2020年广东省深圳市宝安中学高考数学模拟试卷(理科)(4月份)(含解析)
【附加15套高考模拟试卷】广东省深圳市宝安中学2020届高三下学期期末考试数学(理)试题含答案

广东省深圳市宝安中学2020届高三下学期期末考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数()cos24f x x π⎛⎫=-⎪⎝⎭的图象向左平移8π个单位后得到函数()g x的图象,则()g x()A.为奇函数,在0,4π⎛⎫⎪⎝⎭上单调递减B.为偶函数,在3,88ππ⎛⎫-⎪⎝⎭上单调递增C.周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 D.最大值为1,图象关于直线2xπ=对称2.已知三棱锥P ABC-的体积为433,4APCπ∠=,3BPCπ∠=,PA AC⊥,PB BC⊥,且平面PAC⊥平面PBC,那么三棱锥P ABC-外接球的体积为()A.43πB.823πC.1233πD.323π3.函数f(x)=a x+log a(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a的值为()A.14B.12C.2 D.44.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为()A.24 B.48 C.72 D.965.定义在R上的奇函数()y f x=满足(4)0f=,且当0x>时,不等式3()'()f x xf x>-恒成立,则函数3()()lg1g x x f x x=++的零点的个数为()A.2 B.3 C.4 D.56.异面直线a,b所成的角为6π,直线a c⊥,则异面直线b与c所成角的范围为()A.,32ππ⎡⎤⎢⎥⎣⎦B.,62ππ⎡⎤⎢⎥⎣⎦C.2,33ππ⎡⎤⎢⎥⎣⎦D.5,66ππ⎡⎤⎢⎥⎣⎦7.一个各面均为直角三角形的四面体容器,有三条棱长为2,若四面体容器内完全放进一个球,则该球的半径最大值为()A.21-B.22-C.1 D.28.一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.89.执行如图所示的程序框图,输出S的值为()A.2log101-B.22log31-C.92D.610.若不等式1ln x m m ex+-≤+对1[,1]xe∈成立,则实数m的取值范围是()A.1 [,)2-+∞B.1(,]2-∞-C.1[,1]2-D.[1,)+∞11.将函数()f x的图像上的所有点向右平移4π个单位长度,得到函数()g x的图像,若函数()()sin0,0,2g x A x Aπωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,则函数()f x的解析式为A.()5sin12f x xπ⎛⎫=+⎪⎝⎭B.()sin26f x xπ⎛⎫=-⎪⎝⎭C.()5sin26f x xπ⎛⎫=+⎪⎝⎭D.()7sin212f x xπ⎛⎫=+⎪⎝⎭12.已知点F1,F2是椭圆2222x ya b+=1(a>b>0)的左、右焦点,P为椭圆上的动点,动点Q在射线F1P 的延长线上,且|PQu u u r|=|2PFu u u r|,若|PQu u u r|的最小值为1,最大值为9,则椭圆的离心率为()A.35B.13C.45D.19二、填空题:本题共4小题,每小题5分,共20分。
深圳市普通高中学校2020届高考高三数学4月月考模拟试题Word版含答案

深圳市2020高考高三数学4月月考模拟试题(含答案)(时间:1 2 0分钟,分数:1 5 0分)第I 卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数22cos sin33z i ππ=+(i 为虚数单位),则3z 的虚部为A .-1B .0C .iD .l2.已知集合**{|2,},{|2,}nA x x n NB x x n n N ==∈==∈,则下列不正确的是A .AB ⊆B .A B A ⋂=C .()Z B A φ⋂=ðD .A B B ⋃=3.若实数11ea dx x=⎰.则函数()sin cos f x a x x =+的图像的一条对称轴方程为A .x=0B .34x π=-C .4π-D .54x π=-4.甲乙丙3位同学选修课程,从4门课程中选。
甲选修2门,乙丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .1 92种5.已知不共线向量,,2,3,.()1,a b a b a b a ==-=r r r r r r r 则b a -r rA 3B .22C 7D 236.若22*1()1,()1,(),2f n n n g n n n n n N nϕ=+=-=∈,则(),(),()f n g n n ϕ的大小关系 A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<<C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<7.从一个正方体中截去部分几何体,得到的几何体三视图如下,则此几何体的体积是( ) A .64 B .1223 C .1883D .4768.执行如图所示的程序框图,若输出a= 341,判断框内应填写( ) A .k<4? B .k<5? C .k<6? D .k<7?9.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x+y=a扫过A 中的那部分区域面积为( ) A .2 B .1C .34D .7410.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB(O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1B . 2C .2D .411.平行四边形ABCD 中,AB u u u r ·BD u u u r=0,沿BD 折成直二面角A 一B D -C ,且4AB 2 +2BD 2 =1,则三棱锥A -BCD 的外接球的表面积为( ) A .2πB .4πC .48πD.2412.已知R 上的函数y=f (x ),其周期为2,且x ∈(-1,1]时f (x )=1+x 2,函数g (x )=1sin (0)11,(0)x x x xπ+>⎧⎪⎨-<⎪⎩,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为( ) A .11B .10C .9D .8第Ⅱ卷本卷分为必做题和选做题两部分,13—21题为必做题,22、23、24为选考题。
广东深圳市2020届高三4月模拟试卷(含答案详解)

广东深圳市2020届高三4月模拟试卷文 科 数 学注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,1}A =-,{0,1,2,3}B =,则A B =I ( ) A .{1}B .{1,2}C .{0,1}D .{1,0,1,2,3}-2.等差数列{}n a 中,27a =,623a =,则4a =( ) A .11B .13C .15D .173.已知π(,π)2a Î,π3cos()23a +=-,则sin 2a =( )A .23B .223 C .23-D .223-4.传承传统文化再掀热潮,在刚刚过去的假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,如图的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是( )A .甲的平均数大于乙的平均数B .甲的中位数大于乙的中位数C .甲的方差大于乙的方差D .甲的方差小于乙的方差5.已知双曲线22221(0, 0)a b x y a b >>-=的离心率为e ,若3a be a-=,则该双曲线的渐近线方程为( ) A .230x y ±=B .320x y ±=C .430x y ±=D .340x y ±=6.“4k <”是“04k <<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.设点(,)P a b 在函数1y x=(0x >,1x ≠)的图像上,则函数xy b =与函数log a y x =的图像在同一个坐标系中可能正确的是( )A .B .C .D .8.已知菱形ABCD 的边长为2,E 为AB 的中点,120ABC ∠=︒,则DE AC ⋅u u u r u u u r的值为( )A .4B .3-C 3D .39.若函数3()()3x f x e x ax a =--有3个零点,则实数a 的取值范围是( ) A .1(0,)2B .1(,)2+∞C .(10,4)D .(1,4)+∞10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若2a =,π4C =,4tan 3B =, 则ABC △的面积等于( ) A .87B .7210C .2D .9811.围棋起源于中国,春秋战国时期已有记载.隋唐时经朝鲜传入日本,后流传到欧美各国.围棋蕴含着中华文化的丰富内涵,它是中国文化与文明的体现.围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条线段形成361个交叉点,棋子走在交叉点上,双方交替行棋,落子后不能移动,以围地多者为胜.围棋状态空间的复杂度上限为3613P =,据资料显示宇宙中可观测物质原子总数约为8010Q =,下列数中最接近数值PQ的是( )(参考数据:lg30.477≈) A .9010B .9110C .9210D .931012.已知函数3()ln f x x x =+与3()g x x ax =--的图象上存在关于y 轴对称的对称点,则实数a 的取值范围是( ) A .1a e ≤ B .1a e≥C .a e ≤D .a e ≥第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知i 为虚数单位,复数12i z =-,21i z =+,那么12z z =________.14.若实数x 、y 满足约束条件320210280x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩,则3z x y =+的最大值为________.15.已知P 为ABC △所在平面内一点,且满足()AP AB AC λ=+u u u r u u u r u u u r ,(12)BP BC μ=-u u u r u u u r(,)λμ∈R ,则λμ+=________.16.已知三棱锥A BCD -的四个顶点都在球O 的球面上,且AC =,2BD =,AB BC CD AD ====O 的表面积为________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知在ABC △中,A ,B ,C 的对边分别是a ,b ,c ,且2222sin ()sin c B b c a C =+-,且9AB AC?uu u r uuu r .(1)求ABC △的面积;(2)D 为BC 边上的点,且满足2BD DC =,当a 取得最小值时,求AD 的长.18.(12分)设n S 为等比数列{}n a 的前n 项和,且3242S S a -=. (1)若11a =,求n a ;(2)若40a <,求使得1815n S a ≥成立的n 的取值范围.19.(12分)如图,四棱锥P ABCD -中,AB CD ∥,π2BCD ∠=,PA BD ⊥,2AB =,1PA PD CD BC ====.(1)求证:平面PAD ⊥平面ABCD ; (2)求点C 到平面PBD 的距离.20.(12分)已知抛物线2:2(0)C x py p =>的焦点为F ,点0(,3)P x 为抛物线C 上一点,且点P 到焦点F 的距离为4,过(,0)A a 作抛物线C 的切线AN (斜率不为0),切点为N .(1)求抛物线C 的标准方程;(2)求证:以FN 为直径的圆过点A .21.(12分)已知函数2()1ln f x x a x =-+,其中a ∈R . (1)讨论函数()f x 的单调性;(2)若对任意1x ≥,()0f x ≤恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,圆1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆2C的极坐标方程为)4πρθ=+.(1)求圆1C 的普通方程和圆2C 的直角坐标方程; (2)判断圆1C 与圆2C 的位置关系.23.(10分)【选修4-5:不等式选讲】函数()|2|f x ax =+,其中a ∈R ,若()f x a ≤的解集为[2,0]-. (1)求a 的值;(2)求证:对任意x ∈R ,存在1m >,使得不等式1(2)(2)1f x f x m m -+≥+-成立.深圳市2020届高三4月文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】由已知得{1}A B =I ,故选A . 2.【答案】C【解析】等差数列{}n a 中,27a =,623a =,2647231522a a a ++===. 