3-d lattice SU(3) free energy to four loops

合集下载

第一届凝聚态物理会议

第一届凝聚态物理会议

第一届凝聚态物理会议The 1st Conference on Condensed Matter Physics2015年7月15日- 17日清华大学目录01 会议概况02 组织委员会04 会议日程•总日程•大会报告•分会场报告•海报会场会议概况为了配合凝聚态物理在中国的迅速发展和国际地位的全面提升,进一步加强国内科研工作者在不同前沿领域的交流,推进国内和国际在凝聚态物理领域的相互交流和合作,为青年学生和研究人员学习和了解国际前沿进展创造更广泛的交流平台,拟定在过去已经成功举办了13届的“凝聚态理论与材料计算国际会议”系列会议的基础上,拓宽会议的主题,特别是加强凝聚态物理实验和理论的交流与融合,于2015年7月15日-17日在北京举办“第一届凝聚态物理会议”年会。

2015年第一届凝聚态物理会议是由清华大学物理系、中国科学院物理研究所、北京大学物理学院、量子物质科学协同创新中心联合主办。

这是国内首次在凝聚态物理方面举办的大型学术交流会。

本次会议是凝聚态理论与材料计算国际会议的延续和拓展,旨在增进国内外物理学者的学术交流,分享前沿科研成果,提高国内凝聚态物理的科研水平,扩大学术声誉。

第一届凝聚态物理会议将于2015年7月15日-17日在清华大学举行。

会议主题包括:拓扑量子态和多铁性、超导和多体物理、能源和低维物理、Quantum many-body theory and statistical physics、计算凝聚态物理、量子信息及其它与凝聚态物理的交叉领域等六个主题。

本次会议共设30个专题分会,将以大会特邀报告、分会特邀报告、口头报告和张贴海报等形式进行交流探讨。

组织委员会主办单位•清华大学物理系•中国科学院物理研究所•北京大学物理学院•量子物质科学协同创新中心顾问委员会:(按姓氏拼音序)崔田、杜瑞瑞、冯世平、龚新高、解士杰、李东海、李建新、林海青、李树深、陆卫、卢仲毅、吕力、沈保根、沈健、沈志勋、苏刚、王恩哥、王孝群、王玉鹏、向涛、薛其坤、张富春、张振宇组织委员会•清华大学物理系:陈曦、薛其坤•中科院物理研究所:胡江平、戴希、方忠、丁洪、周兴江、向涛•北京大学物理学院:谢心澄分会场负责人•拓扑量子态和多铁性:胡江平、陈曦、吕力、戴希、翁红明、寇谡鹏、吴从军•超导和多体物理:孙力玲、杨义峰、刘俊明、雒建林、袁辉球、李永庆、万歆、周毅•能源和低维物理:张振宇、李泓、陈弘、赵怀周、张远波•Quantum many-body theory and statistical physics:孟子扬、张广铭、郭文安、姚宏•计算凝聚态物理:姚裕贵、段文晖、龚新高、孟胜•量子信息及其它与凝聚态物理的交叉领域:范珩、田琳、翟荟、崔晓玲会议协调人•清华大学物理系:任俊(总协调人)•中国科学院物理研究所:齐建为、刘青梅•会务组:黄文艳、唐林、井小苏、周丹、骆洁、甘翠云、付德永、杨红、肖琳、胡文婷赞助单位•清华大学物理系•量子物质科学协同创新中心•中国科学院物理研究所•北京大学物理学院2015年第一届凝聚态物理会议分会场主题:A.拓扑量子态和多铁性A1拓扑半金属IA2拓扑半金属IIA3拓扑超导体和Majorana 费米子A4多铁性材料模拟与计算A5多铁性体系B.超导和多体物理B1铬基和锰基超导体B2极端条件下的超导行为B3铁基超导B4凝聚物质的激发态和动力学理论和实验B5重费米子物理C.能源和低维物理C1锂电池中的物理C2二维材料C3二维电子系统中的物理C4硅烯的最新进展C5热电中的新物理D.Quantum many-body theory and statistical physicsD1 Recent developments in strongly correlated quantum systems ID2 Recent developments in strongly correlated quantum systems IID3 Recent developments in strongly correlated quantum systems IIID4 Recent developments in strongly correlated quantum systems IVD5 Recent developments in strongly correlated quantum systems V注意事项:为了尊重外籍邀请报告人,如无特殊情况,D分会场报告请用英文。

