FH 的延长线交于 P。 求证:PA⊥BC。
【分析】
【评注】
16.(99 全国竞赛)如图,在四边形 ABCD 中,对角 线 AC 平分∠BAD。在 CD 上取一点 E,BE 与 AC 相交 于 F,延长 DF 交 BC 于 G。求证:∠GAC=∠EAC。

AM:AC=CN:CE=k,且 B、M、N 共线。

k。(23-IMO-5)
【分析】
【评注】面积法
9. O 为△ABC 内一点,分别以 da、db、dc 表示 O 到 BC、CA、AB 的距离,以 Ra、Rb、 Rc 表示 O 到 A、B、C 的距离。
求证:(1)a·Ra≥b·db+c·dc;
(2) a·Ra≥c·db+b·dc;
求证:MQ//NP。
∠AMQ=∠CPN,
【分析】由 AB∥CD 知:要证 MQ∥NP,只需证
结合∠A=∠C 知,只需证
△AMQ∽△CPN

,AM·CN=AQ·CP。
连结 AC、BD,其交点为内切圆心 O。设 MN 与⊙O 切于 K,连结 OE、OM、OK、ON、OF。 记∠ABO=φ,∠MOK=α,∠KON=β,则
费马点:
已知 O 是△ABC 内一点,∠AOB=∠BOC=∠COA=120°; P 是△ABC 内任一点,求证:PA+PB+PC≥OA+OB+OC。(O 为费马点)
【分析】将 C
C‘,O
O’, P
则△B OO’、△B PP‘都是正三角形。
P‘,连结 OO’、PP‘。
∴OO’=OB,PP‘=PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。

在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。

以下是初中几何中常用的公理和定理。

一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。

2.同位角公理:同位角互等。

3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。

4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。

二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。

2.三角形内角和定理:三角形内角的和为180°。

3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。

4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。

5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。

6.等边三角形定理:等边三角形的三条边相等。

7.三角形外角定理:三角形外角等于其对应内角的和。

8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。

10.等周定理:等周的两角相等,反之亦成立。

11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。

12.周长定理:四边形周长等于各边长的和。

13.三角形周长定理:三角形的周长等于三边长的和。

14.三角形中线定理:三角形中线等分中位线,且平分第三边。

15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。

16.五边形内角和定理:五边形的内角和是540°。

17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。

18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。

19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。

20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。

初中数学几何定理汇总

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。

学习几何,需要证明,这时定理就很重要!点的定理:1、过两点有且只有一条直线2、两点之间线段最短角的定理:1、同角或等角的补角相等2、同角或等角的余角相等直线定理:1、过一点有且只有一条直线和已知直线垂直2、直线外一点与直线上各点连接的所有线段中,垂线段最短平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。

2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。

4. 相似三角形的性质:对应角相等,对应边成比例。

5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。

6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。

7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。

8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。

(完整版)初中数学竞赛平面几何中几个重要定理

(完整版)初中数学竞赛平面几何中几个重要定理

1 / 2初中数学竞赛平面几何中几个重要定理定理1 正弦定理ABC ∆中,设外接圆半径为R ,则2sin sin sin a b c R A B C === 证明:如图1-1,图1-2 过B 作直径BA ',则,90A A BCA ''∠=∠∠=o ,故sin sin 2BC a A A BA R '===',即2sin R A=; 同理可得2sin sin sin a b c R A B C=== 当A ∠为钝角时,可考虑其补角A π-.当A ∠为直角时,sin 1A =,故无论哪种情况正弦定理成立。

定理2 余弦定理ABC ∆中,有关系2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-有时也用它的等价形式cos cos a b C c B =+cos cos b a C c A =+cos cos c a B b A =+定理3 梅涅(Menelaus)劳斯定理(梅氏线)直线DEF 截ABC ∆的边,,BC CA AB 或其延长线于,,.D E F 则1AF BD CE FB DC EA⋅⋅=. 定理4塞瓦定理(Ceva) (塞瓦点)设O 是ABC ∆内任意一点,,,AD BE CF 分别交对边于,,D E F 则1BD CE AF DC EA FB⋅⋅=定理5塞瓦定理逆定理在ABC ∆三边所在直线,.BC CA AB 上各取一点,,D E F ,若1BD CE AF DC EA FB⋅⋅=则,,AD BE CF 平行或共点。

:定理6 斯特瓦尔特定理在ABC ∆中,若D 是BC 上一点,且,,,BD p DC q AB c AC b ====,则222b pc q AD pq p q+=-+2 / 2 定理7 托勒密定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆 AB CD BC AD AC BD ⋅+⋅=⋅的充要条件是,,,A B C D 四点共圆。

初中数学竞赛知识点归纳(定理)

初中数学竞赛知识点归纳(定理)

1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R 三点共线。

不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角 第一角元形式的梅涅劳斯定理 且因为AF=BF 所以AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 几个重要定理
1.正弦定理 △ABC 中,设外接圆半径为R ,则
2.余弦定理 △ABC 中,有关系
a2=b2+c2-2bccosA ; a=ccosB+bcosC ; b2=c2+a2-2cacosB ; 有时也用它的等价形式 b=acosC+ccosA ; c2=a2+b2-2abcosC ; c=acosB+bcosA.
3.梅涅(Menelaus)劳斯定理(梅氏线)
直线截△ABC 的边BC ,CA ,AB 或其延长线于D 、E 、F. 则
4.塞瓦定理(Ceva) (塞瓦点)
设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,

5.塞瓦定理逆定理
在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,
若则AD 、BE 、CE 平行或共点。

6.斯特瓦尔特定理
在△ABC 中,若D 是BC 上一点,且BD=p ,DC=q ,AB=c ,AC=b
,则
7.托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆 BD AC AD BC CD AB ∙=∙+∙的充要条件是共圆ABCD
8.西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

相关文档
最新文档