3.【答案】D【解析】因为π(,π)2a Î,πcos()sin 23a a +=-=-,所以sin 3a =,cos 3a =-,sin 22sin cos 3a a a ==-. 4.【答案】C 【解析】11(594532382426111214)299x =++++++++=, 21(514330342025272812)309x =++++++++=,∴222222222121[301639(5)(3)(18)(17)(15)]235.39S =++++-+-+-+-+-≈,222222222221[211304(10)(5)(3)(2)(18)]120.99S =++++-+-+-+-+-≈,又甲的中位数为26,乙的中位数为28. ∴甲的平均数小于乙的平均数,所以A 不正确; 甲的中位数小于乙的中位数,所以B 不正确; 甲的方差大于乙的方差,所以C 正确,D 不正确. 5.【答案】C【解析】3c a b a a -=,3c a b =-,2222296a b c a ab b +==-+,43b a =, 所以该双曲线的渐近线方程为43y x =±,即430x y ±=,故选C .6.【答案】B【解析】“04k <<”包含于“4k <”这一范围,反之“4k <”则不一定有“04k <<”, 根据小范围推大范围得到“4k <”是“04k <<”的必要而不充分条件.7.【答案】C【解析】∵(,)P a b 在1y x=(0x >,1x ≠)上, ∴1a b ⋅=,则有1a >,10b >>或10a >>,1b >, 观察选项可知,当10a >>,1b >时,C 正确. 8.【答案】B【解析】菱形ABCD 的边长为2,120ABC ∠=︒, ∴2AB BD AD ===,∵E 为AB 的中点,∴12DE DA AB =+u u u r u u u r u u u r ,AC AD AB =+u u ur u u u r u u u r ,∴221114222cos603222DE AC AD AB AB AD ⋅=-+-⋅=-+-⨯⨯⨯︒=-u u u r u u u r u u u r u u u r u u u r u u u r .9.【答案】D【解析】令3()3g x x ax a =--,若()()xf x eg x =有3个零点,则()g x 有3个零点,2()33g x x a '=-. 当0a ≤时,()0g x '≥,()g x 是增函数,至多有一个零点; 当0a >时,令()0g x '=,解得x =由题意知(0g >,0g <,∴14a >,故选D . 10.【答案】A 【解析】因为π4C =,4tan 3B =,所以4sin 5B =,3cos 5B =,所以πsin sin()sin()cos )4210A B C B B B =+=+=+=, 因为sin sin a c A C =,所以2sin 10sin 7a C c A ===, 所以ABC △的面积111048sin 222757S ac B ==⨯⨯⨯=. 11.【答案】C【解析】令36180310P x Q ==,取对数得lg 361lg3803610.4778092.197x =⋅-=⨯-≈,故9210最接近. 12.【答案】A【解析】函数3()ln f x x x =+与3()g x x ax =--的图象上存在关于y 轴对称的对称点, ∴方程()()f x g x =-在(0,)+∞上有解,即方程33ln x x x ax +=+在(0,)+∞上有解,∴方程ln x ax =在(0,)+∞有解.设ln y x =,y ax =,则两函数的图象有公共点, 由ln y x =,得1y x'=, 若y ax =为ln y x =的切线,且切点为00(,)x y ,则有00001ln a x y ax x⎧=⎪⎨⎪==⎩,解得1a e =,结合函数图象可得若两函数的图象有公共点,则需满足1a e≤, 所以实数a 的取值范围是1(,]e-∞.第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】3i +【解析】复数12i z =-,21i z =+,所以12(2i)(1i)3i z z =-+=+. 14.【答案】11【解析】由约束条件320210280x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩作出可行域如图阴影部分所示:由3z x y =+,得3y x z =-+,平移直线3y x z =-+,由图形可得,当直线经过可行域内的点A 时,直线y 轴上的截距最大,此时z 取得最大值.由210280x y x y -+=⎧⎨+-=⎩,可得(3,2)A ,所以max 33211z =⨯+=. 15.【答案】34【解析】因为(12)(,)BP BC μλμ=-∈R u u u r u u u r ,所以(12)()BA AP BA AC μ+=-+u u u r u u u r u u u r u u u r,故(12)()AP AB AC AB μ=--++u u u r u u u r u u u r u u u r ,2(12)AP AB AC μμ=+-u u u r u u u r u u u r,因为AB u u u r 、AC u u u r 不共线,()AP AB AC λ=+u u u r u u u r u u u r ,所以212λμλμ=⎧⎨=-⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,即34λμ+=. 16.【答案】4π【解析】取BD 中点O ,由2AB BC CD AD ====2BD =,知1OA OB OC OD ====,∴球半径为1,表面积为4π,故答案是4π.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.【答案】(193;(214 【解析】(1)由正弦定理得2222222()c b b c a c b c a bc =+-?-=,所以1cos 2A =, 又因为(0,π)A Î,所以π3A =,cos 918AB ACbc A bc ???uuu r uuu r ,所以193sin 22ABC S bc A △==. (2)由(1)得22218a b c bc bc=+-?,当且仅当32b c ==a 取得最小值为32此时三角形为等边三角形,1233AD AB AC =+uuu r uu u r uuu r,∴1121418218181493329AD =?创创+?uuu r .18.【答案】(1)11()2n n a -=;(2){|14,}n n n ≤≤∈N .【解析】(1)设{}n a 的公比为q ,∵3242S S a -=,∴342a a =,∴4312a q a ==, 又∵11a =,∴1111()2n n n a a q --==. (2)∵3411()02a a =<,∴10a <,∵1815n S a ≥,∴1111()28()15112na a -≥-,∴116(1)152n -≤, ∴1151216n -≤,∴41112162n ≥=, ∴14n ≤≤,n ∈N ,即{|14,}n n n ≤≤∈N .19.【答案】(1)证明见解析;(2)12. 【解析】(1)∵AB CD ∥,π2BCD ∠=,1PA PD CD BC ====,∴2BD =,π2ABC ∠=,π4DBC ∠=,∴π4ABD ∠=,∵2AB =,∴2AD =,∴222AB AD BD =+,∴AD BD ⊥,∵PA BD ⊥,PA AD A =I ,∴BD ⊥平面PAD , ∵BD ⊂平面ABCD ,∴平面PAD ⊥平面ABCD . (2)取AD 中点O ,连接PO ,则PO AD ⊥,且22PO =, 由平面PAD ⊥平面ABCD ,知PO ⊥平面ABCD , 由BD ⊥平面PAD ,得BD PD ⊥, 又1PD =,2BD =,∴PBD △的面积为22, 又BCD △的面积为12,P BCD C PBD V V --=, 设点C 到平面PBD 的距离为d ,则1211232322d ⨯=⨯⨯,∴12d =, 即点C 到平面PBD 的距离为12.20.【答案】(1)24x y =;(2)证明见解析.【解析】(1)由题知,||2P p PF y =+,∴432p=+,解得2p =, ∴抛物线C 的标准方程为24x y =.(2)设切线AN 的方程为()y k x a =-,0k ≠,联立24()x yy k x a ⎧=⎨=-⎩,消去y ,可得2440x kx ka -+=,由题意得216160Δk ka =-=,即a k =,∴切点2(2,)N a a , 又(0,1)F ,∴2210AF AN a a u u u r u u u r⋅=-+⋅=.∴90FAN ∠=︒, 故以FN 为直径的圆过点A .21.【答案】(1)见解析;(2)(,2]-∞.【解析】(1)由题意,函数()f x 的定义域为(0,)+∞,且22()2a x af x x x x-+'=-+=.当0a ≤时,()0f x '<在(0,)+∞上恒成立,从而函数()f x 在(0,)+∞上为减函数;当0a >时,由()0f x '≤,得2a x ≥()0f x '≥,得20a x <≤, 所以,函数()f x 在2a 上递增;在2)a+∞上递减, 综上所述,当0a ≤时,函数()f x 在(0,)+∞上为减函数;当0a >时,函数()f x 在2a 上为增函数;在2[)a +∞上为减函数. (2)由(1),得0a ≤时,函数()f x 在[1,)+∞上为减函数,要使()0f x ≤恒成立,则(1)0f ≤,而(1)0f =,所以0a ≤满足题意;当0a >21a≤,即02a <≤,函数()f x 在[1,)+∞上为减函数,由上述讨论,02a <≤满足题意;若12>,即2a >, 由(1)函数()f x 在[1,)+∞上最大值为1ln (1)2222a a af f =-+>, 而(1)0f =,即知0f >,不符合题意, 综上所述,实数a 的取值范围为(,2]-∞.22.【答案】(1)212:(2)4x y C +-=,222(1)(1:)2x C y -++=;(2)相交.【解析】(1)圆的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),可得2cos 22sin x y αα=⎧⎨-=⎩,平方相加转换为直角坐标方程为22(2)4x y +-=.由圆2C的极坐标方程)4πρθ=+,可得22cos 2sin ρρθρθ=-, 转换为直角坐标方程为2222x y x y +=-,即22(1)(1)2x y -++=.(2)由(1)知圆1C 的半径12r =,圆心坐标为(0,2); 圆2C的半径2r =(1,1)-,则圆心距d ==222121261())0(r r d r r +=+>=>-, 所以,圆1C 与圆2C 相交.23.【答案】(1)2a =;(2)证明见解析. 【解析】(1)由题意知0a ≤不满足题意;当0a >时,由|2|ax a +≤,得2a ax a -≤+≤,∴2211x a a--≤≤-, 则212210a a⎧--=-⎪⎪⎨⎪-=⎪⎩,则2a =. (2)设()(2)(2)|22||42|g x f x f x x x =-+=-++, 对于任意实数x ,存在1m >,使得不等式1(2)(2)1f x f x m m -+≥+-, 只需min min 1()()1g x m m ≥+-, ∵6,11()24,1216,2x x g x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,当12x =-时,min ()3g x =,由1111311m m m m +=-++≥--,仅当2m =取等号, ∴原不等式成立.。
2020年广东省深圳市高考数学一模试卷(理科)

某市为提升中学生的数学素养,激发学生学习数学的兴趣,举办了一次“数学文化知识大赛”,分预赛和复赛两个环节.已知共有 名学生参加了预赛,现从参加预赛的全体学生中随机地抽取 人的预赛成绩作为样本,得到如下频率分布直方图.
(1)规定预赛成绩不低于 分为优良,若从上述样本中预赛成绩不低于 分的学生中随机地抽取 人,求恰有 人预赛成绩优良的概率;
④函数 的最小正周期是 .
其中所有正确结论的编号是()
A.②③B.①④C.②③④D.①②
12.将边长为 的菱形 沿对角线 折起,顶点 移动至 处,在以点 , , 为顶点的四面体 中,棱 、 的中点分别为 、 ,若 = ,且四面体 的外接球球心落在四面体内部,则线段 长度的取值范围为()
A. B. C. D.
A. B. C. D.
10.已知过抛物线 = 焦点 的直线与抛物线交于 , 两点, 为线段 的中点,连接 ,则 的最小面积为()
A. B. C. D.
11.已知定义在 上的函数 在 上有且仅有 个零点,其图象关于点 和直线 对称,给出下列结论:
① ;
②函数 在 上有且仅有 个极值点;
③函数 在 上单调递增;
2020年广东省深圳市高考数学一模试卷(理科)
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合 ,集合 = ,则 =()
A. B. C. D.
2.下列函数中为奇函数的是()
A. = B. = C. = D.
3.已知复数 = ,则 的共轭复数
(2)已知 的内角 , , 的对边分别为 , , ,若 ,且 = ,求 的面积.