木互承结构的发展与研究现状

木互承结构的发展与研究现状

林业工程学报,2023,8(2):30-39JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202204037收稿日期:2022-04-19㊀㊀㊀㊀修回日期:2022-10-14基金项目:国家自然科学基金(51908038)㊂作者简介:高颖,女,教授,研究方向为木结构材料与工程㊂E⁃mail:gaoying@bjfu.edu.cn木互承结构的发展与研究现状高颖1,禤示青1,孟鑫淼2,周金将3,徐飞扬1,耿明豪1(1.北京林业大学材料科学与技术学院,北京100083;2.北京林业大学土木工程系,北京100083;3.苏州昆仑绿建木结构科技股份有限公司,苏州215105)摘㊀要:木结构具有绿色环保㊁低碳节能等优势,其发展与应用有助于推动我国 双碳 目标的实现㊂作为木结构形式之一,木互承结构是由相互支承的木构件通过循环互承围合形成的空间格构体系,在古代桥梁建造上多有应用㊂近年来,木互承结构在空间结构领域的研究及应用逐渐增多㊂笔者梳理了木互承结构在形态学和力学性能等方面的国内外研究进展,讨论其发展现状与亟须解决的关键性技术问题㊂形态学研究表明,木互承结构找形理论众多,可根据图论㊁力平衡状态㊁迭代算法和空间解析几何法分为4类,但仍需进一步设计出简便易操作的通用型软件㊂木互承结构的力学性能研究目前主要集中于节点性能和整体受力性能方面,但在高性能节点和结构稳定性方面仍需进一步探索和研究㊂对木互承结构的工程应用进行了梳理和总结,可为其未来的研究与应用提供参考㊂相信伴随着木材科学与现代木结构技术的发展,构件规则㊁节点统一㊁造型丰富的木互承结构将越来越广泛应用于木结构工程建设项目中㊂关键词:木互承结构;找形方法;力学性能;工程案例;现代木结构中图分类号:TU366.2㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2023)02-0030-10ResearchstatusoftimberreciprocalstructuresGAOYing1,XUANShiqing1,MENGXinmiao2,ZHOUJinjiang3,XUFeiyang1,GENGMinghao1(1.SchoolofMaterialsScienceandTechnology,BeijingForestryUniversity,Beijing100083,China;2.DepartmentofCivilEngineering,BeijingForestryUniversity,Beijing100083,China;3.SuzhouCrownhomesCo.Ltd.,Suzhou215105,China)Abstract:Timberstructurehastheadvantagesofenvironmental⁃friendly,low⁃carbonemission,andenergy⁃saving.Thepopularizationoftimberstructureshelpstopromotetherealizationofthegoalsofcarbonpeakingandcarbonneutrali⁃ty.Thetimberreciprocalstructureisaspatiallatticesystemformedbythecyclicenclosureofreciprocallysupportedtimberelements,whichhasmanyapplicationsinancientbridgeconstructions.Recently,theresearchandapplicationoftimberreciprocalstructureshaveincreasedwiththedevelopmentoftimberspatialstructures.Althoughthetimberreciprocalstructurehasdevelopedrapidlyinthedevelopedcountries,thedevelopmentoftimberreciprocalstructureisstillindevelopinginChina.Basedontheinvestigationofscientificresearchoftimberreciprocalstructuresinbothde⁃velopedanddevelopingcountries,theresearchprogressofmorphologicalandmechanicalperformanceoftimberrecip⁃rocalstructureswasreviewed.Besides,thedevelopmentstatusandthekeydesigntechnologieswerediscussed.Themorphologicalresearchshowedthattheform⁃findingmethodsoftimberreciprocalstructureswerecompleteandnu⁃merous.Accordingtothegraphtheory,forcebalance,iterativealgorithmandanalyticgeometrymethods,theform⁃findingmethodsweredividedintofourcategories,whiletheoptimizationprocesswascomplicated.Torealizetherap⁃idformationofstructuralconfigurationinengineeringapplications,morefeasibleform⁃findingtheoriesandmoreeasy⁃to⁃operateinteractivetoolsarenecessarytobedeveloped.Theresearchonthemechanicalperformanceoftimberrecip⁃rocalstructuresmainlyfocusesontheconnectionsandoverallstress.Existingresearchonthemechanicalbehavioroftimberreciprocalstructuresisnotsystematicenough.Exceptfortheresearchonenhancingjointperformanceandstructuralstability,theresearchonstructuralcapacityandstabilityneedstobestrengthened.Moreover,somekeyde⁃signtechnologiessuchasthewindresistance,seismicperformance,andcreepneedtobefurtherexplored.Inaddi⁃tion,theengineeringapplicationcasesofthetimberreciprocalstructureswereanalyzedandsummarized,withthepro⁃gressofwoodscienceandmodernwoodstructuretechnology,theanalysisofengineeringapplicationcasesshowsthat㊀第2期高颖,等:木互承结构的发展与研究现状thetimberreciprocalstructureshaveexcellentdevelopmentprospects.Undertheconditionofensuringlowself⁃weightandsufficientstiffnessofthestructure,oneofthemostsuitablebuildingmaterialsforconstructingcomplexinteractiveconfigurationsistimber.Throughregularcomponentsandunifiedjoints,timberreciprocalstructuresshowvariousstructuralmodelings,involvinglarge⁃spanbuildingsandbridgestructures.Therefore,itisnecessarytoacceleratethetheoreticalandsystematicresearchofthetimberreciprocalstructurestopromotethedevelopmentofcorrespondingsci⁃entificresearchandengineeringapplicationsinChina.Keywords:timberreciprocalstructures;form⁃findingmethod;mechanicalperformance;engineeringcase;modernwoodconstruction㊀㊀木结构轻质美观㊁绿色低碳㊁可预制装配,发展木结构符合绿色节能装配式建筑发展规划的要求,并有助于推动我国2030年前实现碳达峰㊁2060年前实现碳中和的 双碳 目标的达成㊂木互承结构是由相互支承的木构件通过循环互承围合形成的空间格构体系,具有构件规则㊁节点统一㊁受力均匀㊁可快速拆装等特点,常用于桥梁的承重结构和建筑的楼盖与屋顶结构㊂木互承结构形式可使用短构件横跨更大的距离,构件间不分主次,每个节点处只有两根构件连接,抵御外界荷载时,结构整体受力均匀㊂通过基本单元的叠加可形成构型新颖独特的结构,兼具功能性和装饰性[1-2]㊂互承结构的概念首先由英国建筑师格拉汉姆㊃布朗提出,世界各地较早时期就有类似木互承结构的构筑物出现,如新石器时代的半凹坑住所㊁爱斯基摩人的原屋,印第安人居住的帐篷则使用绳索将多根杆件收敛于顶端以实现结构稳定性[3]㊂公元前1世纪,凯撒大帝于莱茵河上建造了木制栈架桥,搭建快速,结构稳定[4]㊂公元14世纪,跨度巨大却无法复原的凯撒莱茵桥激发了建筑师们的兴趣㊂由此,文艺复兴巨匠达㊃芬奇较为全面地研究了互承结构并设计多种形态[5-6]㊂在我国,木互承结构的记录最早来源于公元12世纪‘清明上河图“中的汴水虹桥㊂由于几何构型较为复杂,随着钢筋混凝土结构和钢结构的出现,木互承结构逐渐被人们所忽视㊂直至20世纪初,德国工程师佐林格提出的 一个节点仅连接两根构件 的专利,推动了第一次世界大战后的住房建造[4]㊂自此,木互承结构研究得到稳步发展㊂木互承结构的设计首先需要构建结构形态,通过找形方法对基本单元进行优化调整,得到互承结构的结构构型;其次进行力学性能分析,目前主要集中于节点连接性能和整体受力性能研究;最后进行结构建造㊂笔者系统梳理了木互承结构在形态学和力学性能等方面的研究成果,并对国内外木互承结构项目进行分析,以期为我国木互承结构的科学研究和工程应用提供借鉴和参考㊂1㊀形态学研究1.1 构件参数与多数空间结构类似,木互承结构的形态学研究首先需要确认基本单元及其构件影响参数㊂Ba⁃verel等[7]将互承结构的每根构件命名为 Nexor ,构件围合而成的基本单元命名为 Nexorade ,基本单元的平面投影为扇单元(fan)㊂木互承结构基本单元的构件参数如图1所示,包括构件数量(n)㊁构件长度(L)㊁构件垂直高度(H)㊁接合长度(Le)㊁构件间偏心距(e)以及扇单元旋转方向(左/右)[7-12]㊂其中,基本单元的构件参数之间的几何关系见公式(1 