2020年高考模拟试卷广东省深圳市高考(理科) 数学一模试卷 含解析

2020年高考模拟高考数学一模试卷(理科)一、选择题1.已知集合A={0,1,2,3},B={x|x2﹣2x﹣3<0},则A∪B=()A.(﹣1,3)B.(﹣1,3]C.(0,3)D.(0,3]2.设z=,则z的虚部为()A.﹣1B.1C.﹣2D.23.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42A.25B.23C.12D.074.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36B.32C.28D.245.若双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),则该双曲线的离心率为()A.B.C.D.26.已知tanα=﹣3,则=()A.B.C.D.7.的展开式中x3的系数为()A.168B.84C.42D.218.函数f(x)=ln|e2x﹣1|﹣x的图象大致为()A.B.C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为()A.B.32πC.36πD.48π10.已知动点M在以F1,F2为焦点的椭圆上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为()A.2B.4C.8D.1611.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O,H分别是△ABC的外心、垂心,且M为BC中点,则()A.B.C.D.12.已知定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,则正实数ω的取值个数最多为()A.4B.3C.2D.1二、填空题:共4小题,每小题5分,共20分.13.若x,y满足约束条件,则z=x﹣2y的最小值为.14.设数列{a n}的前n项和为S n,若S n=2a n﹣n,则a6=.15.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为.16.已知点M(m,m﹣)和点N(n,n﹣)(m≠n),若线段MN上的任意一点P 都满足:经过点P的所有直线中恰好有两条直线与曲线C:y=+x(﹣1≤x≤3)相切,则|m﹣n|的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2﹣c2=2S.(1)求cos C;(2)若a cos B+b sin A=c,,求b.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,点M,N分别在棱C1C,A1A上,且C1M=2MC,A1N=2NA.(1)求证:NC1∥平面BMD;(2)若A1A=3,AB=2AD=2,∠DAB=,求二面角N﹣BD﹣M的正弦值.19.已知以F为焦点的抛物线C:y2=2px(p>0)过点P(1,﹣2),直线l与C交于A,B两点,M为AB中点,且.(1)当λ=3时,求点M的坐标;(2)当=12时,求直线l的方程.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:P(K2≥k0)0.050.0250.010k0 3.841 5.024 6.635,其中n=a+b+c+d.21.已知函数f(x)=e x﹣aln(x﹣1).(其中常数e=2.71828…,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;(2)若函数f(x)在区间(1,1+e﹣a)上不单调,证明:+>a.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3},B={x|x2﹣2x﹣3<0},则A∪B=()A.(﹣1,3)B.(﹣1,3]C.(0,3)D.(0,3]【分析】求出A与B中不等式的解集确定出A与B,求出A与B的并集.解:集合A={0,1,2,3},B={x|x2﹣2x﹣3<0}=(﹣1,3),则A∪B=(﹣1,3],故选:B.2.设z=,则z的虚部为()A.﹣1B.1C.﹣2D.2【分析】直接利用复数代数形式的乘除运算化简得答案.解:∵z==,∴z的虚部为1.故选:B.3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42A.25B.23C.12D.07【分析】根据随机数表依次进行选取即可.解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,依次为07,04,08,23,12,则抽取的第5个零件编号为,12,故选:C.4.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36B.32C.28D.24【分析】利用等差数列的通项公式求和公式及其性质即可得出.解:S6==3×(3+9)=36.故选:A.5.若双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),则该双曲线的离心率为()A.B.C.D.2【分析】由(1,﹣2)在直线上,可得.由e=.即可求解.解:∵双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),∴点(1,﹣2)在直线上,∴.则该双曲线的离心率为e=.故选:C.6.已知tanα=﹣3,则=()A.B.C.D.【分析】由=cos2α==,代入即可求解.解:因为tanα=﹣3,则=cos2α====.故选:D.7.的展开式中x3的系数为()A.168B.84C.42D.21【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得展开式中x3的系数.解:由于的展开式的通项公式为T r+1=•(﹣2)r x7﹣2r,则令7﹣2r=3,求得r=2,可得展开式中x3的系数为•4=84,故选:B.8.函数f(x)=ln|e2x﹣1|﹣x的图象大致为()A.B.C.D.【分析】由特殊点的函数值运用排除法得解.解:,故排除CD;f(﹣1)=ln|e﹣2﹣1|+1=ln(1﹣e﹣2)+lne=,故排除B.故选:A.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为()A.B.32πC.36πD.48π【分析】首先把三视图转换为几何体,进一步求出外接球的半径,最后求出表面积.解:根据几何体的三视图转换为几何体为三棱锥体A﹣BCD:如图所示:设外接球的半径为r,则:(2r)2=42+42+42,解得r2=12,所以:S=4π×12=48π.故选:D.10.已知动点M在以F1,F2为焦点的椭圆上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为()A.2B.4C.8D.16【分析】N在圆上,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,当N,M,F2三点共线时取得最大值,再由椭圆的定义可得|NF2|的最大值.解:由椭圆的方程可得焦点在y轴上,a2=4,即a=2,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,当N,M,F2三点共线时取得最大值而|F2M|+|MF1|=2a=4,所以|NF2|的最大值为4,故选:B.11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O,H分别是△ABC的外心、垂心,且M为BC中点,则()A.B.C.D.【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.解:如图所示的Rt△ABC,其中角B为直角,则垂心H与B重合,∵O为△ABC的外心,∴OA=OC,即O为斜边AC的中点,又∵M为BC中点,∴,∵M为BC中点,∴===.故选:D.12.已知定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,则正实数ω的取值个数最多为()A.4B.3C.2D.1【分析】由定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,可得:0<≤1,解得0<ω≤3,因此:≤ωx﹣≤.分类讨论:①0<ω≤时,sin(ω﹣)=,利用函数零点定理即可判断出结论.②<ω≤3,sin(ωx﹣)=1,必须ω=3,x=<.即可得出结论.解:∵定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,∴0<≤1,解得0<ω≤3,∴≤ωx﹣≤.①0<ω≤时,则sin(ω﹣)=,令g(ω)=sin(ω﹣)﹣,∵g(0)=﹣<0,g()=1﹣=>0,因此存在唯一实数ω,使得sin(ω﹣)=.②<ω≤3,sin(ωx﹣)=1,必须ω=3,x=.综上可得:正实数ω的取值个数最多为2个.故选:C.二、填空题:共4小题,每小题5分,共20分.13.若x,y满足约束条件,则z=x﹣2y的最小值为﹣3.【分析】画出约束条件表示的平面区域,结合图象求出最优解,再计算目标函数的最小值.解:画出x,y满足约束条件,表示的平面区域,如图所示;结合图象知目标函数z=x﹣2y过A时,z取得最小值,由,解得A(1,2),所以z的最小值为z=1﹣2×2=﹣3.故答案为:﹣3.14.设数列{a n}的前n项和为S n,若S n=2a n﹣n,则a6=63.【分析】直接利用数列的递推关系式的应用,求出数列的通项公式,进一步求出结果.解:数列{a n}的前n项和为S n,由于S n=2a n﹣n,①所以当n≥2时,S n﹣1=2a n﹣1﹣(n﹣1)②,①﹣②得:a n=2a n﹣1+1,整理得(a n+1)=2(a n﹣1+1),所以(常数),所以数列{a n+1}是以2为首项,2为公比的等比数列.所以,整理得.所以.故答案为:6315.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为.【分析】分别求出基本事件的总数为,其中该验证码的首位数字是1的包括的事件个数为.利用古典概率计算公式即可得出.解:基本事件的总数为,其中该验证码的首位数字是1的包括的事件个数为.∴该验证码的首位数字是1的概率==.故答案为:.16.已知点M(m,m﹣)和点N(n,n﹣)(m≠n),若线段MN上的任意一点P 都满足:经过点P的所有直线中恰好有两条直线与曲线C:y=+x(﹣1≤x≤3)相切,则|m﹣n|的最大值为.【分析】由条件可得M,N在直线y=x﹣上,联立曲线的方程可得它们无交点,求得函数y=+x的导数,可得在x=﹣1和x=3的切线的斜率和方程,联立直线y=x ﹣,求得交点E,F,可得所求最大值.解:由点M(m,m﹣)和点N(n,n﹣),可得M,N在直线y=x﹣上,联立曲线C:y=+x(﹣1≤x≤3),可得x2=﹣,无实数解,由y=+x的导数为y′=x+1,可得曲线C在x=﹣1处的切线的斜率为0,可得切线的方程为y=﹣,即有与直线y=x﹣的交点E(0,﹣),同样可得曲线C在x=3处切线的斜率为4,切线的方程为y=4x﹣,联立直线y=x﹣,可得交点F(,),此时可设M(0,﹣),N(,),则由图象可得|m﹣n|的最大值为﹣0=,故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2﹣c2=2S.(1)求cos C;(2)若a cos B+b sin A=c,,求b.【分析】(1)由已知结合余弦定理及三角形的面积公式可求cos C,(2)由已知结合正弦定理及和差角公式可求A,然后结合诱导公式及和角正弦可求sin B,再由正弦定理即可求解b.解:(1)∵a2+b2﹣c2=2S,所以2ab cos C=ab sin C,即sin C=2cos C>0,sin2C+cos2C=1,cos C>0,解可得,cos C=,(2)∵a cos B+b sin A=c,由正弦定理可得,sin A cos B+sin B sin A=sin C=sin(A+B),故sin A cos B+sin B sin A=sin A cos B+sin B cos A,所以sin A=cos A,∵A∈(0,π),所以A=,所以sin B=sin(A+C)=sin()==,由正弦定理可得,b===3.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,点M,N分别在棱C1C,A1A上,且C1M=2MC,A1N=2NA.(1)求证:NC1∥平面BMD;(2)若A1A=3,AB=2AD=2,∠DAB=,求二面角N﹣BD﹣M的正弦值.【分析】(1)连接BD,AC交于E,取C₁M的中点F,连接AF,ME,先证明平行四边形C1FAN,所以C1N∥FA,最后得出结论;(2)根据题意,以D为原点,以DA,DB,DD₁分别为x,y,z轴建立空间直角坐标系,利用向量法求出平面的法向量,利用夹角公式求出即可.解:(1)连接BD,AC交于E,取C1M的中点F,连接AF,ME,由C1M=2MC,A1N=2NA,故C1F=AN,以且C1F∥AN,故平行四边形C1FAN,所以C1N∥FA,根据中位线定理,ME∥AF,由ME⊂平面MDB,FA⊄平面MDB,所以FA∥平面MDB,NC1∥FA,故NC1∥平面BMD;(2)AB=2AD=2,∠DAB=,由DB2=1+4﹣2×1×2×cos=3,由AB2=AD2+DB2,得AD⊥BD,以D为原点,以DA,DB,DD₁分别为x,y,z轴建立空间直角坐标系,D(0,0,0),B(0,,0),M(﹣1,,1),N(1,,1),=(0,,0),=(﹣1,,1),=(1,,1),设平面MBD的一个法向量为=(x,y,z),由,令x=1,得=(1,0,1),设平面NBD的一个法向量为=(a,b,c),由,得,由cos<>=,所以二面角N﹣BD﹣M为,正弦值为1.19.已知以F为焦点的抛物线C:y2=2px(p>0)过点P(1,﹣2),直线l与C交于A,B两点,M为AB中点,且.(1)当λ=3时,求点M的坐标;(2)当=12时,求直线l的方程.【分析】(1)将P代入抛物线方程,求得p的值,根据向量的坐标运算,即可求得M 的值;(2)方法一:根据向量的坐标运算,求得M的纵坐标,利用抛物线的“点差法”求得直线的斜率,代入抛物线方程,利用韦达定理及向量的坐标运算,即可求得直线l的方程;方法二:设直线l的方程,代入抛物线方程,利用韦达定理,中点坐标公式,及向量的坐标运算,即可求得直线l的方程.解:(1)将P(1,﹣2)代入抛物线C:y2=2px方程,得p=2,所以C的方程为y2=4x,焦点F(1,0),设M(x0,y0),当λ=3时,,可得M(2,2).(2)方法一:设A(x1,y1),B(x2,y2),M(x0,y0),由.可得(x0+1,y0﹣2)=(λ,0),所以y0=2,所以直线l的斜率存在且斜率,设直线l的方程为y=x+b,联立,消去y,整理得x2+(2b﹣4)x+b2=0,△=(2b﹣4)2﹣4b2=16﹣16b>0,可得b<1,则x1+x2=4﹣2b,,,所以,解得b=﹣6,b=2(舍),所以直线l的方程为y=x﹣6.方法二:设直线l的方程为x=my+n,设A(x1,y1),B(x2,y2),M(x0,y0),联立方程组,消去x,整理得y2﹣4my﹣4n=0,△=16m2+16n>0,则y1+y2=4m,y1y2=﹣4n,则,则M(2m2+n,2m),由.得(2m2+n+1,2m﹣2)=(λ,0),所以m =1,所以直线l的方程为x=y+n,由△=16+16n>0,可得n>﹣1,由y1y2=﹣4n,得,所以,解得n=6或n=﹣2,(舍去)所以直线l的方程为y=x﹣6.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:P(K2≥k0)0.050.0250.010k0 3.841 5.024 6.635,其中n=a+b+c+d.【分析】(1)根据统计数据计算平均数即可;(2)根据题意补充完整列联表,计算K2,对照临界值得出结论;(3)根据题意知随机变量X~B(20,),计算概率P(X=k),列不等式组并结合题意求出k的值.解:(1)根据统计数据,计算平均数为=×(1×85+3×205+5×310+7×250+9×130+11×15+13×5)=5.4(天);(2)根据题意,补充完整列联表如下;潜伏期<6天潜伏期≥6天总计50岁以上(含506535100岁)50岁以下5545100总计12080200根据列联表计算K2==≈2.083<3.841,所以没有95%的把握认为潜伏期与年龄有关;(3)根据题意得,该地区每1名患者潜伏期超过6天发生的概率为=,设调查的20名患者中潜伏期超过6天的人数为X,则X~B(20,),P(X=k)=••,k=0,1,2, (20)由,得,化简得,解得≤k≤;又k∈N,所以k=8,即这20名患者中潜伏期超过6天的人数最有可能是8人.21.已知函数f(x)=e x﹣aln(x﹣1).(其中常数e=2.71828…,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;(2)若函数f(x)在区间(1,1+e﹣a)上不单调,证明:+>a.【分析】(1)求导后,分a≤0及a>0讨论即可得出结论;(2)结合题意分析可知1+e﹣a﹣lna>a,由及可证,进而得出结论.解:(1)易知,①若a≤0,则f′(x)>0,函数f(x)在(1,+∞)上单调递增,∴函数f(x)无极值点,即此时极值点个数为0;②若a>0,易知函数y=e x的图象与的图象有唯一交点M(x0,y0),∴,∴当x∈(1,x0)时,f′(x)<0,函数f(x)在(1,x0)上单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)在(x0,+∞)上单调递增,∴函数f(x)有较小值点x0,即此时函数f(x)的极值点个数为1;综上所述,当a≤0时,函数f(x)的极值点个数为0;当a>0时,函数f(x)的极值点个数为1;(2)证明:∵函数f(x)在区间(1,1+e﹣a)上不单调,∴存在为函数f(x)的极值点,由(1)可知,a>0,且,即,两边取自然对数得1﹣a+e﹣a>lna,即1+e﹣a﹣lna>a,要证+>a,不妨考虑证,又易知e x≥1+x,∴,即,又,∴,∴,即,∴,∴+>a.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.【分析】(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,利用互化公式可得普通方程.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△>0,由α为锐角.可得:sin(α+)>,解得:0<α<.利用根与系数的关系可得:|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,解出α即可得出.解:(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,可得普通方程:x2+y2=4y.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△=﹣48>0,可得:sin(α+)>,或sin(α+)<﹣,由α为锐角.可得:sin(α+)>,解得:0<α<.则t1+t2=4cosα+4sinα,t1t2=12.∴|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,∴8=8|sin(α+)|,∴化为:sin(α+)=1,∴α=+2kπ,k∈Z.α满足0<α<.可得α=.∴直线C1的参数方程为:,可得普通方程:x﹣y+2=0.[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.【分析】(1)利用乘一法,结合基本不等式即可求证;(2)ac+bc+ab﹣abc)=(1﹣a)(1﹣b)(1﹣c),再利用基本不等式即可求证.【解答】证明:(1)=,当且仅当时,等号成立;(2)∵a,b,c为正数,且满足a+b+c=1,∴c=1﹣a﹣b,1﹣a>0,1﹣b>0,1﹣c>0,∴ac+bc+ab﹣abc=(a+b﹣ab)c+ab=(a+b﹣ab)(1﹣a﹣b)+ab=(b﹣1)(a﹣1)(a+b)=(1﹣a)(1﹣b)(1﹣c),∴ac+bc+ab﹣abc≤,当且仅当时,等号成立.。
【4月深圳二模理数】2020年深圳普通高中高三年级第二次在线测试理科数学试卷及参考答案评分标准(二模)

的中点.直线
DB1 与平面
EFC
的交点 O
,则
DO OB1
的值为
D1
F A1
A. 4 5
B. 3 5
C. 1 3
D. 2 3
D
A
E
C1 B1
C B
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.已知 x 轴为曲线 f (x) = 4x3 + 4(a −1)x +1的切线,则 a 的值为
2
3
得到的图象所对应的函数为奇函数..现有下列结论:
①函数 f (x) 的图象关于直线 x = 5π 对称 12
②函数 f (x) 的图象关于点 ( π , 0) 对称 12
③函数
f
(x)
在区间
−
π 2
,
−
π 12
上单调递减
④函数
f
(x)
在
π 4
,
3π 2
上有
3
个零点
其中所有正确结论的编号是
A.①②
S
A B
D C
19.(本小题满分 12 分)