5)㊂θ=n-2()180n(1)r=Le2cos(θ/2)(2)R=r2+(L-Le)2-2r(L-Le)cosθ2+360næèçöø÷(3)H=Lsinα(4)e=Letanα-Lesinα-ecosαLecosα-esinαæèçöø÷(5)任意参数的变化均会影响结构整体的形状及性能㊂当基本单元主要向一维方向拓展时,木互承结构可形成编木拱形式;当基本单元向二维和三维方向拓展时,木互承结构则形成平面或空间互承的结构形式[6,13-14]㊂在形态学研究中,更倾向于平面或空间互承结构的找形㊂为更好地契合具体研究内容,构件参数还需进行一定调整和补充㊂如:Asefi等[15]为解决构型中的杆件连接问题,利用Kangaroo插件对接合长度进行了参数优化;Su等[16-17]补充了 接触点 和 接触向量 两个参数,用以克服在形状优化过程中建立有限元分析模型的困难;Torghabehi等[18]引入旋转参数,使平面构件能基于相应的单元围绕其纵向轴旋转;为便于工业机器人在加工过程中对木材的抓取和切削,需在13林业工程学报第8卷命令代码中编入木材中心轴㊁夹持点㊁构件切割面等相关参数[19-20]㊂图1㊀基本单元及其构件参数Fig.1㊀Nexoradesandtheparametersofnexor1.2㊀找形方法木互承结构的找形是通过调整构件参数,将互承基本单元与给定曲面进行匹配的过程㊂结构找形的实现,需要借助一定的规律和方法进行计算和模拟㊂基于图论㊁受力平衡状态㊁迭代算法和空间解析几何法,木互承结构曲面找形的方法主要分为映射法㊁动力学分析法㊁智能优化算法和直接构型法㊂不同类型的找形方法及其特点统计见表1㊂表1㊀互承结构找形方法汇总Table1㊀Methodsofform⁃findingofreciprocalstructures分类找形方法找形依据特点参考文献映射法映射法图论操作可视化,但不适于曲率较大曲面[21]动力学分析法动力松弛法受力平衡状态实现形与力的平衡,计算步骤复杂[11]遗传算法多次迭代得到互承搭接的最优解,但计算数据量大[22]智能优化算法遗传⁃梯度混合算法迭代算法[23]拟牛顿法[8]平移法快速有效实现规则曲面构型,但无法实现复杂曲面[24]扩展平移法[24]直接构型法旋转法空间解析几何法[24]收缩法[25]循环搭接法[26]图2㊀映射法示意图[27]Fig.2㊀Illustrationofconformalmappingmethod㊀㊀映射法是通过将延展拓扑后的平面网格投影于目标曲面,利用构件的基本参数关系优化调整得到空间互承结构,如图2所示㊂Song等[21,27]基于映射法开发了RF(reciprocalframe)找形软件,并针对可能不满足互承搭接关系的构件提出了修正公式㊂所开发软件进行了保真处理,使用户能轻松实现为给定曲面设计构型,快速形成可视化的大型互承结构㊂受到高斯曲率的约束,此软件在曲率较大的部位并不适用㊂动力学分析法是将互承结构的几何构型与构件受力建立联系,通过结构静/动力学平衡状态得到最终构型㊂动态松弛法[11]的原理是基于将无偏心距㊁无接合长度的初始网格转化为互承网格时,将杆件一端挤压弯曲,结构内部存在一定的应力,如图3所示㊂杆件放松后会产生自由震荡,运动阻23㊀第2期高颖,等:木互承结构的发展与研究现状尼的存在可消耗能量,最终达到结构的静态平衡㊂图3㊀动态松弛法原理[11]Fig.3㊀Principleofdynamicrelaxationmethod智能优化算法最早源于Baverel等[22]提出的遗传算法,将接合长度及偏心距的几何误差作为目标函数,再通过迭代算法对构件参数进行优化调整,使其满足协调搭接的平衡条件㊂随后,Parigi等[23]提出了遗传⁃梯度混合算法等优化算法㊂在各种迭代算法找形研究的基础上,Parigi等[28-29]开发了用于Grasshopper/Rhinoceros的插件Recipro⁃calizer,通过调整杆件位置,不断迭代以保证单元的几何兼容性㊂该研究通过奥尔堡大学的一个自由曲面互承网壳结构,验证了 Reciprocalizer 软件获取结构单元位置的准确性㊂此外,邹丁等[8]提出了Broyden⁃Fletcher⁃Goldfarb⁃Shanno(BFGS)拟牛顿法,与遗传算法相比,BFGS拟牛顿法对于给定曲面的构型及参数成形问题迭代次数更少㊁效率更高㊂直接构型法由Baverel等[24]提出,是将已有的网壳结构曲面网格作为标准初始网格,并通过平移法[24]㊁扩展平移法[24]㊁旋转法[24,30-31]和收缩法[25,32]等方法,调整构件偏心距及截面形式等参数,将标准初始网格转化成互承网格,如图4所示㊂此外,乔刚[26]结合互承结构的实际搭建过程,采用二分法实现互承结构的 自适应 找形,并命名为 循环搭接找形法 ㊂李传栋[33]在循环搭接找形法的基础上进一步完善了平面网格创建方法,提出基于密铺图形和分形理论的平面互承网格建模方法,使生成的结构网格更加合理㊂图4㊀直接构形法示意图[25]Fig.4㊀Schematicofanalyticalmethods㊀㊀易于加工的木质构件具有多种可变换形态,大量的找形方法为木互承结构的构型设计提供了有力支持㊂目前国内外木互承结构找形常用软件平台为Grasshopper/Rhinoceros[34],使用构件数为3 4根,易于在自由曲面形成互承网格[12]㊂相对于迭代计算过程复杂的动力松弛法及优化算法,映射法与直接构型法更易被理解与研究㊂但仍需进一步开发简便易操作的通用型设计软件,加快木互承结构的推广,并实现工程应用自由曲面的快速找形㊂2㊀力学性能研究木互承结构通过构件的互相支承形成整体,除支座处杆件需承担结构整体荷载外,各杆件受力㊁节点连接形式相同㊂假定基本单元受力时,构件为静态平衡的梁单元,可暂不考虑杆件材料与截面的关系,其受力通过偏心距和结合长度决定[35]㊂如图5所示,杆件受外力作用时,通常在节点位置处产生最大弯矩[3-4];因此,木互承结构的力学性能研究主要关注直接影响荷载传递的连接节点[36-38]图5㊀木互承结构受力弯矩图Fig.5㊀Momentdiagramoftimberreciprocalstructure2.1㊀节点连接性能木互承结构的节点连接简单,通常只需考虑两两构件的连接㊂将木互承结构的常见节点连接形式分为摩擦连接㊁槽口连接㊁销轴连接及其他连接形式,如表2所示㊂摩擦连接包括搭接连接和扣件连接,构件间主要依靠滑动产生的摩擦力传递荷载,并依靠摩擦约束构件位移[39]㊂搭接连接是木互承结构节点连接类型中最简单的连接形式,组装简易㊁快速成型㊂然而,节点位置无外物约束,结构刚度低㊁稳定性差,不适于现代实用型建筑建造[3],更多用于结构搭建过程中的临时固定或示范性模型搭建㊂扣件33林业工程学报第8卷连接可追溯至绳子绑扎的方式,随着现代科技的发展,逐渐采用承载力更大㊁耐久性能更高的金属件进行扣件制作,可设计出不同结构形式,以不削减构件截面为基础锁紧构件㊂但扣件连接无法约束构件的旋转,且引入外露连接件,影响构件的美观和防火性能㊂表2㊀木互承结构常见节点连接类型Table2㊀Commonconnectiontypesoftimberreciprocalstructure扣件连接连接材料与形式多样,不损伤构件截面外露连接件影响构件美观和防火性能槽口连接提高木互承结构的组装精度㊁造型美观加工复杂,削减构件截面销轴连接传力明确㊁金属件连接方式多样内置金属件削减构件少许截面㊀㊀槽口连接属于木工接头,无金属外露㊁构型美观,可提高构件装配精度㊂当构件间发生挤压㊁拉伸与旋转,槽口接头处的木材会产生摩擦与挤压进而传递荷载[40-42]㊂Ueta[42]采用分析模型研究槽口连接木互承拱结构的节点刚度,分析得出槽口深度越大,节点转动刚度就越大㊂Gustafsson[43]对比槽口连接和搭接连接的木互承平面结构数值模型,结果表明在相同的竖向荷载作用下,槽口连接的构件产生的弯矩较搭接连接的挠度㊁剪力㊁弯矩以及扭转刚度均小2% 13%㊂Tominaga[44]针对自重对槽口连接木互承穹顶结构性能的影响进行分析,结果表明,槽口连接穹顶结构的最大竖向位移较刚性连接增加近两倍㊂此外,构件长度㊁截面尺寸及槽口大小的变化均会对结构位移产生较大影响㊂荷载施加过程中,槽口之间通过转动和挤压消耗能量,使结构具有优良的抗震性能[45]㊂故Ito[46]和Suzu⁃ki[47]采用CQC法计算了拟静态地震力条件下槽口连接木互承结构的性能,地震震级分别采用I级和Ⅱ级㊂然而,槽口连接削减了构件截面,削弱杆件节点位置的受弯性能和抗剪能力[42-43,48]㊂销轴连接通常采用螺钉㊁螺栓等销轴类紧固件与钢板配合使用,该连接形式仅削减少许截面,传力明确㊁形式简单㊁易于进行结构计算,可认为销轴连接为木互承结构较为理想的连接方式[49-50]㊂Gan等[51]参考木结构常用钢填板⁃螺栓连接节点,为木互承网壳结构设计了连续形钢填板⁃螺栓连接㊂通过改变连接位置的钢填板嵌入角度,可以得到不同角度的组合构件㊂Corio等[32]在连接位置处采用金属组合件设计了T型万向连接节点,组合件与杆件间采用螺栓锚固,与杆件截面匹配的钢轭可避免构件的轴向偏心,并允许杆件存在旋转的安装误差㊂为增强构件节点性能㊁构建更多复杂曲面,国内外学者还致力于新型节点连接形式的研究㊂Gheorghe等[52]在扇单元围合形成的 窗口 处浇筑混凝土,使任何几何形状的木互承基本单元均可实现节点位置的刚性连接㊂基于前者的研究基础,Castriotto等[53]利用厚木板对4根杆件单元的窗口位置进行夹持连接,厚木板内部按各构件形状尺寸进行开槽,中心使用螺栓紧固㊂数值模拟结果表明,荷载作用下,夹持连接件会产生较大的剪应力㊂考虑到在较大跨度下木材制成的连接件抗剪强度不足,可使用其他材料制备以提升连接强度㊂在木互承结构节点方面,更倾向使用构件装配精度及节点承载力更高的槽口连接及销轴连接,或两者配合使用㊂采用足尺节点试验与数值模拟相结合的方式开展,既可得到较为可靠的结果,还可拓展更多研究参数使研究工作持续进行㊂此外,仍需在保持构件互承的基础上,加强高性能节点的设计研究,满足木互承结构在现代建筑中的结构需求㊂2.2㊀整体受力性能木互承结构更多应用于公共建筑,作为桥梁结构和屋顶结构等使用㊂其中,桥梁结构以一维木互43㊀第2期高颖,等:木互承结构的发展与研究现状承结构编木拱形式为主,通过纵骨构件和横梁系统作为桥梁的承重结构,如中国的汴水虹桥和闽浙木拱桥㊂屋顶结构包括平面结构和曲面网壳结构等二维和三维木互承结构形式,主要通过有限元软件进行结构优化和受力分析㊂目前,木互承结构整体受力性能研究包括结构的静力学特性和稳定性能的研究㊂2.2.1㊀静力学特性为探究编木拱与拱结构之间的联系,Yang等[54]将闽浙木拱桥与相同矢跨比的双铰拱进行有限元分析对比,结果得到在竖向载荷作用下木拱桥受力与双铰拱相似,整体产生水平推力,杆件内部主要产生压应力㊂孟雨泽等[55]则对汴水虹桥进行数值模拟,探究矢跨比㊁节间数及拱肋截面尺寸对汴水虹桥的力学性能影响㊂研究表明,增大矢跨比和拱肋截面尺寸会减小构件产生的应力和挠度值,从而提高结构承载力;而随着节间数的增加,构件所承受的荷载反而减小㊂作为屋顶结构时,单层的木互承结构刚度较小㊁承载力较低㊂因此,齐麟等[56]制备了双层的六边⁃三边型木互承结构,两层之间采用桁架结构连接,以增加木互承结构的承载能力㊂足尺试验和数值模拟研究表明,当节点位置处施加集中荷载为2.4kN时,双层木互承结构挠度仅为1.56mm,远小于结构总跨度的1/250(22.8mm),且刚度是单层结构的近20倍㊂2.2.2㊀稳定性能木互承结构形成网壳屋顶结构时类属于木网壳结构,需满足传统空间网壳结构的整体稳定性要求㊂为准确得到木互承结构在屈曲状态下的结构变形和应力分布,需对其进行屈曲分析㊂乔刚[26]对凯威特型网壳转换生成的互承结构进行了前6阶屈曲模态分析,证明了互承结构具有大跨网壳结构的应用可行性㊂李传栋[33]对典型三边型木互承网壳结构进行特征值屈曲分析,并采用一致缺陷模态法进行几何非线性屈曲分析㊂如图6a所示,屈曲分析结果显示支座处的局部杆件最易发生失稳现象,网壳中部杆件也可能屈曲凸起,但此结构对初始缺陷并不敏感㊂最终通过单因素参数分析,推荐三边型木互承网壳结构的参数合理取值范围:跨度不超过40m,矢跨比为1/6 