_________.
16.在平面直角坐标系中,过椭圆
x2 a2
+
y2 b2
= 1(
a b 0)的左焦点 F 的直线交椭圆于 A ,B 两点,
C 为椭圆的右焦点,且 ABC 是等腰直角三角形,且 A = 90 ,则椭圆的离心率为
.
三 、 解答题: 共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每 个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一 ) 必考题:共 60 分. 17.(本小题满分 12 分)
2020广东省深圳市高考数学一模试卷(理科)(带解析)

2020广东省深圳市高考数学一模试卷(理科)(带解析)一、选择题:1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A. {2,4}B. {4,6}C. {6,8}D. {2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A. 2B. 3C. ﹣2D. ﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A. B. C. D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A. ﹣3B. ﹣1C. 1D. 35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. B. C. D. 26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A. 4πB. πh2C. π(2﹣h)2D. π(4﹣h)27.函数f(x)= •cosx的图象大致是()A. B.C. D.8.已知a>b>0,c<0,下列不等关系中正确的是()A. ac>bcB. a c>b cC. log a(a﹣c)>log b(b﹣c)D. >9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A. 335B. 336C. 337D. 33810.已知F是双曲线E:=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A. B. 2 C. 3 D. 411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.12.已知函数f(x)= ,x≠0,e为自然对数的底数,关于x的方程+ ﹣λ=0有四个相异实根,则实数λ的取值范围是()A. (0,)B. (2 ,+∞)C. (e+ ,+∞)D. (+ ,+∞)二、填空题:13.已知向量=(1,2),=(x,3),若⊥,则| + |=________.14.(﹣)5的二项展开式中,含x的一次项的系数为________(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=________.16.已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈N*恒成立,则实数λ的取值范围是________.三、解答题:17.△ABC的内角A、B、C的对边分别为a、b、c,已知2a= csinA﹣acosC.(1)求C;(2)若c= ,求△ABC的面积S的最大值.18.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.已成椭圆C:=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2= 为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN 的面积不小于n2,求n的取值范围.21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证:为定值,并求出这个定值.23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.答案解析部分一、<b >选择题:</b>1.【答案】B2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】B11.【答案】D12.【答案】C二、<b >填空题:</b>13.【答案】514.【答案】-515.【答案】316.【答案】[0,+∞)三、<b >解答题:</b>17.【答案】(1)∵2a= csinA﹣acosC,∴由正弦定理可得:2sinA= sinCsinA﹣sinAcosC,∵sinA≠0,∴可得:2= sinC﹣cosC,解得:sin(C﹣)=1,∵C∈(0,π),可得:C﹣∈(﹣,),∴C﹣= ,可得:C=(2)∵由(1)可得:cosC=﹣,∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号)∴S△ABC= absinC= ab≤ ,可得△ABC面积的最大值为18.【答案】(1)证明:连接EG,∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,在△EAD和△EAB中,AD=AB,AE=AE,∠EAD=∠EAB,∴△EAD≌△EAB,∴ED=EB,则BD⊥EG,又AC∩EG=G,∴BD⊥平面ACEF,∵BD⊂平面ABCD,∴平面ACEF⊥平面ABCD(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,易得∠EAC为AE与面ABCD所成的角,∴∠EAC=60°,∵EF⊥GM,EF⊥BD,∴EF⊥平面BDM,∴∠DMB为二面角B﹣EF﹣D的平面角,可求得MG= ,DM=BM= ,在△DMB中,由余弦定理可得:cos∠BMD= ,∴二面角B﹣EF﹣D的余弦值为;解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,∵MG⊥平面ABCD,∴直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,则D(0,﹣1,0),B(0,1,0),E(),F(),,,设平面BEF的一个法向量为,则,取z=2,可得平面BEF的一个法向量为,同理可求得平面DEF的一个法向量为,∴cos<>= = ,∴二面角B﹣EF﹣D的余弦值为.19.【答案】(1)解:当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=(2)解:由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020(3)解:由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.520.【答案】(1)解:由题意知2a=4,所以a=2,所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则直线A2B2的方程为,即bx+2y﹣2b=0,所以= ,解得b2=3,故椭圆C的方程为(2)解:由题意,可设直线l的方程为x=my+n,m≠0,联立,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,化简得3m2﹣n2+4=0,设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则• =﹣1,解得:t=﹣,所以△F1HN的面积= (n+1)丨﹣丨= ,代入3m2﹣n2+4=0,消去n化简得= 丨m丨,所以丨m丨≥ n2= (3m2+4),解得≤丨m丨≤2,即≤m2≤4,从而≤ ≤4,又n>0,所以≤n≤4,故n的取值范围为[ ,4]21.【答案】(1)解:对函数f(x)求导得f′(x)=lnx+1,∴f′(e﹣2)=lne﹣2+1=﹣1,又f(e﹣2)=e﹣2lne﹣2=﹣2e﹣2,∴曲线y=f(x)在x=e﹣2处的切线方程为y﹣(﹣2e﹣2)=﹣(x﹣e﹣2),即y=﹣x﹣e﹣2;(2)解:记g(x)=f(x)﹣λ(x﹣1)=xlnx﹣λ(x﹣1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下面求函数g(x)的最小值,对g(x)求导得g′(x)=lnx+1﹣λ,令g′(x)=0,得x=eλ﹣1,当x变化时,g′(x),g(x)变化情况列表如下:min极小值=g(eλ﹣1)=(λ﹣1)eλ﹣1﹣λ(eλ﹣1﹣1)=λ﹣eλ﹣1,∴λ﹣eλ﹣1≥0,记G(λ)=λ﹣eλ﹣1,则G′(λ)=1﹣eλ﹣1,令G′(λ)=0,得λ=1,当λ变化时,G′(λ),G(λ)变化情况列表如下:()max(λ)极大值=G(1)=0,故λ﹣eλ﹣1≤0当且仅当λ=1时取等号,又λ﹣eλ﹣1≥0,从而得到λ=1(3)解:先证f(x)≥﹣x﹣e﹣2,记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,则h′(x)=lnx+2,令h′(x)=0,得x=e﹣2,当x变化时,h′(x),h(x)变化情况列表如下:。
深圳市2020届普通高中高三年级模拟测试(理数试题)含答案

深圳市2020届普通高中高三年级统一模拟测试数 学(理科)本试卷共23小题,满分150分.考试用时120分钟.一、选择题:本题共 12 小题,每小题5分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 }3210{,,,=A }032|{2<--=x x x B A B = A . )3,1(-B .]3,1(-C .)3,0(D .]3,0(2.设,则的虚部为 23i32iz +=-z 3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测. 若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 4.记为等差数列的前项和,若,,则为n S {}n a n 23a =59a =6S 5.若双曲线(,)的一条渐近线经过点,则该双曲线的离心22221x y a b-=0a >0b >(1,2)-率为6.已知,则tan 3α=-πsin 2()4α+=7.的展开式中的系数为 7)2(xx -3x A .1-B .1C .2-D .2A .25B .23C .12 D.07A .36B .32C .28 D. 24ABC D.2A .35B .35-C .45D .45-A .168B .84C .42 D.218.函数的图像大致为()2ln |e 1|xf x x =--9.如图,网格纸上小正方形的边长为,粗线画出的是某四面体 1的三视图,则该四面体的外接球表面积为AB . 32πC .36πD .48π10.已知动点在以,为焦点的椭圆上,动点在以为圆心,半径长M 1F 2F 2214yx +=N M 为 的圆上,则的最大值为 1||MF 2||NF 11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点,分别是△的外心、垂心,且为中点,则O H ABC M BC A . 33AB AC HM MO +=+B .33AB AC HM MO +=- C . 24AB AC HM MO +=+D .24AB AC HM MO +=-12.已知定义在上的函数的最大值为,则正实数的π[04,π()sin()(0)6f x x ωω=->3ωω取值个数最多为 二、填空题:本大题共4小题,每小题5分,共 20 分.13.若满足约束条件,则的最小值为 ___________.y x ,⎪⎩⎪⎨⎧≤≥+-≥-+101022x y x y x y x z 2-=14.设数列的前项和为,若,则___________. {}n a n n S n a S n n -=2=6aA BC DA .2B .4C .8D .16A .4B .3C . 2 D.1 (第9题图)15.很多网站利用验证码来防止恶意登录,以提升网络安全. 某马拉松赛事报名网站的登录验证码由,,,,中的四个数字随机组成,将从左往右数字依次增大的验012…9证码称为“递增型验证码”(如),已知某人收到了一个“递增型验证码”,则该验证码0123的首位数字是的概率为___________.116.已知点和点,若线段上的任意一点都满足:经1(,)2M m m -1(,2N n n -()m n ≠MN P 过点的所有直线中恰好有两条直线与曲线相切,则P 21:2C y x x =+(13)x -≤≤的最大值为___.||m n -三 、 解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一 ) 必考题:共 60 分. 17.(本小题满分12分)已知△的内角,,的对边分别为,,,△的面积为,ABC A B C a b c ABC S .222+2a b c S -=(1)求;cos C (2)若,,求. cos sin a B b A c +=a =b18.(本小题满分12分)如图,在直四棱柱中,底面是平行四边形, 点,分别1111ABCD A B C D -ABCD M N 在棱,上,且,.1C C 1A A 12C M MC =12A N NA =(1)求证:平面;1//NC BMD (2)若,,, 13A A =22AB AD ==π3DAB ∠=求二面角的正弦值. N BD M --19.(本小题满分12分)已知以为焦点的抛物线过点,直线与交于,两点,F 2:2(0)C y px p =>(1,2)P -l C A B 为中点,且.M AB OM OP OF λ+=u u u r u u u r u u u r (1)当时,求点的坐标;3λ=M (2)当时,求直线的方程. 12OA OB ⋅=u u r u u u rl 20.(本小题满分12分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天6≤潜伏期天6>总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?20附:0.05 0.025 0.0103.8415.0246.635,其中. ))()()(()(22d b c a d c b a bc ad n K ++++-=d c b a n +++=)(02k K P ≥0k21.(本小题满分12分) 已知函数.(其中常数,是自然对数的底数) ()e ln(1)xf x a x =--e=2.718 28⋅⋅⋅(1)若,求函数的极值点个数;a ∈R ()f x (2)若函数在区间上不单调,证明:. ()f x (1,1+e )a-111a a a +>+(二)选考题:共 10 分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数,为倾斜xOy 1C ⎪⎩⎪⎨⎧=+-=,sin ,cos 32ααt y t x t α角),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为x 2C .θρsin 4=(1)求的直角坐标方程;2C(2)直线与相交于两个不同的点,点的极坐标为,若1C 2C F E ,P π),求直线的普通方程.PF PE EF +=21C23.(本小题满分10分)选修4-5:不等式选讲已知为正数,且满足 证明: ,,a b c 1.a b c ++=(1); 1119a b c++≥(2) 8.27ac bc ab abc ++-≤理科数学试题答案及评分参考一、选择题1.B2.B3.C4.A5.C6.D7.B8.A9.D10.B11.D12.C12.解析:当πππ462ω->时,即83ω>时,max ()13f x ω==,解得3ω=;当πππ462ω-≤时,即803ω<≤时,max ππ()sin()463f x ωω=-=,令ππ()sin()46g ωω=-,()3h ωω=,如图,易知()y g ω=,()y h ω=的图象有两个交点11(,)A y ω,22(,)B y ω,所以方程ππsin()463ωω-=有两个实根12ωω,,又888()1()393g h =>=,所以易知有1283ωω<<,所以此时存在一个实数1ωω=满足题设,综上所述,存在两个正实数ω满足题设,故应选C.二、填空题:13.3-14.6315.41516.4316.解析:由对称性不妨设m n <,易知线段MN 所在直线的方程为12y x =-,又21122x x x +>-,∴点P 必定不在曲线C 上,不妨设1(,)2P t t -,()m t n ≤≤,且过点P 的直线l 与曲线C 相切于点20001(,)2Q x x x +,易知0|x x PQ y k ='=,即2000011()()221x x t x x t +--+=-,整理得200210x tx --=,(法一)显然00x ≠,所以0012t x x =-,令1()f x x x=-,[1,0)(0,3]x ∈-U ,如图,直线2y t =和函数()y f x =的图象有两个交点,又(1)0f -=,且8(3)3f =,∴8023t ≤≤,即403t ≤≤,∴403m n ≤<≤,∴||m n -的最大值为43,故应填43.(法二)由题意可知013x -≤≤,令2()21f x x tx =--,∴函数()f x 在区间[1,3]-上有两个零点,则2(1)20(3)86013440f t f t t t -=≥⎧⎪=-≥⎪⎨-<<⎪⎪=+>⎩V ,解得403t ≤≤,∴403m n ≤<≤,∴||m n -的最大值为43,故应填43.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,222+2a b c S -=.(1)求cos C ;(2)若cos sin a B b A c +=,a =,求b .解:(1)2221=sin 22S ab C a b c S +-= ,,222sin a b c ab C ∴+-=,…………………………………………………………………2分在△ABC 中,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,sin =2cosC C ∴,…………………………………………………………………………4分又22sin +cos C=1C,25cos C=1cosC=5∴±,,由于(0,π)C ∈,则sin 0C >,那么cosC>0,所以cosC=5.………………………6分(2)(法一)在△ABC 中,由正弦定理得sin cos sin sin sin A B B A C +=,……………7分sin sin[π()]sin()sin cos cos sin C A B A B A B A B =-+=+=+ ,………………………8分sin cos sin sin sin cos cos sin A B B A A B A B ∴+=+,即sin sin cos sin B A A B =,又,(0,π)A B ∈ ,sin 0B ∴≠,sin =cosA A ,得4A π=.……………………………9分sin sin[π()]sin()B A C A C =-+=+,……………………………………………10分sin sin cos cos sin 252510B AC A C ∴=+=⨯+⨯=,………………11分在△ABC中,由正弦定理得310sin 103sin 22a Bb A==.……………………………12分(法二)cos sin a B b A c += ,又cos cos a B b A c += ,cos sin cos cos a B b A a B b A ∴+=+,…………………………………………………8分即sin cos A A =,又(0,π)A ∈ ,π4A ∴=.……………………………………………9分在△ABC中,由正弦定理得25sin 5sin 22a Cc A===………………………10分cos cos b C A a C =+,325c ∴==.………………………………………………………12分(法三)求A 同法一或法二在△ABC中,由正弦定理得25sin 5sin 22a Cc A===………………………10分又由余弦定理2222cos c a b ab C =+-,得2230b b --=,解得1b =-或3b =.所以3b =.……………………………………………………………………………12分(余弦定理2222cos a b c b A =+-,得2430b b -+=,解得1b =或3b =.因为当1b =时,222+-20a b c -=<,不满足cosC>0(不满足222+22a b c S -=-≠),故舍去,所以3b =)【命题意图】综合考查三角函数的基本运算、三角函数性质,考查利用正弦、余弦定理解决三角形问题,检验学生的数学知识运用能力.E GMDN 1D 1C 1B 1A CBAGEMDN1D 1C 1B 1A CBAMDN1D 1C 1B 1A CBA (第18题图)18.(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,点M ,N 分别在棱1C C ,1A A 上,且12C M MC =,12A N NA =.(1)求证:1//NC 平面BMD ;(2)若1322A A AB AD ===,,π3DAB ∠=,求二面角N BD M --的正弦值.解:(1)证明:(法一)如图,连接AC 交BD 于点G ,连接MG .设1C M 的中点为E ,连接AE .………2分,G M 是在△ACE 边,CA CE 的中点,∴//MG AE ,……………………………………3分又 12C M MC =,12A N NA =,11//AA CC ,∴四边形1ANC E 是平行四边形,故1//NC AE ,∴1//NC GM ,…………………………………4分 GM ⊂平面BMD ,∴1//NC 平面BMD .…………………………………5分(法二)如图,设E 是1BB 上一点,且12BE B E =,连接1EC .设G 是BE 的中点,连接GM .……………………1分11//BE MC BE MC =,,∴四边形1BEC M 是平行四边形,故1//EC BM ,……2分又 BM ⊂平面BMD ,∴1//EC 平面BMD ,…………………………………3分同理可证//NE AG ,//AG DM ,故//NE DM ,MDN1D 1C 1B 1A CBA ∴//NE 平面BMD ,…………………………………4分又 1EC NE ⊂,平面1NEC ,且1NE C E E = ,∴平面1//NEC 平面BMD ,又1NC ⊂平面1NEC ,所以1//NC 平面BMD .……………5分(2)(法一)设二面角N BD M --为α,二面角N BD A --为β,根据对称性,二面角M BD C--的大小与二面角N BD A --大小相等,故π2αβ=-,sin sin(π2)sin 2αββ=-=.下面只需求二面角M BD C --的大小即可.………7分由余弦定理得2222cos 3BD AD AB AD AB DAB =+-⋅∠=,故222AB AD BD =+,AD BD ⊥.……………………8分四棱柱1111ABCD A B C D -为直棱柱,∴1DD ⊥底面ABCD ,1DD BD ⊥,……………………9分又 1,AD D D ⊂平面11ADD A ,1AD D D D = ,BD ∴⊥平面11BDD B ,…………………………………10分ND ⊂ 平面11ADD A ,ND BD ∴⊥,所以二面角N BD A --的大小为NDA ∠,即NDA β∠=,在Rt NAD ∆中,sin 2AN ND β===,…………11分∴π4β=,π2α=,∴二面角N BD M --的正弦值为1.…………………12分(法二)由余弦定理得2222cos 3BD AD AB AD AB DAB =+-⋅∠=,故222AB AD BD =+,AD BD ⊥.……………………6分以D 为坐标原点O ,以1,,DA DC DD 分别为,,x y z 轴建立如图所示的空间直角坐标系.zyxMDN1D 1C 1B1A CBA依题意有(0,0,0)D ,B ,(M -,N ,DB = ,(DM =-,DN =,……7分设平面MBD 的一个法向量为(,,)n x y z=,00n DB n DM⎧⋅=⎪∴⎨⋅=⎪⎩,00x z=∴-+=⎪⎩,令1x =,则1z =,0y =,(1,0,1)n∴=,……………9分同理可得平面NBD 的一个法向量为(1,0,1)m=-,……10分所以cos ,0||||m nm n m n ⋅<>===,……………11分所以二面角N BD M --的大小为π2,正弦值为1.…12分【命题意图】考察线面平行、线面垂直判定定理等基本知识,考查空间想象能力,计算能力,考查学生综合运用基本知识处理数学问题的能力.19.(本小题满分12分)已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,2)P -,直线l 与C 交于A ,B 两点,M 为AB 中点,且OM OP OF λ+=uuu r uu u r uu u r.(1)当=3λ时,求点M 的坐标;(2)当12OA OB ⋅=uur uu u r时,求直线l 的方程.解:(1)因为(1,2)P -在22y px =上,代入方程可得2p =,所以C 的方程为24y x =,焦点为(1,0)F ,…………………………………2分设00(,)M x y ,当=3λ时,由3OM OP OF +=uuu r uu u r uu u r,可得(2,2)M ,………………4分(2)(法一)设11(,)A x y ,22(,)B x y ,00(,)M x y ,由OM OP OF λ+=uuu r uu u r uu u r,可得00(1,2)(,0)x y λ+-=,所以0=2y ,所以l 的斜率存在且斜率121212042=1y y k x x y y y -===-+,……………7分可设l 方程为y x b =+,联立24y x by x=+⎧⎨=⎩得22(24)0x b x b +-+=,2244=16160b b b ∆=--->(2),可得1b <,………………………………9分则1242x x b +=-,212x x b =,2121212()4y y x x b x x b b =+++=,所以21212=412OA OB x x y y b b ⋅=++=uur uu u r,…………………………………11分解得6b =-,或2b =(舍去),所以直线l 的方程为6y x =-.……………………………………………12分(法二)设l 的方程为x my n =+,11(,)A x y ,22(,)B x y ,00(,)M x y ,联立24x my n y x=+⎧⎨=⎩得2440y my n --=,216160m n ∆=+>,………………6分则124y y m +=,124y y n =-,21212()242x x m y y n m n +=++=+,所以2(2,2)M m n m +,…………………………………………………………7分由OM OP OF λ+=uuu r uu u r uu u r,得2(21,22)(,0)m n m λ++-=,所以1m =,…………8分所以l 的方程为x y n =+,由16160n ∆=+>可得,1n >-,……………………………………………9分由124y y n =-得221212()16y y x x n ==,所以21212=412OA OB x x y y n n ⋅=+-=uu r uu u r,………………………………………11分解得6n =,或2n =-(舍去),所以直线l 的方程为6y x =-.……………………………………………12分【命题意图】本题以直线与抛物线为载体,考查抛物线方程,直线与抛物线的位置关系、向量的数量积运算,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.20.(本小题满分12分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)]2,0[]4,2(]6,4(]8,6(]10,8(]12,10(]14,12(人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期6≤天潜伏期6>天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,....(即概率最大其中潜伏期超过6天的人数最有可能.....)是多少?附:)(02k K P ≥0.050.0250.0100k 3.8415.0246.635))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=.解:(1) 5.45131511130925073105205385110001=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=)(x 天.