1/3,搭接比例(接合长度/构件长度)为0.30 0.45和0.550.65㊂图6㊀木互承结构的整体性能分析[33]Fig.6㊀Overallperformanceanalysisoftimberreciprocalstructure㊀㊀木互承网壳结构的鲁棒性分析对结构整体稳定性同样重要,用以判断对结构可靠性至关重要的组件在偶然荷载作用下的可靠程度[57-58]㊂Kirkeg⁃aard等[59]对木互承平面结构进行了鲁棒性分析,计算破坏发生后不同位置构件的应力变化,结果得到初始破坏后再承载时,支座位置处构件应力值最大㊂李传栋[33]研究了局部构件或基本单元的拆除对木互承网壳结构竖向位移和应力分布的影响,结果发现拆除支座处的构件对承载力及结构位移影响最大(图6b),并建议设计时应控制杆件的初始应力比㊁提高支座的刚度㊁提高结构冗余度,以及对重要的杆件和节点进行增强㊂针对编木拱结构的静动力学性能影响,国内外学者还展开了大量研究[60-65]㊂然而在荷载作用下,桥体的两组纵骨构件会产生脱离的现象仍需要进一步深入研究,以推动木互承结构在现代桥梁上的应用㊂而木互承结构作为空间网壳结构的研究尚处于发展阶段,基本单元构件参数的不确定增加了互承构件受力行为的复杂度㊂同时,针对有限冗余度的木互承结构进行精心设计,提高结构整体稳定性能仍需探索;在抗风㊁抗震㊁疲劳㊁蠕变等诸多关键问题还需深入研究㊂53林业工程学报第8卷3㊀工程应用案例随着相关试验和理论研究的展开,近10年来木互承结构工程在多个国家和地区开展了工程应用[3,66-68]㊂除前文提及的编木拱桥,木互承结构在现代更多用于展馆和办公楼等公共建筑㊂这些建筑跨度不等㊁设计灵活㊁造型丰富,对木互承结构的推广具有重要示范作用㊂表3和图7根据不同木互承结构类型对典型木互承结构工程应用案例进行了总结㊂表3㊀典型木互承结构工程应用案例Table3㊀Typicalengineeringapplicationcasesoftimberreciprocalstructures类型建造年份案例占地面积/m2基本单元类型节点类型1090中国福建屏南万安桥槽口连接一维1913美国汉庭顿圆月桥[66]槽口+钉连接2019中国北京青杨洲编木拱虹桥[67]钢插板-螺栓连接二维2016日本司化成工业筑波技术中心[68]329四边型槽口+钉连接2019比利时卡斯特莱文化展厅417四边型螺栓连接三维1994日本文乐木偶剧院[3]25十二边型槽口+锚钉连接2012日本陆前高田老年中心220四边型金属件连接2019荷兰哈灵水道Tij观鸟屋150四边型槽口+螺栓连接2022中国四川天府农博园多功能展示馆1031三边型金属件连接㊀注:1) Nexorade 的基本单元类型分析并不适用于编木拱桥[7];2)表中占地面积为该案例使用木互承结构的面积,其中中国福建屏南万安桥桥长98.2m,共6跨,最大跨径为15.2m;美国汉庭顿圆月桥净跨径为8.34m,矢高2.98m;中国北京青杨洲编木拱虹桥净跨径为13.6m,矢高2.48m㊂图7㊀典型木互承结构的工程案例Fig.7㊀Typicalengineeringapplicationcasesofreciprocalstructures㊀㊀一维木互承结构通常应用于编木拱桥中,历史悠久,而相较于二维平面木互承结构的构型规则简单,三维曲面木互承结构更易得到拓展和创新㊂考虑到承载力和稳定性要求,木互承结构所用建筑材料逐渐从单一实木材料,过渡至现代木结构常用的工程木质产品㊂如从中国福建屏南万安桥㊁美国汉庭顿圆月桥[66]和日本文乐木偶剧院[3]使用的当地木材,到中国北京青杨洲编木拱虹桥[67]使用的户外防腐花旗松胶合木㊁日本司化成工业筑波技术中心[68]的胶合板㊁中国四川天府农博园多功能展示馆使用的胶合木作为单元构件㊂从最初的形状规则的示范性小型建筑,到庞大的曲面复杂的展馆建筑,现代木互承结构的建成跨度与几何造型也在逐渐增加㊂使用于大跨承重屋顶结构时,木互承结构更趋于采用容易结构找形且角度安装简便的三边型和四边型基本单元㊂节点连接类型也逐渐从大63㊀第2期高颖,等:木互承结构的发展与研究现状幅削减截面的槽口连接,逐渐过渡到槽口加金属件连接或仅金属件连接㊂这在一维木互承结构中体现较为明显,使传统的编木拱技术得以随现代木结构工艺的进步而发展㊂所有的节点形式均为隐式节点藏于构件之间,在确保构件良好连接的情况下,现代节点技术为木互承结构创造了更多可能㊂互承结构造型复杂,难以使用过重的建筑材料[3]㊂随着现代材料科学与木结构技术的发展,使用自重轻㊁可持续且绿色环保的木质材料,有利于其在工程搭建与未来建筑中的发展[36,69-70]㊂木互承结构通过规则㊁一致的构件形式和节点连接,可构建出形式多样的结构造型,涉及建筑规模㊁领域广泛,其应用前景广阔㊂因此,需要加快木互承结构的理论及体系研究,推进我国木互承结构的实际工程应用㊂4㊀结㊀语近年来,随着分析技术和建造技术的发展,互承结构不仅在找形理论方面有了长足进步,而且在运用木质材料设计建造具有现代特点的互承结构方面取得了一定的成果㊂笔者归纳了木互承结构在曲面找形㊁节点连接性能和整体力学性能等方面的研究现状,这些研究进展为木互承结构的未来发展与应用提供了参考和借鉴㊂随着木结构建筑的快速发展,木互承结构也需要不断创新,木互承结构在形态学和力学性能研究等方面的工作仍需深入展开㊂1)现有的木互承结构建筑尚少,且曲面造型简单㊁基本单元构型单一,复杂的找形理论尚未与实际工程应用匹配㊂因此亟须提出简单可行㊁便于实际工程使用的找形方法,实现更快速简便的自由曲面找形,并设计开发通用型设计软件作为交互工具,以推动木互承结构在空间结构中的普及与使用㊂2)单一木质构件的结构刚度和强度难以满足现代结构的高性能需求㊂通过使用现代工程木质产品或木材与竹材㊁钢材㊁FRP等材料组合形成复合构件,可提高构件性能与结构整体性能㊂此外,还可考虑采用面单元与块状单元作为基本单元构件,在提高木互承结构稳定性能的同时丰富结构设计的多样性㊂3)木互承结构主要应用场所为桥梁或屋盖,常用节点连接形式为槽口连接与金属件连接㊂为在结构安全条件下更好地发挥构件性能,需对形式简单㊁便于安装㊁性能高强的节点连接形式进行深入研究㊂4)已有的木互承结构力学性能方面的研究尚不完善,针对结构的稳定性能㊁长期性能㊁疲劳性能㊁蠕变性能等还需进一步试验研究,同时在风荷载㊁地震作用下的动力学特性也需要深入研究㊂此外,其耐火性能和可靠性评估方法还有待明确,完善木互承结构的科学研究,促进其工程实践运用㊂参考文献(References):[1]RAPPAPORTN.Deepdecoration[M].Princeton:PrincetonAr⁃chitecturalPress,2006.[2]GHERARDINIF,LEALIF.Reciprocalframesintemporarystructures:anaestheticalandparametricinvestigation[J].NexusNetworkJournal,2017,19(3):741-762.DOI:10.1007/s00004-017-0352-x.[3]LARSENOP.Reciprocalframearchitecture[M].Amsterdam:Elsevier/ArchitecturalPress,2008[4]PUGNALEA,SASSONEM.Structuralreciprocity:criticaloverviewandpromisingresearch/designissues[J].NexusNetworkJournal,2014,16(1):9-35.DOI:10.1007/s00004-014-0174-z.[5]LEONARDO,MARINONIA,PEDRETTIC.IlCodiceAtlanticodellaBibliotecaAmbrosianadiMilano[M].Firenze:Giunti,2000[6]SÁNCHEZJ,ESCRIGF.FramesdesignedbyLeonardowithshortpieces.ananalyticalapproach[J].InternationalJournalofSpaceStructures,2011,26(4):289-302.DOI:10.1260/0266-3511.26.4.289.[7]BAVERELO,NOOSHINH,KUROIWAY,etal.Nexorades[J].InternationalJournalofSpaceStructures,2000,15(2):155-159.DOI:10.1260/0266351001495053.[8]邹丁,肖南.互承型结构构型生成优化研究[J].空间结构,2016,22(3):17-26.DOI:10.13849/j.issn.1006-6578.2016.03.017.ZOUD,XIAON.Morphogenesisofreciprocalstructurebyoptimi⁃zationmethods[J].SpatialStructures,2016,22(3):17-26.[9]SAKURAIA.感度解析によるレシプロカル構造の位相最適化に関する研究[J].法政大学大学院紀要.デザイン工学研究科編,2015(4):1-6.DOI:10.15002/00012361.SAKURAIA.Studyontopologyopimazationofreciprocalframebysensitivityanalysis[J].Bulletinofgraduatestudies:ArtandTechnology,2015(4):1-6.[10]NAKADES.アーチ状ReciprocalFrame構造の断面と形状の最適化に関する研究[J].法政大学大学院紀要.デザイン工学研究科編,2016(5):1-5.DOI:10.15002/00013547.NAKADES.Astudyonsectionalandmorphologicaloptimizationofarchedreciprocalframestructures[J].Bulletinofgraduatestudies.ArtandTechnology,2016(5):1-5.[11]DOUTHEC,BAVERELO.Designofnexoradesorreciprocalframesystemswiththedynamicrelaxationmethod[J].Computers&Structures,2009,87(21/22):1296-1307.DOI:10.1016/j.compstruc.2009.06.011.[12]GODTHELPTS.Timberreciprocalframestructures[D].Eind⁃hoven:EindhovenUniversityofTechnology,2019.[13]覃池泉,王宝珍.虹桥结构类型初探[J].中国水运(下半月),2008,8(6):195-196.QINCQ,WANGBZ.PreliminarystudyonstructuraltypesofHongqiao[J].ChinaWaterTransport,2008,8(6):195-196.[14]陆伟东,陆斌辉,屈丽荣,等.大跨木结构研究现状及关键技术[J].四川建筑科学研究,2021,47(4):1-26.DOI:10.19794/j.cnki.1008-1933.2021.0042.LUWD,LUBH,QULR,etal.Researchstatusandkeytech⁃nologiesoflargespantimberstructures[J].SichuanBuildingSci⁃ence,2021,47(4):1-26.73。