……………………………………………………………………………2分(2)根据题意,补充完整的列联表如下:潜伏期6<天潜伏期6≥天总计50岁以上(含50岁)653510050岁以下5545100总计12080200则212510001080120200)35554565(22=⨯⨯⨯⨯⨯-⨯=K 2.083≈,………………………………………5分经查表,得 3.8412 2.083<≈K ,所以没有95%的把握认为潜伏期与年龄有关.……6分(3)由题可知,该地区每1名患者潜伏期超过6天发生的概率为521000400=,……7分设调查的20名患者中潜伏期超过6天的人数为X ,则)52,02(~B X ,kk k C k X P -⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==02025352)(,0=k ,1,2,…,20,………8分由⎩⎨⎧-=≥=+=≥=)1()()1()(k X P k X P k X P k X P 得⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-----++-k k k k k k kk k kk k C C C C 121102020291110202025352535253525352,…………10分化简得⎩⎨⎧≥--≥+kk k k 3)12(2)02(2)1(3,解得542537≤≤k ,又N ∈k ,所以8=k ,即这20名患者中潜伏期超过6天的人数最有可能是8人.…12分【命题意图】以医学案例为实际背景,考查频数分布表,考查平均数,二项分布的随机变量概率最大时的取值;考查分析问题、解决问题的能力;处理数据能力、建模能力和核心素养.21.(本小题满分12分)已知函数()e ln(1)xf x a x =--.(其中常数e=2.71828⋅⋅⋅,是自然对数的底数)(1)若a ∈R ,求函数()f x 的极值点个数;(2)若函数()f x 在区间(1,1+e )a-上不单调,证明:111a a a +>+.解:(1)易知(1)e ()1x x af x x --'=-,1x >,………………………………………1分①若0a ≤,则()0f x '>,函数()f x 在(1,)+∞上单调递增,∴函数()f x 无极值点,即函数()f x 的极值点个数为0;……………………2分②若0a >,(法一)考虑函数(1)e (1)x y x a x =--≥,Q 1(1)e 0a y a a a a a ++=->-=,(1)0y a =-<,∴函数(1)e (1)x y x a x =--≥有零点0x ,且011x a <<+,Q e 0x y x '=>,∴函数(1)e (1)x y x a x =--≥为单调递增函数,∴函数(1)e (1)x y x a x =--≥有唯一零点0x ,∴(1)e ()1x x af x x --'=-亦存在唯一零点0x ,…………………………………4分∴当0(1,)x x ∈时,易知()0f x '<,即函数()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,易知()0f x '>,即函数()f x 在0(,)x +∞上单调递增,∴函数()f x 有极小值点0x ,即函数()f x 的极值点个数为1,……………………5分综上所述,当0a ≤时,函数()f x 的极值点个数为0;当0a >时,函数()f x 的极值点个数为1.(法二)易知函数e x y =的图象与1ay x =-(0)a >的图象有唯一交点00(,)M x y ,∴00e 1x ax =-,且01x >,…………………………………………………………………3分∴当0(1,)x x ∈时,易知()0f x '<,即函数()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,易知()0f x '>,即函数()f x 在0(,)x +∞上单调递增,∴函数()f x 有极小值点0x ,即函数()f x 的极值点个数为1,……………………4分综上所述,当0a ≤时,函数()f x 的极值点个数为0;当0a >时,函数()f x 的极值点个数为1.(注:第(1)问采用法二作答的考生应扣1分,即总分不得超过4分)(法三)对于0a ∀>,必存在*n N ∈,使得2ln an a->,即2ln na a -<,Q e 1na -<,∴1e 2ln e e e 0nana na a a a a --+--<-<-=,∴1e e e (1e )0e nana nanaa f --+---'+=<,又11e (1)=e 10a aa a f a a++-'+=->,∴函数(1)e ()1x x af x x --'=-有零点,不妨设其为0x ,显然()e (1)1xa f x x x '=->-为递增函数,∴0x 为函数()f x '的唯一零点,…………………………………………………………4分∴当0(1,)x x ∈时,易知()0f x '<,即函数()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,易知()0f x '>,即函数()f x 在0(,)x +∞上单调递增,∴函数()f x 有极小值点0x ,即函数()f x 的极值点个数为1,……………………5分综上所述,当0a ≤时,函数()f x 的极值点个数为0;当0a >时,函数()f x 的极值点个数为1.(2)Q 函数()f x 在区间(1,1+e )a-上不单调,∴存在0(1,1+e )a x -∈为函数()f x 的极值点,……………………………………6分∴由(1)可知0a >,且1+e e e (1+e )0eaa aaa f ----⋅-'=>,即1+e e aa a -->,两边取对数得1+e ln a a a -->,即1+e ln a a a -->,………………………………7分(法一)欲证111a a a +>+,不妨考虑证111+e ln 1a a a a -+≥-+,先证明一个熟知的不等式:e 1x x ≥+,令g()e 1x x x =--,则g ()e 1x x '=-,∴g (0)0'=,不难知道函数g()x 的极小值(即最小值)为g(0)0=,∴e 10x x --≥,即e 1x x ≥+,……………………………………………………8分(思路1:放缩思想)∴11e =e 1a a a -≤+,即1e 1a a -≥+,………………………9分又111eaa-≥,∴11e a a -≤,∴11ln a a -≤,即11ln a a ≥-,………………………11分∴111+e ln 1a a aa -+≥-+,∴111a a a +>+.…………………………12分(思路2:构造函数)令1()ln 1a a a ϕ=+-,则22111()a a a a aϕ-'=-=,不难知道,函数()a ϕ有最小值(1)0ϕ=,∴()0a ϕ≥,…………………………10分当0a >时,1e 1e 01(1)ea aaa a a ----=>++,…………………………………………11分∴11ln 1e 01a a a a -+-+->+,即111+e ln 1a a a a -+≥-+,∴111a a a +>+.…………………………………………………………………12分(法二)令()1+e ln x F x x x -=--,则1()e 10x F x x-'=---<,∴函数()F x 为单调递减函数,显然(2)2ln 220F <--<,且()0F a >,∴02a <<,①若01a <<,则1111a a a a +>>+,即111a a a +>+成立;…………………………8分②若12a ≤<,只需证111+e ln 1a a a a -+≥-+,不难证明1114173a a a +≥++,只需证明141+e ln 73a a a -≥-+,…………………………9分令14()e ln 173a G a a a -=-+-+,12a ≤≤,则22198198()e (73)(73)a G a a a a a -'=+->-++,当12a ≤≤时,22219849569(73)(73)a a a a a a -+-=++,显然函数249569y a a =-+在[1,2]上单调递增,且(1)20y =>,∴()0G a '>,即函数()G a 为单调递增函数,………………………………………10分∴当12a ≤<时,212e 5()(1)05e 5eG a G -≥=-=>,即()0G a >,………………11分141+e ln 73a a a -∴≥-+,即111a a a +>+,综上所述,必有111a a a +>+成立.…………………………………………………12分(法三)同(法二)得02a <<,①若01a <<,则1111a a a a +>>+,即111a a a +>+成立;…………………………8分②若12a ≤<,只需证111+e ln 1a a a a -+≥-+,令11()e ln 11a G a a a a -=+-+-+,12a ≤≤,则222111()e e (1)(1)a a a G a a a a ---'=-+≥-++,下证当12a ≤≤时,21e 0(1)aa -->+,即证2e (1)a a <+,即证2e 1aa <+,………9分令2()e 1a H a a =--,12a ≤≤,则21()e 12aH a '=-,当2ln 2a =时,()0H a '=,不难知道,函数()H a 在[1,2ln 2)上单调递减,在(2ln 2,2]上单调递增,∴函数()H a 的最大值为(1)H ,或(2)H 中的较大值,显然(1)20H =-<,且(2)e 30H =-<,∴函数()H a 的最大值小于0,即()0H a <,亦即2e 1a a <+,…………………………10分∴21e 0(1)a a -->+,即()0G a '>,∴函数11()e ln 11a G a a a a -=+-+-+,12a ≤≤单调递增,易知11(1)02eG =->,∴()0G a >,即111+e ln 1a a a a -+≥-+,………………………11分∴当12a ≤<时,有111a a a +>+成立,综上所述,111a a a +>+.…………………………………………………………12分【命题意图】本题以基本初等函数及不等式证明为载体,考查学生利用导数分析、解决问题的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C 的参数方程为⎪⎩⎪⎨⎧=+-=,sin ,cos 32ααt y t x (t 为参数,α为倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 4=.(1)求2C 的直角坐标方程;(2)直线1C 与2C 相交于F E ,两个不同的点,点P 的极坐标为π),若PF PE EF +=2,求直线1C 的普通方程.解:(1)由题意得,2C 的极坐标方程为θρsin 4=,所以θρρsin 42=,………………1分又θρθρsin ,cos ==y x ,………………2分代入上式化简可得,0422=-+y y x ,………………3分所以2C 的直角坐标方程4)2(22=-+y x .………………4分(2)易得点P 的直角坐标为)0,32(-,将⎪⎩⎪⎨⎧=+-=,sin ,cos 32ααt y t x 代入2C 的直角坐标方程,可得012)sin 4cos 34(2=++-t t αα,………………5分22π4sin )48=[8sin()]4803ααα∆=+-+->,解得πsin()3α+>πsin()3α+<,不难知道α必为锐角,故π3sin()32α+>,所以ππ2π333α<+<,即π03α<<,………………6分设这个方程的两个实数根分别为1t ,2t ,则ααsin 4cos 3421+=+t t ,1221=⋅t t ,………………7分所以1t 与2t 同号,由参数t 的几何意义可得,1212π8sin()3PE PF t t t t α+=+=+=+,12EF t t =-==,………………8分所以π28sin()3α⨯=+,两边平方化简并解得πsin()13α+=,所以π2π6k α=+,k ∈Z ,因为π03α<<,所以π6α=,………………9分所以直线1C 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=,21,2332t y t x 消去参数t ,可得直线1C 的普通方程为0323=+-y x .………………10分【命题意图】本题主要考查了圆的极坐标方程与直角坐标方程的互化、直线参数方程中参数的几何意义和三角函数等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养,考察考生的化归与转化能力.23.(本小题满分10分)选修4-5:不等式选讲已知,,a b c 为正数,且满足 1.a b c ++=证明:(1)1119a b c++≥;(2)8.27ac bc ab abc ++-≤证明:(1)因为()111111a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭3b a c a c ba b a c b c=++++++3≥++(当且仅当13a b c ===时,等号成立).………………5分(2)(法一)因为,,a b c 为正数,且满足1a b c ++=,所以1c a b =--,且10a ->,10b ->,10c ->,所以ac bc ab abc++-()a b ab c ab =+-+()1a b ab a b ab=+---+()(1)(1)()b a a b =--+(1)(1)(1)a b c =---3(1)(1)(1)8327a b c -+-+-⎡⎤≤=⎢⎥⎣⎦,所以8.27ac bc ab abc ++-≤(当且仅当13a b c ===时,等号成立).………………10分(法二)因为,,a b c 为正数,且满足1a b c ++=,所以1c a b =--,且10a ->,10b ->,10c ->,()1ac bc ab abc a b c ac bc ab abc ++-=-+++++-()()()()1111a b a c a bc a =-+-+-+-()()11a b c bc =--++⎡⎤⎣⎦()()()111a b c =---()338327a b c -++⎡⎤≤=⎢⎥⎣⎦所以8.27ac bc ab abc ++-≤(当且仅当13a b c===时,等号成立).