选择性必修Unit 4Period 4 Integrated skills

选择性必修Unit 4Period 4 Integrated skills

7. 被定义为 __b_e__d_e_fi_n_e_d__as___ 8. 随着时间的推移 __o_v_e_r _t_im__e__ 9. 将某物应用到某物上 __a_p_p_ly__s_th__t_o__s_th___ 10. 取决于 __d_e_p_en_d__o_n___
二、单句语法填空
1. The body may be less __r_e_s_is_ta_n_t__(resist) if it is cold. 2. The article describes how the __l_u_b_ri_c_a_ti_o_n__(lubricate) system works. 3. The seller led me __to__b_e_l_ie_v_e__(believe) that the price included home delivery. 4. She applied to the manager __f_o_r _ a job as a clerk. 5. Agreements signed by representatives of various countries are __o_f__ great importance. 6. His __l_im__it_e_d__(limit) knowledge prevented him from being employed.
三、课文语法填空 1.__D_e_fi_n_ed_(define) as the force that makes 2.___i_t __difficult for one object to slide
over 3.__t_h_e__surface of another or to move through a liquid or gas, friction has been fascinating scientists 4.___f_or__centuries, and it’s hard to resist! Friction continued to draw 5._sc_i_en_t_is_ts_’

Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Ex

Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Ex

Tran s.Tian jin Univ.2010,16:388-394DOI 10.1007/s 12209-010-1414-2Accept ed d at e:2009-06-03.*S y N N S F f (N 5)LIU ,6,,D ,f LI j ,j 3@y Dyn amic Reliability Evaluation of D ouble-L ayer CylindricalLatticed Shell under Multi-Support Excitations *L IU Chung ua ng(柳春光)1,2,LI Huijun(李会军)2(1.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China;2.Faculty of Infrastructure Engineering,Dalian University of Technology,Dalian 116024,China)Tianjin University and Springer-Verlag Berlin Heidelberg 2010Ab stract :To overcome the excessive computational cost and/or bad accuracy of traditional approaches,the probabil-istic density evolution method (PDEM)is introduced.The dynamic reliability of a double-layer cylindrical latticed shell is evaluated by applying PDEM and Monte Carlo Method (MCM)respectively,and four apparent wave veloci-ties (100m/s,500m/s,800m/s and 1200m/s)and five thresholds (0.1m,0.2m,0.3m,0.4m and 0.5m)are taken into consideration.Only the difference between threshold and maximal deformation is taken as the performance func-tion.The numerical results show that results obtained by PDEM and MCM agree well;the dynamic reliability in-creases markedly with the increase of displacement threshold;the types of probabilistic density curves of response are different from that of regular distribution;the dynamic reliability will decrease with the decrease of apparent wave velocity,and more members will enter into the plastic state when subjected to multi-support excitations compared with uniform excitation.Thus,it is necessary to take the wave passage effect into consideration in the seismic design of shell structures.Keyword s :shell structure;reliability;Monte Carlo method;probability density evolution method;finite difference method;efficiencyThe large span spatial structure has been applied widely for its reasonable mechanical behavior,high rigid-ity,light weight and easy fabrication and erection.Spatial structures have been extensively used in large public and industrial buildings,such as sports and exhibition halls,theaters,terminal buildings,aero -plane hangars.Conse-quently,the seismic effects of ground motion variations on the large span spatial structure become a crucial issue.Each support of the large span spatial structure is excited asynchronously due to two important effects:(1)the time lag that seismic wave arrives at different struc-tural supports,denoted as the wave passage effect;(2)the loss of coherency of the motion due to reflections and refractions of the waves in different soil media as well as due to the diverse manners of superposition of waves arriving from an extended source at various stations,de-noted as the incoherence effect.Therefore,the analysis of seismic response of structures,especially for long span spatial structure,cannot be based on the simple assump-tion that free -field ground motions are spatially uniform.During the last three decades,the study of variation effect on the seismic response of civil structures has been ad-vanced significantly.Recent researches [1-3]have con-cluded that the difference of support motions can signifi-cantly influence the internal forces of large span spatial structure.Several response spectrum methods [4-7]have been developed to calculate the seismic response of struc-tures subjected to multi -support excitations.A great deal of researches and effort [8,9]has been directed to assess the seismic response of large span spatial structure and re-sults of these studies have shown that the spatial ground motion may induce internal forces and deformations that need to be considered in the design of reticulated shell.Nevertheless,in most cases this effect is still ignored since the seismic design codes remain unsatisfactory in terms of ground motion variations for this kind of struc-ture.This ignorance will reduce the degree of seismic safety reliability of large span spatial structure.Although much work has been done in multi -support excitations,only a few researches investigated the dynamic reliability of long span spatial structure.Especially,there have been no efficient and/or accurate approaches to evaluating theupported b ational at ural cience oundation o China o.0478094.Chunguang born in 194male r Pro .Correspondence to Hui un E-mail:lihui .LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—3—dynamic reliability.Hence,further studies need to be conducted to solve the problem in the dynamic reliability of large span spatial structure subjected to multi -support excitations.As for nonlinear stochastic structures,some investi-gations have been performed.For example,the Monte Carlo method (MCM),random perturbation technique and orthogonal polynomials expansion based approach have been investigated.MCM is applicable to nonlinear stochastic structural analysis,but the computational ef-forts may be exceptionally large.The random perturba-tion technique,which is more efficient in applications,is limited to the case where only small variations of random variable is feasible.Furthermore,it does not work in dy-namics problems on account of secular terms.The or-thogonal polynomials expansion based approach is lim-ited to nonlinear single degree of freedom systems with nonlinearity in the form of power series.Hence,probabil-istic density evolution method (PDEM)[10]is introduced into the dynamic reliability assessment in spatial struc-ture subjected to multi -support excitations in this paper.The numerical results show that PDEM is efficient and accurate in evaluating the dynamic reliability of spatial structure.1Multi-support excitations t o large spanspatial structure1.1Seismic analysis method for spatial structure subjected to multi-support e xcitationsStructures may be destroyed by a sudden attack of earthquake during a short period.In the past,some large span spatial structures were damaged in the earth-quake[11,12].Generally,time -history method,stochastic vibration method and response spectrum method are applied to calculating the seismic response of spatial structure sub-jected to multi -support excitations.The time -history method is easy to carry out;the advantage of stochastic vibration method is that it is constructed on the basis of statistics.Once auto -power spectrum and cross power spectrum of earthquake are determined,statistics of struc-tural response can be captured.However,it is difficult to apply the stochastic vibration to practical engineering due to its excessive computation cost and complicated mathematical derivation.The response spectrum method is only suitable for linear structures.T y ,and the commercial software can carry out the seismic analysis of spatial structure subjected to multi -support ually,three approaches are used:(1)earthquake waves exposed to structural bases by input-ting the acceleration time -history;(2)the acceleration time history integrated to the displacement time -history;(3)large mass method.In this paper,large mass method is used to carry out multi -support excitations.1.2Equation of motion of spatial structur e sub-jected to multi -support excitationsTo solve the equation of motion of spatial structure subjected to multi -support excitations,the total displace-ment are divided into pseudo -static displacement and dynamic relative displacement.The former can be ob-tained by static method,and the total displacement can be gained by substituting pseudo -static displacement into the original equation.In the absolute coordinate,nodes of spatial structures are classified into interior nodes (denoted by subscript s )and support nodes (denoted by subscript b ),and the equation of motion can be formed by partitioned matrix as follows [13,14]ss s b s s sb s s bs bb bs bb b b ++M ΜC C X XM M C C X Xss sb s bsbbbb0=K K X K K X F (1)where b X ,b X and bX are forcing displacement,velocity and acceleration vector imposed to bearing supports of latticed shell subjected to seismic excitations,respec-tively;s X ,s X and sX are displacement,velocity and ac-celeration vector imposed to non -bearing supports,re-spectively;F b is the force acting at bearing supports.Expanding the first row of Eq.(1),yieldsss s ss s ss s ++=M X C X K X sb bsb bsb bM X C X K X (2)The total displacement are divided into pseudo -static dis-placement and dynamic relative displacement,i.e.,s s d bb=+X Y Y X X 0(3)where pseudo-static displacement Y scan be obtained by assuming that the dynamic term equals zero in Eq.(1),and it yields1=Y K K K ()89he time -histor method is adopted in this paper sss s b b -4Transactions of Tianjin University V ol.16No.52010—3—When Eq.(3)is substituted into Eq.(2),it will take the formss s ss s ss s s s s ss s ++=M Y C Y K Y M Y C Y --ss ss b b s b b sb bK Y M X C X K X --(5)When Eq.(3)is substituted into Eq.(5),it yieldsss d ss d ss d ++=M Y C Y K Y ss sss ss b bsb bM Y C Y M X C X (6)Generally speaking,the damping force is propor-tional to dynamic relative velocity.Hence,s bXX can bereplaced by d Yin Eq.(1),and it yieldsss d ss d ss d ++=M Y C Y K Y ss ss b bM Y M X (7)When Eq.(4)is substituted into Eq.(7),it will take theformss d ss d ss d ++=M Y C Y K Y ss sb b+M M X ()α(8)where 1ss sb K K -=αis called pseudo-static matrix;forlumped mass matrix,sb 0=M ,then Eq.(8)takes the formss d ss d ss d ss b ++=M Y C Y K Y M X α(9)This is the equation of motion of spatial structure sub-jected to multi -support excitations.When the structure issubjected to uniform excitations,i.e.,b b b(),E u t =X Eq.(9)agrees well with the classical equation of motion.For simplification ,Eq.(9)can be rewritten as fol-lows,b()()()()t t t t ++=MY CY KY M X α(10)where b()t X is the seismic acceleration vector acting on the bearing supports of spatial structure.2D ynamic reliability of spatial structureand PDEM2.1PDEM of dynamic response of spatial struc -tureConsider the equation of motion of spatial structure subjected to random excitations as follows [15]:(,)++=MXX K X f Z ()The system has n -DOF,and M,C and K are mass,damping and stiffness matrices,respectively;f is a forc-ing function vector,and Z is a random parameter vector denoting the uncertainty of random excitation,with the known probabilistic density function p Z (Z ).The deterministic initial conditions are as follows00(),t =X x 00()t =X x (12)where X (t )is a random process determined by Z and canbe expressed as()(,)t t =X H Z (13)where H is a deterministic operator,and its component is ()(,),j j X t H t =Z 1,2,,j n = (14)The joint PDF of X (t )or the PDF of X j (t )can be deter-mined by the joint PDF of Z.The joint PDF is (,,)((,))()jj j j X p X t X H t p δ=z z z z z(15)Differentiating Eq.(15)with respect to t on bothsides,the probability density evolution equation can be derived as,,(,,)(,,)(,)0jjX j X j j p X t p X t H t t x+=Z Z z z z (16)where (,)j Ht z is the velocity of response.For t=t 0,,(,,)jX j p X t Z z can be solved with the above initial condi-tion,,0(,,)()()jX j j j p X t X X p δ=Z z z z (17)where x j ,0is the initial value of X j (t ).Finally,the PDF of ()j X t ,(,)jx j p X t ,can be ob-tained by,(,)(,,)d jjX j X z p X t p x t Ω=∫zz z(18)2.2Dynamic r elia bility asse ssmentThe dynamic reliability of response X j (t )can be ex-pressed as [16]s (){(),[0,]}j R t p X t τΩτ=∈∈(19)where p{}is the probability of event;s is the safe do-main.An absorbing boundary condition is,f (,,)0,jX j j p X t X Ω=∈Z z (failure domain )(20)Denoting the solution of initial -boundary -va lueproblem as (,,)X j p X tZ z ,the remaining PDF is(,)(,,)d j j zX j X j p X t p X t Ω=∫Zz z(21)and the reliability will be given by()(,)d j zX j jR t p X t X Ω=∫(22)90t C 11LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—3—2.3Procedures of dynamic re liabilityThe procedures to evaluate reliability of spatial structure subjected to multi -support excitations are as follows [15,16]:(1)discretize z in domain z and denote the lattice point as z q ,q=1,2, ,N s ,where N s is the dis-cretized points;(2)solve Eq.(11)to obtain (,)q mX t z ,where m t m t =Δ;(3)solve the initial -boundary -value problem with the finite difference method (FDM );(4)for each z q ,q=1,2, ,N s ,repeat steps (2)and (3).And then carry out the numerical integration in Eq.(18)for the dynamic response analysis,or in Eq.(22)for reliabil-ity assessment.3Dynamic reliability evaluation of lat ticed shell under m ulti-support excit ations3.1De sc ription of mode l a nd ra ndom para meters To evaluate the dynamic reliability of a large span double -layer cylindrical latticed shell subjected to multi -support excitations,PDEM is adopted.Fig.1shows the finite element model.The geometry and material proper-ties of the shell are taken as follows:span length L =108m;width B=211.2m;the height -to -span ratio is 1/3.Themembers are modeled by bar elements in the analysis.In this structure,there are 5832nodes and 6656members in all.The roof loads are taken as 2.0kN/m 2.Statistic loads and self -weight of the shell are treated as lumped masses concentrated at the joints.Initial yield stress is 240MPa,Young ’s modulus is 2.1×1011Pa and hardening modulus is 1.05×1010Pa.Joints are assumed to be hinged.The duration time of EL -Centro is 32s.(,)q mt X z in Eq.(11)is solved by ANSYS,and the initial -boundary -value problem is carried out by FDM pro-grammed by authors.Finally,the PDF of ()j X t in Eq.(18),i.e.,(,)jX j p X t and reliability assessment in Eq.(22)are also obtained by programs developed by au-thors.The probabilistic information of selected parame-ters is listed in Tab.1.Fig.1Double-layer cylindrical latticed shellTab.1Probabilistic information of random parametersRandom variablePositionMember number Distribution Mean Standard deviationE/Pa All bars1—4800Normal 2.1×10114.2×109A 1/mm 2Bars in upper-lay er,in span direction 1—858Log normal 4014.96401.5A 2/mm 2Bars in upper-lay er,in longitudinal direction 859—1722Log normal 2085.23208.52A 3/mm 2Bars in lower-lay er,in span direction 1723—2522Log normal 2968.81296.88A 4/mm 2Bars in lower-lay er,in longitudinal direction2523—3328Log normal 1545.40154.54A 5/mm 2Web member 3329—6656Log normal 1382.3138.23P/NAt upper-layer nodes1—891(node nu mber)Normal1.06P i0.074P iNote:P i (i=1—891)are t he equivalent loads concentrated at upper-layer nodes.3.2Evalua tion of dynam ic reliability of latticed shellTo demonstrate the efficiency and accuracy of PDEM in spatial structure,a large span double -layer cy-lindrical latticed shell is selected.Five displacement thresholds (0.1m,0.2m,0.3m,0.4m and 0.5m )and four apparent wave velocities (V app =100m/s,500m/s,800m/s and 1200m/s )are chosen in dynamic reliability assessment.3.2.1Dynamic reliability assessment of shell with dif-ferent thresholdsT f y y f shell is carried out considering five thresholds,i.e.,0.1m,0.2m,0.3m,0.4m and 0.5m,respectively.Two ap-parent wave velocities are considered.Only the differ-ence between threshold and maximal displacement re-sponse of node is taken as performance function.The dynamic reliabilities of latticed shell subjected to multi -support excitations are listed in Tab.2.Both PDEM and MCM are used to evaluate the dynamic reliability con-sidering two apparent wave velocities,100m/s and 500m/s.It can be seen from Tab.2that the dynamic reliabil-ity increases evidently with the increase of threshold.To fy ff y y,M M 91he evaluation o d namic reliabilit o latticed veri the e icienc and accurac C is also used.Transactions of Tianjin University V ol.16No.52010—3—Tab.2shows that results obtained by PDEM and MCM agree well whenever the threshold is high or low,and Refs.[15,16]obtained the similar solution.Furthermore,it requires only several minutes to carry out the reliability evaluation using PDEM,while MCM needs several hours,even tens of hours to achieve for a small probabil-ity event.In addition,we can see that the effect of appar-ent wave velocity on dynamic reliability of latticed shell cannot be neglected.The smaller the apparent wave ve-locity,the lower reliability is gained with the same dis-placement threshold.The time -history curves of the mean and standard deviation gained by PDEM and MCM are drawn in Figs.2and 3,when apparent wave velocities equal 100m/s and 500m/s,respectively.We can see that the introducedPDEM is accurate enough to calculate the dynamic reli-ability of latticed shell.As far as the computational ef-forts are concerned,the introduced method is more time -saving.The agreement of results between them shows the validity of the introduced algorithm.Tab.2Dynamic reliabilities of latticed shell with different thresholds and apparent wave velocities of100,500m/sReliability (100m/s)Reliability (500m/s)Threshold /mPDEM MCM PDEM MCM 0.10.2550.2560.2920.2940.20.3970.3970.4680.4620.30.6590.6580.7020.7020.40.8030.8040.8420.8460.50.9230.9250.9470.948(a )Mean (b )Standard deviationFig.2Mean and standard deviations of displacement response of latticed shell (V app =100m/s)(a )Mean (b )Standard deviationFig.3Mean and standard deviations of displacement response of latticed shell (V app =500m/s)3.2.2Dynamic reliability of latticed shell with different apparent wave velocitiesIn this section,the effect of apparent wave velocities on dynamic reliability of double-layer cylindrical latticed shell is investigated.Four apparent wave velocities are involved,i.e.,100m/s,500m/s,800m/s and 1200m/s;besides,the uniform excitation is also considered.The dynamic reliabilities are shown in Tab.2when the appar-ent wave velocities equal 100m/s and 500m/s,respec-tively.Tab.3shows the reliabilities when apparent wave velocities equal 800m/s and infinity (i.e.,uniform exci-tations ).From Tab.3we can see that the reliability in-creases evidently with the increase of displacement threshold.The values of reliability in Tab.3are larger than those in Tab.2.Moreover,the interior force of the majority of member changes evidently as the decrease of apparent wave velocity;and some values increase,while others decrease.Hence,it is necessary to take multi -92LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—33—support excitations into account in the dynamic reliability evaluation of long span spatial structure.Tab.3Dynamic reliabilities of latticed shell with different thresholds and ap parent wave velocities of 800m/s and infinityReliability (800m/s)Reliability(Uniform excitations)Threshold /mPDEM MCM PDEM MCM 0.10.3280.3290.3480.3490.20.5130.5140.5370.5380.30.7560.7570.7810.7830.40.8890.8890.9240.9250.50.9720.9760.9850.987Figs.4and 5show the instantaneous PDF curves of displacement response of latticed shell and their evolu-tions,considering two thresholds and two apparent wave velocities at a typical time instant.We can see that the curves are obviously different from the widely used regu-lar probabilistic distribution,e.g.,the normal distribution,log normal distribution,and the curves are irregular and sometimes have two peaks or more.Refs.[15,16]deduced the similar solution.For nonlinear response of latticed shell,the probabilistic density function curves are essen-tially different from traditional distributions despite ran-dom sources are traditional ones.Hence,the traditional second moment reliability method based on the normal distribution assumption has relatively more error.(a )V app =100m/s(b )V app =500m/sFig.4PDF curves wh en threshold is 0.4m at certain time (a )V app =100m/s(b )V app =500m/sFig.5PDF curves when threshold is 0.5m at certain time instants4Conclusions(1)The probabilistic density of response of latticedshell has evolutionary characteristics,and probabilistic density curves are different from regular distribution,e.g.,normal distribution,log normal distribution.(2)The dynamic reliability of latticed shell will de-crease with the decrease of apparent wave velocity;more members enter into the plastic state of latticed shell sub-jected to multi -support excitations compared with uni-form excitation;the dynamic reliability of spatial struc-ture subjected to multi -support excitations can be evalu-ated efficiently and accurately by PDEM,hence,the PDEM is worth further extending in spatial structure.(3)In the seismic analysis of long span spatial structure,it is necessary to take the wave passage effect into account,which has evident effect on interior force of members.Furthermore,the influence of traveling wave effect on interior force of members may be different in different places.The structural response of shell is ampli-fied by multi -support excitations.The amplification ef-fect should be considered in the seismic design of spatial structure.The amplification value changes with span and structural type of spatial structure,etc.(4)Compared with traditional approaches,PDEM y f ,9instantscan not onl obtain more probabilistic in ormation butTransactions of Tianjin University V ol.16No.52010—3—also compute efficiently and accurately.Moreover,PDEM has no limitations to secular terms and small vari-ability.The numerical results show that PDEM is accu-rate and efficient to evaluate the dynamic reliability of spatial structure subjected to multi -support excitations.Refer ences[1]Di Long,Lou Mengli.Seismic response analysis of singlelayer cylindrical reticulated shell under multi-support exci-tations[J].Journal of Tongji University (Natural Sci-ence),2006,34(10):1293-1298(in Chinese).[2]Li Zhongxian,Lin Wei,Ding Yang.Influence of wavepassage effect on seismic response of long-span spatial lat-tice structures[J].Journal of Tianjin University,2007,40(1):1-8(in Chinese).[3]Liang Jiaqing,Ye Jihong.The influence of structural spanon seismic response of space lattice structures under non-uniform excitation[J].Spatial Structures,2004,10(3):13-18(in Chinese).[4]Su Liang,Dong Shilin.Seismic analysis of two typicalspatial structures under multi-support vertical excita-tions[J].Engineering Mechanics,2007,24(2):85-90(in Chinese).[5]Dong Hexun,Ye Jihong.Effects of some parameters onpseudo-static displacement of space lattice structures under multiple support excitation[J].Journal of Southeast Uni-versity(Natural Science),2005,35(4):574-579(in Chi-nese).[6]Liang Jiaqing,Ye Jihong.Seismic response analysis oflong-span space lattice structures under multiple-support excitation [J].Journal of Southeast University (Natural Science),2003,33(5):625-630(in Chinese).[7]Ernesto Heredia-Zavoni,Vanmarcke Erik H.Seismic ran-dom-vibration analysis of multi-support-structural sys-tems[J].Journal of Engineering Mechanics,1994,120(5):1107-1128.[8]Der Kiureghian Armen,Neuenhofer Ansgar.Responsespectrum method for multi-support seismic excitations[J].Earthquake Engineering &Structural Dynamics,1992,21(8):713-740.[9]Loh Chin Hsiung,Ku Bao Ding.An efficient analysis ofstructural response for multiple-support seismic excitations [J].Engineering Structures,1995,17(1):15-26.[10]Li Jie,Chen Jianbing.Probability density evolution analy-sis of nonlinear dynamic response of stochastic struc-tures[J].A cta Mechanica Sinica,2003,35(6):716-722.[11]Fan Zhongxuan.Earthquake hazards analysis of trussstructures-roof of theater in Wu Qia of Xinjiang under earthquake 9degree [J].Earthquake Resistant Engineer-ing,1992,14(2):41-45(in Chinese).[12]Lan Tian.Seismic Design of Large Span Roof [M].ChinaArchitecture &Building Press,Beijing,2000(in Chinese).[13]Zhang Jianmin.Some Problems of Seismic Design of TrussStructures [M].Earthquake Press,Beijing,1992(in Chi-nese).[14]Chu Ye.Elastoplastic Seismic Response and StrengthFracture Analysis of Space Lattice Structures under Multi-support Excitation[D].School of Civil Engineering,Southeast University,Nanjing,2006(in Chinese).[15]Zhang Linlin,Li Jie,Peng Yongbo.Dynamic response andreliability analysis of tall buildings subject to wind loading [J].Journal of Wind Engineering and Industrial Aerody-namics,2008,96(1):25-40.[16]Li Jie,Chen Jianbing.Probability density evolutionmethod for dynamic reliability analysis of stochastic struc-tures[J].Journal of V ibration Engineering,2004,17(2):121-125.94。