………………10分【命题意图】本题以三元不等式为载体考查二元基本不等式(三元均值不等式)的证明,涉及代数恒等变形等数学运算、充分体现了对考生的逻辑推理的核心素养及化归与转化能力的考察.深圳市2020年普通高中高三年级统一测试数学(理科)试题参考答案第16页共16页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省深圳市宝安中学高考数学模拟试卷(理科)(4月份)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A ={x|x 2−2x −3<0},B ={x|log 2x <2},则集合A ∩B =( )A.{x|−1<x <4}B.{x|0<x <3}C.{x|0<x <2}D.{x|0<x <1}2.设复数z 满足|z +i|=1,z 在复平面内对应的点为(x, y),则( ) A.(x +1)2+y 2=1B.(x −1)2+y 2=1C.x 2+(y +1)2=1D.x 2+(y −1)2=13.已知a =312,b =log 1312,c =log 213,则( )A.a >b >cB.b >c >aC.c >b >aD.b >a >c4.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ¯,方差为s 2,则( ) A.x ¯=70,s 2<75 B.x ¯=70,s 2 >75 C.x ¯>70,s 2<75 D.x ¯<70,s 2 >755.函数f(x)=Asin(ωx +φ)(A >0,ω>0)的最小正周期为π,其图象关于直线x =π3对称,则|φ|的最小值为( ) A.π12 B.π6C.5π6D.5π126.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3−a 22)+(a 2a 4−a 32)+(a 3a 5−a 42)+……(a 2013a 2015−a 20142)=( )A.1B.0C.1007D.−10067.已知变量x ,y 满足{x −y ≥−2x +y ≥−2x ≥0 ,则z =−2x +y 的取值范围为( )A.[−2, 2]B.(−∞, −2)C.(−∞, 2]D.[2, +∞)8.已知三个向量a →,b →,c →共面,且均为单位向量,a →⋅b →=0,则|a →+b →−c →|的取值范围是( ) A.[√2−1, √2+1] B.[1, √2] C.[√2, √3]D.[√2−1, 1]9.已知双曲线C:x 2a −y 2b =1(a >0, b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO ,PF 2分别交双曲线C 左、右支于另一点M ,N ,|PF 1|=2|PF 2|,且∠MF 2N =60∘,则双曲线C 的离心率为() A.√2 B.√3 C.√7 D.2√3310.设f(x)是定义在R 上的偶函数,且当x ≥0时,f(x)=e x .若对任意的x ∈[a, a +1],不等式f(x +a)≥f 2(x)恒成立,则实数a 的最大值是( ) A.−32B.−23C.−34D.211.已知P ,A ,B ,C 是半径为2的球面上的点,O 为球心,PA =PB =PC =2,∠ABC =90∘,则三棱锥O −ABC 体积的最大值是( ) A.√3 B.1C.12D.√34x+1(1)函数f(x)在其定义域上为增函数;(2)对于任意的a >0,a ≠1,都有f(a)=−f(1a )成立;(3)f(x)有且仅有两个零点;(4)若f(x 0)=0,则y =lnx 在点(x 0, lnx 0)处的切线与y =e x 在点(−lnx 0,1x 0)处的切线为同一直线. 其中所有正确的结论有( ) A.(1)(2)(3) B.(1)(3) C.(2)(3)(4) D.(3)(4)二、填空题:本题共4小题,每小题5分,共20分. 13.在(x −1)(x +1)8的展开式中,x 5的系数是________.14.记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5=________.15.已知点A(0, 1),B(1, 0),C(t, 0),点D 是直线AC 上的动点,若|AD →|≤2|BD →|恒成立,则最小正整数t =________.16.已知点F 是抛物线C:y 2=2px(p >0)的焦点,过点F 的直线与抛物线相交于A ,B 两点(点A 在x 轴上方),与y 轴的正半轴相交于点N ,点Q 是抛物线不同于A ,B 的点,若2QA →=QN →+QF →,则|BF|:|BA|:|BN|=________.三、解答题:共70分.解答题应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA−2cosCcosB=2c−a b.(1)求ca 的值;(2)若cosB =14,b =2,求△ABC 的面积S .18.四棱锥P−ABCD的底面ABCD是边长为a的菱形,PA⊥面ABCD,∠BAD =120∘,E,F分别是CD,PC的中点.(1)求证:平面AEF⊥平面PAB;(2)M是PB上的动点,EM与平面PAB所成的最大角为45∘,求二面角F−AE−D的余弦值.19.已知椭圆x 24+y2=1,P是椭圆的上顶点,过P作斜率为k(k≠0)的直线l 交椭圆于另一点A,设点A关于原点的对称点为B.(1)求△PAB面积的最大值;(2)设线段PB的中垂线与y轴交于点N,若点N在椭圆内部,求斜率k的取值范围.20.设函数f(x)=e x−ax−a2(x∈R,实数a∈[0, +∞),e=2.71828…是自然对数的底数,√e=1.64872⋯).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.21.某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n ∈N ∗)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验n 次;(2)混合检验,将其中k(k ∈N ∗且k ≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为k +1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p <1).(Ⅰ)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.(Ⅱ)现取其中k(k ∈N ∗且k ≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2 (ⅰ)试运用概率统计的知识,若Eξ1=Eξ2,试求p 关于k 的函数关系式p =f(k);(ⅱ)若p =1−√e 3,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln4≈1.3863,ln5≈1.6094,ln6≈1.7918(二)选考题:共10分[选考4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 的参数方程{x =1+cosφy =sinφ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin(θ+π3)=3√3,射线OM:θ=π3与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.[选考4-5:不等式选讲]23.已知定义域在R 上的函数f(x)=|x +1|+|x −2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 为正实数,且p +q +r =a ,求证:p 2+q 2+r 2≥3.2020年广东省深圳市宝安中学高考数学模拟试卷(理科)(4月份)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A ={x|x 2−2x −3<0},B ={x|log 2x <2},则集合A ∩B =( )A.{x|−1<x <4}B.{x|0<x <3}C.{x|0<x <2}D.{x|0<x <1}【解答】集合A ={x|x 2−2x −3<0}={x|−1<x <3}, B ={x|log 2x <2}={x|0<x <4}, 则集合A ∩B ={x|0<x <3}.2.设复数z 满足|z +i|=1,z 在复平面内对应的点为(x, y),则( ) A.(x +1)2+y 2=1B.(x −1)2+y 2=1C.x 2+(y +1)2=1D.x 2+(y −1)2=1 【解答】设z =x +yi(x, y ∈R),由|z +i|=1,得|x +(y +1)i|=1, 即√x 2+(y +1)2=1,∴z 在复平面内对应的点的轨迹为x 2+(y +1)2=1. 3.已知a =312,b =log 1312,c =log 213,则( )A.a >b >cB.b >c >aC.c >b >aD.b >a >c【解答】a =312=√3>1,b =log 1312∈(0, 1),c =log 213<0,∴a >b >c .4.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ¯,方差为s 2,则( )C.x ¯>70,s 2<75 D.x ¯<70,s 2 >75【解答】根据题意,两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,则这些数据的总和不变,则在对错误的数据进行更正后,重新求得样本的平均数为x ¯不变,即x ¯=70, 但数据的波动变小了,故s 2<75;5.函数f(x)=Asin(ωx +φ)(A >0,ω>0)的最小正周期为π,其图象关于直线x =π3对称,则|φ|的最小值为( ) A.π12 B.π6C.5π6D.5π12【解答】解:由题意,得ω=2πT=2,所以f(x)=Asin(2x +φ).因为函数f(x)的图象关于直线x =π3对称, 所以2×π3+φ=kπ+π2(k ∈Z), 即φ=kπ−π6(k ∈Z), 当k =0时,|φ|取得最小值π6. 故选B .6.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,……,该数列的特点是:前两个数均为1,从第三数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3−a 22)+(a 2a 4−a 32)+(a 3a 5−a 42)+……(a 2013a 2015−a 20142)=( )A.1B.0C.1007D.−1006【解答】由于a 1a 3−a 22=1×2−1=1, a 2a 4−a 32=1×322=−1, a 3a 5−a 42=2×5−32=1.所以:(a 1a 3−a 22)+(a 2a 4−a 32)+(a 3a 5−a 42)+……(a 2013a 2015−a 20142)=1+(−1)+1+(−1)+...+1=1.7.已知变量x ,y 满足{x −y ≥−2x +y ≥−2x ≥0 ,则z =−2x +y 的取值范围为( )A.[−2, 2]B.(−∞, −2)C.(−∞, 2]D.[2, +∞)【解答】画出变量x ,y 满足{x −y ≥−2x +y ≥−2x ≥0表示的平面区域:将目标函数变形为z =−2x +y ,作出目标函数对应的直线, 直线过A(0, 2)时,直线的纵截距最大,z 最大,最大值为2; 则目标函数z =−2x +y 的取值范围是(−∞, 2].8.已知三个向量a →,b →,c →共面,且均为单位向量,a →⋅b →=0,则|a →+b →−c →|的取值范围是( ) A.[√2−1, √2+1] B.[1, √2] C.[√2, √3]D.[√2−1, 1]【解答】三个向量a →,b →,c →共面,且均为单位向量,a →⋅b →=0, 可设a →=(1, 0),b →=(0, 1),c →=(x, y),则a →+b →−c →=(1−x, 1−y),|c →|=√x 2+y 2=1;∴|a →+b →−c →|=√(1−x)2+(1−y)2=√(x −1)2+(y −1)2,它表示单位圆上的点到定点P(1, 1)的距离,其最大值是PN =r +|OP|=1+√2,最小值是|OP|−r =√2−1, ∴|a →+b →−c →|的取值范围是[√2−1, √2+1].9.已知双曲线C:x 2a −y 2b =1(a >0, b >0)的左、右焦点分别为F 1,F 2,O 为右支于另一点M,N,|PF1|=2|PF2|,且∠MF2N=60∘,则双曲线C的离心率为()A.√2B.√3C.√7D.2√33【解答】解:由题意,|PF1|=2|PF2|,|PF1|−|PF2|=2a,∴|PF1|=4a,|PF2|=2a,∵∠MF2N=60∘,由四边形PF1MF2为平行四边形,∴∠F1PF2=60∘,由余弦定理可得4c2=16a2+4a2−2⋅4a⋅2a⋅cos60∘,∴c=√3a,∴e=ca=√3.故选B.10.设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=e x.若对任意的x∈[a, a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是()A.−32B.−23C.−34D.2【解答】解:∵f(x)是定义在R上的偶函数,∴不等式f(x+a)≥f2(x)恒成立等价为f(|x+a|)≥f2(|x|)恒成立,∵当x≥0时,f(x)=e x.∴不等式等价为e|x+a|≥(e|x|)2=e2|x|恒成立,即|x+a|≥2|x|在[a, a+1]上恒成立,平方得x2+2ax+a2≥4x2,即3x2−2ax−a2≤0在[a, a+1]上恒成立,设g(x)=3x2−2ax−a2,则满足{g(a)≤0g(a+1)≤0,∴{g(a)=3a2−2a2−a2≤0g(a+1)=3(a+1)2−2a(a+1)−a2≤0,即{0≤04a+3≤0,∴a≤−34,故实数a的最大值是−34.11.已知P ,A ,B ,C 是半径为2的球面上的点,O 为球心,PA =PB =PC =2,∠ABC =90∘,则三棱锥O −ABC 体积的最大值是( ) A.√3 B.1C.12D.