Theory of the lattice Boltzmann method From the Boltzmann equation to the lattice Boltzmann equation

Theory of the lattice Boltzmann method From the Boltzmann equation to the lattice Boltzmann equation

Theory of the lattice Boltzmann method:From the Boltzmann equationto the lattice Boltzmann equationXiaoyi He 1,2,*and Li-Shi Luo 2,3,†1Center for Nonlinear Studies,MS-B258,Los Alamos National Laboratory,Los Alamos,New Mexico 875452Complex Systems Group T-13,MS-B213,Theoretical Division,Los Alamos National Laboratory,Los Alamos,New Mexico 875453ICASE,MS 403,NASA Langley Research Center,6North Dryden Street,Building 1298,Hampton,Virginia 23681-0001͑Received 29April 1997;revised manuscript received 26August 1997͒In this paper,the lattice Boltzmann equation is directly derived from the Boltzmann equation.It is shown that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation.Various approxi-mations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail.A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is dem-onstrated explicitly.The lattice Boltzmann models derived include the two-dimensional 6-bit,7-bit,and 9-bit,and three-dimensional 27-bit models.͓S1063-651X ͑97͒12512-0͔PACS number ͑s ͒:47.10.ϩg,47.11.ϩj,05.20.DdI.INTRODUCTIONIn the last few years,we have witnessed a rapid develop-ment of the method known as the lattice Boltzmann equation ͑LBE ͓͒1–6͔.Although only in its infancy,the LBE method has demonstrated its ability to simulate hydrodynamic sys-tems ͓1–5͔,magnetohydrodynamic systems ͓7͔,multiphase and multicomponent fluids ͓8͔including suspensions ͓9͔and emulsions ͓10͔,chemical-reactive flows ͓11͔,and multi-component flow through porous media ͓12͔.Together with modern computers of massively parallel processors,the LBE method has become a powerful computational method for studying various complex systems.The obvious advantages of the LBE method are the parallelism of the method,the simplicity of the programming,and the capability of incor-porating model interactions.However,a rigorous framework of the LBE method is still lacking in spite of the great inter-est in the method.Historically,the models of the lattice Boltzmann equation directly evolve from the models of the lattice-gas automata ͑LGA ͓͒13͔.While the LGA models are Boolean ones,the LBE models are indeed the floating-number counterpart of the corresponding LGA models—a particle in the LGA model ͑represented by a Boolean number ͒is replaced by the single-particle distribution function ͑represented by a real number ͒.Even though the LBE models appear to be rather different from their LGA counterparts because various approximations,such as the linearization of the collision op-erator ͓2͔and the Bhatnagar-Gross-Krook ͑BGK ͓͒15–17͔approximation ͓3͔,have been applied,the theoretical frame-work of the LBE method nevertheless rests upon the Chapman-Enskog analysis of the LGA method ͓14͔.Al-though the connection between the LBE models and the con-tinuous Boltzmann equation are discussed in various places ͓18,19͔,so far there exists no rigorous result in this direction.The lack of a thorough understanding of the LBE method has some immediate implications.For instance,the LBE method has not been very successful in simulating thermohydrody-namic systems ͓19–22͔,nor has the LBE method been able to be implemented on arbitrary mesh grids ͓5,23͔,even though considerable effort has been applied in these direc-tions.As we have shown recently ͓24–26͔,substantial progress can be made in the aforementioned areas once a better understanding of the LBE method is attained.Further-more,through the derivation we can directly show the con-nection between the LBE method and other newly developed gas kinetic methods ͓27–33͔.In this paper we will show that the lattice Boltzmann equation can be directly derived from the continuous Boltz-mann equation discretized in some special manner in both time and phase space.Our analysis shows that theoretically the lattice Boltzmann equation is independent of the lattice-gas automata.The lattice Boltzmann equation is a finite-difference form of the continuous Boltzmann equation.We provide a detailed account of an a priori derivation of the lattice Boltzmann equation from its continuous counter-part—the continuous Boltzmann equation.A general proce-dure to derive lattice Boltzmann models from the continuous Boltzmann equation is established.A number of LBE models in both two-and three-dimensional ͑2D,3D ͒space are de-rived to illustrate the procedure.The kinetic-model equation used in this paper is the BGK equation with a single relax-ation time ͓15–17͔.Although the BGK equation has its in-herent limitations and shortcomings,such as fixed Prandtl number,the equation can be generalized to remedy the short-comings ͓34͔.Therefore,it is sufficient to use the BGK equation for the purpose of studying hydrodynamics of simple fluids.This paper is organized as follows.In Sec.II we discuss the discretization of time for the Boltzmann BGK equation.In Sec.III we discuss the low Mach number ͑small velocity ͒expansion and the discretization of the phase space.In Sec.IV we derive the lattice Boltzmann 6-bit,7-bit,and 9-bit models in two-dimensional space and the 27-bit model in three-dimensional space.Section V concludes the paper.*Electronic address:xyh@†Electronic address:luo@PHYSICAL REVIEW E DECEMBER 1997VOLUME 56,NUMBER 6561063-651X/97/56͑6͒/6811͑7͒/$10.006811©1997The American Physical SocietyII.DISCRETIZATION OF THE BOLTZMANN EQUATIONIn the following analysis,we shall use the Boltzmann equation with the BGK,or single-relaxation-time,approxi-mation ͓15–17͔:ץfץt ϩ␰•ٌf ϭϪ1␭͑f Ϫg ͒,͑1͒where f ϵf (x ,␰,t )is the single-particle distribution function,␰is the microscopic velocity,␭is the relaxation time due to collision,and g is the Boltzmann-Maxwellian distribution function:g ϵ␳͑2␲RT ͒D /2exp ͩϪ͑␰Ϫu ͒22RT ͪ,͑2͒where R is the ideal gas constant,D is the dimension of the space,and ␳,u ,and T are the macroscopic density of mass,velocity,and temperature,respectively.The macroscopic variables,␳,u ,and T are the ͑microscopic velocity ͒mo-ments of the distribution function,f :␳ϭ͵f d ␰ϭ͵gd ␰,͑3a ͒␳u ϭ͵␰f d ␰ϭ͵␰gd ␰,͑3b ͒␳␧ϭ12͵͑␰Ϫu ͒2f d ␰ϭ12͵͑␰Ϫu ͒2gd ␰.͑3c ͒The energy can also be written in terms of temperature T :␧ϭD 02RT ϭD 02N A k BT ,͑4͒where D 0,N A ,and k B are the number of degrees of freedom of a particle,Avogadro’s number,and the Boltzmann con-stant,respectively.In Eqs.͑3͒,an assumption of Chapman-Enskog ͓16͔has been applied:͵h ͑␰͒f ͑x ,␰,t ͒d ␰ϭ͵h ͑␰͒g ͑x ,␰,t ͒d ␰,͑5͒where h (␰)is a linear combination of collisional invariants ͑conserved quantities ͒h ͑␰͒ϭA ϩB •␰ϩC ␰•␰.͑6͒In the above equation,A and C are arbitrary constants,and B is an arbitrary constant vector.A.Discretization of timeEquation ͑1͒can be formally rewritten in the form of an ordinary differential equation:d f dt ϩ1␭f ϭ1␭g ,͑7͒whered dt ϵץץtϩ␰•“is the time derivative along the characteristic line ␰.The above equation can be formally integrated over a time step of ␦t :f ͑x ϩ␰␦t ,␰,t ϩ␦t ͒ϭ1␭e Ϫ␦t /␭͵␦te t Ј/␭g ͑x ϩ␰t Ј,␰,t ϩt Ј͒dt Јϩe Ϫ␦t /␭f ͑x ,␰,t ͒.͑8͒Assuming that ␦t is small enough and g is smooth enoughlocally,the following approximation can be made:g ͑x ϩ␰t Ј,␰,t ϩt Ј͒ϭͩ1Ϫt Ј␦tͪg ͑x ,␰,t ͒ϩt Ј␦tg ͑x ϩ␰␦t ,␰,t ϩ␦t ͒ϩO ͑␦t 2͒,0рt Јр␦t .͑9͒The leading terms neglected in the above approximation are of the order of O (␦t 2).With this approximation,Eq.͑8͒be-comesf ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫf ͑x ,␰,t ͒ϭ͑e Ϫ␦t /␭Ϫ1͓͒f ͑x ,␰,t ͒Ϫg ͑x ,␰,t ͔͒ϩͩ1ϩ␭␦t͑e Ϫ␦t /␭Ϫ1͒ͪϫ͓g ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫg ͑x ,␰,t ͔͒.͑10͒If we expand e Ϫ␦t /␭in its Taylor expansion and,further,neglect the terms of order O (␦t 2)or smaller on the right-hand side of Eq.͑10͒,then Eq.͑10͒becomes f ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫf ͑x ,␰,t ͒ϭϪ1␶͓f ͑x ,␰,t ͒Ϫg ͑x ,␰,t ͔͒,͑11͒where ␶ϵ␭/␦t is the dimensionless relaxation time ͑in the unit of ␦t ͒.Therefore,Eq.