√34【解答】如图,∵P ,A ,B ,C 是半径为2的球面上的点,O 为球心, PA =PB =PC =2,∠ABC =90∘,∴P 到平面ABC 上的射影G 是△ABC 的外心,即AC 中点, 则球的球心在PG 的延长线上,设PG =ℎ,则OG =2−ℎ,∴OB 2−OG 2=PB 2−PG 2,∴4−(2−ℎ)2=4−ℎ2,解得ℎ=1, ∴AG =CG =BG =√3,∴三棱锥O −ABC 体积取最大值时,BG ⊥AC , ∴三棱锥O −ABC 体积的最大值为: V =13S △ABC ⋅ℎ=13×12×2√3×√3×1=1.12.已知函数f(x)=lnx −x+1x−1,对于函数f(x)有下述四个结论: (1)函数f(x)在其定义域上为增函数;(2)对于任意的a >0,a ≠1,都有f(a)=−f(1a )成立; (3)f(x)有且仅有两个零点;(4)若f(x 0)=0,则y =lnx 在点(x 0, lnx 0)处的切线与y =e x 在点(−lnx 0,1x 0)处的切线为同一直线. 其中所有正确的结论有( ) A.(1)(2)(3) B.(1)(3) C.(2)(3)(4) D.(3)(4)【解答】f(x)=lnx −1+2x−1,f′(x)=1x −2(x−1)=[x−(2−√3)][x−(2+√3)]x(x−1),可得函数f(x)在(0, 2−√3),(2+√3, +∞)上单调递增;在(2−√3, 1),(1, 2+√3)上单调递减.因此函数f(x)在其定义域上为增函数,不正确; 对于任意的a >0,a ≠1,−f(1a )=−(ln 1a −1a +11a−1)=lna −1+aa−1=f(a),因此:对于任意的a >0,a ≠1,都有f(a)=−f(1a )成立;正确.如图所示,分别画出函数y=lnx,y=x+1x−1的图象.f(x)有且仅有两个零点,正确;若f(x0)=0,即lnx0=1+2x0−1,y=lnx的导数为:y′=1x ,在点(x0, lnx0)处的切线的斜率为:1x0,所以切线方程为:y−lnx0=1x0(x−x0)=1x0x−1,即y−1−2x0−1=1x0x−1,即y−2x0−1=1x0x,与y=e x的导数为:y′=e x,在点(−lnx0,1x0)处的切线的斜率为:1x0,切线方程为:y−1x0=1x0(x+lnx0),即y=1x0x+1x0(1+x0+1x0−1)=1x0x+2x0−1,为同一直线.所以(4)正确;故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.在(x−1)(x+1)8的展开式中,x5的系数是________.【解答】∵(x−1)(x+1)8=x(x+1)8−(x+1)8∴(x−1)(x+1)8展开式中x5的系数等于(x+1)8展开式的x4的系数减去x5的系数,∵(x+1)8展开式的通项为T r+1=C8r x r∴展开式中x5的系数是C84−C85=14,14.记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则S10S5=________.【解答】解:设等差数列{a n}的公差为d,由a1≠0,a2=3a1可得,d=2a1,∴S10S5=10(a1+a10)×12 5(a1+a5)×12=2(2a 1+9d)2a 1+4d=2(2a 1+18a 1)2a 1+8a 1=4. 故答案为:4.15.已知点A(0, 1),B(1, 0),C(t, 0),点D 是直线AC 上的动点,若|AD →|≤2|BD →|恒成立,则最小正整数t =________. 【解答】设D(x, y),由D 在AC 上,得:xt +y =1,即x +ty −t =0, 由|AD →|≤2|BD →|,得:(x −43)2+(y +13)2≥89,依题意,线段AD 与圆(x −43)2+(y +13)2=89,至多有一个公共点, ∴|43−43t|√2≥√89,解得:t ≥2+√3,或t ≤2−√3,∵t 是使|AD →|≤2|BD →|恒成立的最小正整数, ∴t =4,16.已知点F 是抛物线C:y 2=2px(p >0)的焦点,过点F 的直线与抛物线相交于A ,B 两点(点A 在x 轴上方),与y 轴的正半轴相交于点N ,点Q 是抛物线不同于A ,B 的点,若2QA →=QN →+QF →,则|BF|:|BA|:|BN|=________. 【解答】由题可知,点F(p2,0),设直线AB 的方程为y =k(x −p2), 令x =0,则y =−kp 2,∴点N(0,−kp 2),∵2QA →=QN →+QF →,∴点A 是线段NF 的中点,∴点A(p4,−kp 4),联立{y 2=2px y =k(x −p 2) ,得k 2x 2−(k 2p +2p)x +k 2p 24=0,∴x A ⋅x B =p 24,∴x B =p 24×4p =p ,由抛物线的定义可知,|BF|=x B +p2=p +p2=32p ,|BA|=x A +x B +p =p4+p +p =94p , |BN|=|BA|+|AN|=|BA|+|AF|=94p +p4+p2=3p ,∴|BF|:|BA|:|BN|=32p:94p:3p=2:3:4.三、解答题:共70分.解答题应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知cosA−2cosCcosB =2c−ab.(1)求ca的值;(2)若cosB=14,b=2,求△ABC的面积S.【解答】由正弦定理可得,cosA−2cosCcosB =2c−ab=2sinC−sinAsinB,整理可得,sinBcosA+sinAcosB=2sinCcosB+2sinBcosC,所以sin(A+B)=2sin(B+C),即sinC=2sinA由正弦定理可得,ca =sinCsinA=2,由余弦定理可得,cosB=14=a2+4a2−44a,解可得,a=1,c=2,b=2,又因为sinB=√1−cos2B=√154,所以△ABC的面积S=12acsinB=12×1×2×√154=√154.18.四棱锥P−ABCD的底面ABCD是边长为a的菱形,PA⊥面ABCD,∠BAD =120∘,E,F分别是CD,PC的中点.(1)求证:平面AEF⊥平面PAB;(2)M是PB上的动点,EM与平面PAB所成的最大角为45∘,求二面角F−AE−D的余弦值.【解答】证明:底面ABCD是边长为a的菱形,∠BAD=120∘,故∠ADE =60∘,DE =12a ,AD =a ,由AE 2=AD 2+DE 2−2AD ⋅DEcos60∘=a 2+14a 2−2a ⋅12a ⋅12=34a 2, 所以AE 2+DE 2=AD 2,故Rt △ADE ,AE ⊥ED , 又AB // CD ,所以AE ⊥AB , 又PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE ⊥PA ,又AB ∩PA =A , 所以AE ⊥平面PAB ,又AE ⊂平面AEF , 故平面AEF ⊥平面PAB ;连接AM ,则由(1)知,AE ⊥平面PAB , 则∠AME 为直线EM 与平面PAB 所成的角, 在Rt △AME 中,tan∠AME =AEAM ,当AM 最小时,即AM ⊥PB 时,∠AME 取得最大值45∘,此时AE =AM , 设PA =x ,则由PA ⋅AB =PB ⋅AM 得, ax =√32a ⋅√a 2+x 2,解得x =√3a ,根据题意,以AB ,AE ,AP 分别为x ,y ,z 轴建立空间直角坐标系, 则B(a, 0, 0),E(0, √32a, 0),C(a 2, √32a, 0),P(0, 0, √3a),F(a 4,√3a 4,√3a 2), AE →=(0,√32a,0),AF→=(a 4,√3a 4,√3a2), 设平面AEF 的法向量为m →=(x,y,z),由{m →⋅AE →=√32ay =0m →⋅AF →=a4x +√32ay +√32az =0,得m →=(−2√3,0,1),又平面AED 的法向量为n →=(0,0,1), 由cos <m →,n →>=√3⋅0+0+1√13=√1313, 因为二面角F −AE −D 为钝角, 所以二面角F −AE −D 的余弦值为−√1313.19.已知椭圆x 24+y2=1,P是椭圆的上顶点,过P作斜率为k(k≠0)的直线l 交椭圆于另一点A,设点A关于原点的对称点为B.(1)求△PAB面积的最大值;(2)设线段PB的中垂线与y轴交于点N,若点N在椭圆内部,求斜率k的取值范围.【解答】由题意设直线l的方程:y=kx+1,代入抛物线方程整理得:(1+4k2)x2+8kx=0,所以x=−8k1+4k2,所以y=1−4k 21+4k2所以A的坐标(−8k1+4k2, 1−4k21+4k2),由题意得B的坐标(8k1+4k2, 4k2−11+4k2),所以三角形PAB的面积S=12|OP|⋅|x A−x B|=12|16k1+4k|因为k≠0,所以S△PAB=8⋅|14k+1k |≤8⋅2√4=2(当且仅当k=12时取到等号),所以△PAB面积的最大值为:2;由(1)得:k PB=4k2−11+4k2−18k1+4k2=−14k,且PB的中点坐标(4k1+4k, 4k21+4k),所以线段PB的中垂线方程为:y−4k 21+4k2=4k(x−4k1+4k2),令x=0,得y=−12k 21+4k,由题意得|y|<1,所以12k 21+4k2<1,解得:8k2<1,所以:−√24<k<√24,且k≠0,所以斜率的取值范围为(−√24, 0)∪(0, √24).20.设函数f(x)=e x−ax−a2(x∈R,实数a∈[0, +∞),e=2.71828…是自然对数的底数,√e=1.64872⋯).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.【解答】(1)∵f(x)=e x−ax−a2,f(x)≥0在x∈R上恒成立,∴a≤e xx+12,设ℎ(x)=e xx+12,∴ℎ′(x)=e x(x−12)(x+12)2,令ℎ′(x)=0,解得x=12,当x>12,即ℎ′(x)>0,函数单调递增,当x<12,即ℎ′(x)<0,函数单调递减,∴ℎ(x)min=ℎ(12)=√e,∴0<a≤√e,故a的取值范围为[0,√e];(2)设g(x)=√ex+√e2−lnx(x>0),∴g′(x)=√e−1x (x>0),g′(x)>0,可得x>√e;g′(x)<0,可得0<x<e.∴g(x)在(√e 上单调递增;在√e)上单调递减.∴g(x)≥g(√e )=3+√e2,∵√e=1.64872⋯,∴√e>1.6,∴g(x)>2.3.由(Ⅰ)可得e x>√ex+√e2,∴e x−lnx的最小值大于2.3,故若e x≥lnx+m对任意x>0恒成立,则m的最大值一定大于2.3.21.某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n ∈N ∗)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验n 次;(2)混合检验,将其中k(k ∈N ∗且k ≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为k +1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p <1).(Ⅰ)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.(Ⅱ)现取其中k(k ∈N ∗且k ≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2 (ⅰ)试运用概率统计的知识,若Eξ1=Eξ2,试求p 关于k 的函数关系式p =f(k);(ⅱ)若p =1−√e 3,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln4≈1.3863,ln5≈1.6094,ln6≈1.7918 【解答】 (1)P =∁21∁31A32A 54=310,……………∴恰好经过4次检验就能把阳性样本全部检验出来的概率为310⋯⋯⋯⋯⋯⋯ (2)(ⅰ)由已知得Eξ1=k ,ξ2的所有可能取值为1,k +1. ∴P(ξ2=1)=(1−p)k ,P(ξ2=k +1)=1−(1−p)k ,∴Eξ2=(1−p)k +(k +1)[1−(1−p)k ]=k +1−k(1−p)k ………… 若Eξ1=Eξ2,则k =k +1−k(1−p)k ,∴k(1−p)k=1(1−p)k=1k ∴1−p =(1k )1k ∴p =1−(1k )1k ∴p 关于k 的函数关系式p =1−(1k )1k (k ∈N ∗且k ≥2)…………… (ⅱ)由题意可知Eξ2<Eξ1,得1k <(1−p)k , ∵p =1−√e3,∴1k <(√e3)k ,∴lnk >13k ,设f(x)=lnx −13x(x >0)⋯⋯⋯⋯⋯,∴当x >3时,f ′(x)<0,即f(x)在(3, +∞)上单调递减,又ln4≈1.3863,43≈1.3333,∴ln4>43,ln5≈1.6094,53≈1.6667,∴ln5<53.∴k 的最大值为4.……………(二)选考题:共10分[选考4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 的参数方程{x =1+cosφy =sinφ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin(θ+π3)=3√3,射线OM:θ=π3与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 【解答】解:(1)利用cos 2φ+sin 2φ=1,把圆C 的参数方程{x =1+cosφy =sinφ(φ为参数)化为(x −1)2+y 2=1, ∴ρ2−2ρcosθ=0,即ρ=2cosθ.(2)设(ρ1, θ1)为点P 的极坐标,由{ρ1=2cosθ1θ1=π3,解得{ρ1=1θ1=π3. 设(ρ2, θ2)为点Q 的极坐标,由{ρ2(sinθ2+√3cosθ2)=3√3θ2=π3,解得{ρ2=3θ2=π3. ∵θ1=θ2,∴|PQ|=|ρ1−ρ2|=2. ∴|PQ|=2.[选考4-5:不等式选讲]23.已知定义域在R 上的函数f(x)=|x +1|+|x −2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 为正实数,且p +q +r =a ,求证:p 2+q 2+r 2≥3. 【解答】(1)解:∵|x +1|+|x −2|≥|(x +1)−(x −2)|=3, 当且仅当−1≤x ≤2时,等号成立, ∴f(x)的最小值为3,即a =3;(2)证明:由(1)知,p +q +r =3,又p ,q ,r 为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.。