͑11͒is accurate to the first order in ␦t .Equation ͑11͒is the evolution equation of the distribu-tion function f with discrete time.Although g is written as an explicit function of t ,the time dependence of g lies solely in the hydrodynamic variables ␳,u ,and T ͑the Chapman-Enskog ansatz ͓16͔͒,that is,g (x ,␰,t )ϭg (x ,␰;␳,u ,T ).Therefore,one must first compute ␳,u ,and T before constructing the equilibrium distribution function,g .Thus,the calculation of ␳,u ,and T becomes one of the most crucial steps in discretizing the Boltzmann equa-tion.B.Calculation of the hydrodynamic momentsIn order to numerically evaluate the hydrodynamic mo-ments of Eq.͑3͒,appropriate discretization in momentumspace ␰must be accomplished.With appropriate discretiza-tion,integration in momentum space ͑with weight function g ͒can be approximated by quadrature up to a certain degree of accuracy,that is,681256XIAOYI HE AND LI-SHI LUO͵␺͑␰͒g͑x,␰,t͒d␰ϭ͚␣W␣␺͑␰␣͒g͑x,␰␣,t͒,͑12͒where␺͑␰͒is a polynomial of␰,W␣is the weight coefficient of the quadrature,and␰␣is the discrete velocity set or the abscissas of the quadrature.Accordingly,the hydrodynamic moments of Eqs.͑3͒can be computed by␳ϭ͚␣f␣ϭ͚␣g␣,͑13a͒␳uϭ͚␣␰␣f␣ϭ͚␣␰␣g␣,͑13b͒␳␧ϭ12͚␣͑␰␣Ϫu͒2f␣ϭ12͚␣͑␰␣Ϫu͒2g␣,͑13c͒wheref␣ϵf␣͑x,t͒ϵW␣f͑x,␰␣,t͒,͑14a͒g␣ϵg␣͑x,t͒ϵW␣g͑x,␰␣,t͒.͑14b͒It should also be noted that f␣͑or g␣)has the unit of f d␰͑or gd␰).III.DERIVATION OF THE LATTICE BOLTZMANN EQUATION AND ITS EQUILIBRIUM DISTRIBUTIONFUNCTIONThe lattice Boltzmann equation has the following ingredi-ents:͑1͒an evolution equation,in the form of Eq.͑11͒with discretized time and phase space of which configuration space is of a lattice structure and momentum space is re-duced to a small set of discrete momenta;͑2͒conservation constraints in the form of Eq.͑13͒;͑3͒a proper equilibrium distribution function which leads to the Navier-Stokes equa-tions.In what follows,the low Mach number expansion is first applied to the Boltzmann-Maxwellian distribution func-tion.Then quadrature to approximate the integration in the momentum space␰is discussed in detail for a variety of LBE models in both2D and3D space.Through the quadra-ture,the lattice structure,and the equilibrium distribution function of the LBE are constructed.A.Low-Mach-number approximationIn the lattice Boltzmann equation,the equilibrium distri-bution function is obtained by a truncated small velocity ex-pansion͑or low-Mach-number approximation͓͒14͔.The same can be done here:gϭ␳2␲RT D/2exp͑Ϫ␰2/2RT͒exp͕͑␰•u͒/RTϪu2/2RT͖ϭ␳͑2␲RT͒D/2exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮϩO͑u3͒.͑15͒With the equilibrium distribution function g of the aboveform,Eq.͑11͒bears a strong resemblance to the latticeBoltzmann equation,and what remains to be accomplished isthe discretization of phase space.For convenience,the fol-lowing notation for the equilibrium distribution function withtruncated small velocity expansion shall be used in what fol-lows:f͑eq͒ϭ␳͑2␲RT͒D/2exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮ.͑16͒Although f(eq)only retains the terms up to O(u2),it is trivialto maintain high-order terms of u in the above expansion ifnecessary.B.Discretization of phase spaceThere are two considerations in the discretization of phasespace.First of all,the discretization of momentum space iscoupled to that of configuration space such that a latticestructure is obtained.This is a special characteristic of thelattice Boltzmann equation.Second,the quadrature must beaccurate enough so that not only the conservation constraintsof Eq.͑13͒are preserved exactly,but also the necessary sym-metries required by the Navier-Stokes equations are retained.In deriving the Navier-Stokes equations from the Boltz-mann equation via the Chapman-Enskog analysis͓16,17͔,thefirst two order approximations of the distribution func-tion͑i.e.,f(eq)and f(1)͒must be considered.Therefore,giventhe equilibrium distribution function,f(eq)of Eq.͑16͒,thequadrature used to evaluate the hydrodynamic moments mustbe able to compute the following moments with respect tof(eq)exactly:␳:1,␰i,␰i␰j,͑17a͒u:␰i,␰i␰j,␰i␰j␰k,͑17b͒T:␰i␰j,␰i␰j␰k,␰i␰j␰k␰l,͑17c͒where␰i is the component of␰in Cartesian coordinates.͑Wehave assumed that the particle only has the linear degree offreedom,i.e.,D0ϭD.͒Thus,to obtain the Navier-Stokesequations,one must be able to evaluate the moments of1,␰,...,␰6with respect to weight function exp(Ϫ␰2/2RT)ex-actly,owing to the small u expansion of g.For isothermalmodels,which are discussed in what follows,the momentsthat are to be evaluated are1,␰,...,␰5.Calculating the hydrodynamic moments of f(eq)is equiva-lent to evaluating the following integral in general:Iϭ͵␺͑␰͒f͑eq͒d␰ϭ␳͑2␲RT͒D/2͵␺͑␰͒exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮd␰,͑18͒where␺͑␰͒is a polynomial of␰.The above integral has thefollowing structure:566813THEORY OF THE LATTICE BOLTZMANN METHOD:...͵e Ϫx 2␺͑x ͒dx ,which can be calculated numerically with Gaussian-type quadrature ͓35͔.Our objective is to use quadrature to evalu-ate the hydrodynamic moments ͓␳,u ,and T ,given by Eq.͑3͔͒.Given proper discretization of phase space,we can evaluate the above integral with desirable accuracy.In the meantime,the lattice Boltzmann equation with appropriate equilibrium distribution function can also be derived.TTICE BOLTZMANN MODELS IN TWO-AND THREE-DIMENSIONAL SPACE A.Two-dimensional 6-bit and 7-bit triangular lattice modelThe 7-bit model is constructed on a two-dimensional (D ϭ2)triangular lattice space.The triangular lattice has the necessary rotational symmetry required by the hydrodynam-ics ͓14͔.The polar coordinates of ␰space,͑␰,␪͒,are used here.For the sake of simplicity but without losing generality,assuming␺m ,n ͑␰͒ϭ͑ͱ2RT ͒m ϩn ␨m ϩncos m ␪sin n␪,͑19͒where ␨ϭ␰/ͱthe integral in Eq.͑18͒becomesI ϭ͵␺m ,n ͑␰͒f͑eq ͒d ␰ϭ␳␲͑ͱ2RT ͒m ϩn͵02␲͵ϱe Ϫ␨2␨m ϩn cos m ␪sin n ␪ϫͭ1ϩ2␨͑eˆ•u ͒ͱ2RTϩ␨2͑eˆ•u ͒2RT Ϫu 22RT ͮd ␪␨d ␨,͑20͒where eˆϭ(cos ␪,sin ␪).To obtain the 7-bit lattice Boltzmann equation on the triangular lattice space,the angular variable ␪must be discretized evenly into six sections in the interval ͓0,2␲͒,that is,␪␣ϭ(␣Ϫ1)␲/3,for ␣ϭ͕1,2,...,6͖.With the discretization of ␪,we have͵2␲cos m ␪sin n ␪d ␪ϭͭ␲3͚␣ϭ16cos m ␪␣sin n ␪␣,͑m ϩn ͒even 0,͑m ϩn ͒odd͑21͒for (mϩn )рing the above result,we obtainI ϭΆ␳3͑ͱ2RT ͒m ϩn͚␣ϭ16cos m ␪␣sin n ␪␣ͭͩ1Ϫu 22RT ͪI m ϩn ϩ͑eˆ␣•u ͒2RTI m ϩn ϩ2ͮ,͑m ϩn ͒even␳3͑ͱ2RT ͒m ϩn͚␣ϭ16cos m ␪␣sin n ␪␣2͑eˆ␣•u ͒ͱ2RT I m ϩn ϩ1,͑m ϩn ͒odd,͑22͒where eˆ␣ϭ(cos ␪␣,sin ␪␣),and I m ϭ͵ϩϱ͑␨e Ϫ␨2͒␨m d ␨͑23͒is the m th moment with respect to the weight function␨e Ϫ␨2.Since the 7-bit model only has two speeds ͑i.e.,n ϭ2͒and one of them is fixed at 0,it is clear that the abscissas of the quadrature to evaluate I m should be ␨0ϭ0and ␨1ϭ␥Ϫ1,where ␥is a positive parameter to be adjusted later.The Radau-Gauss formula ͓35͔is a natural choice to evaluate the integral I m :I m ϭ␻0␨0m ϩ͚j ϭ1n␻j ␨j m .For the 7-bit model,n ϭ1,and the integrals needed to be evaluated are I 0,I 2,and I 4.͓I 1and I 3do not play any role because of the symmetry of the integral I ,as shown in Eq.͑22͒.͔Then,we have the following three equations:I 0ϭ␻0ϩ␻1ϭ1/2,͑24a ͒I 2ϭ␻1␥Ϫ2ϭ1/2,͑24b ͒I 4ϭ␻1␥Ϫ4ϭ1,͑24c ͒of which,the solutions are␻0ϭ1/4,͑25a ͒␻1ϭ1/4,͑25b ͒␥ϭ1/&.͑25c ͒Therefore,we haveI m ϭ14͑␨0m ϩ␨1m͒,m ϭ0,2,4.͑26͒Note that the above quadrature for I m is exact for m ϭ0,2,and 4.Consequently,the following equality is expected to be exact for (m ϩn )р5:681456XIAOYI HE AND LI-SHI LUOIϭ␳12͑ͱ2RT͒mϩn͚␣ϭ16cos m␪␣sin n␪␣ͭͩ1Ϫu22RTͪϫ͑␨0mϩnϩ␨1mϩn͒ϩ2͑eˆ␣•u͒ͱ2RT͑␨0mϩnϩ1ϩ␨1mϩnϩ1͒ϩ͑eˆ␣•u͒2RT͑␨0mϩnϩ2ϩ␨1mϩnϩ2͒ͮϭ␳2␺m,n͑␰0͒ͭ1Ϫu22RTͮϩ␳12͚␣ϭ16␺m,n͑␰␣͒ϫͭ1ϩ͑␰␣•u͒RTϩ͑␰␣•u͒22͑RT͒2Ϫu22RTͮ,whereʈ␰0ʈϭͱ2RT␨0ϭ0and␰␣ϭͱ2RT␨1eˆ␣ϭ2ͱRT eˆ␣.It becomes obvious that the equilibrium distribution function for the7-bit model isf␣͑eq͒ϭw␣␳ͭ1ϩ4͑e␣•u͒c2ϩ8͑e␣•u͒2c4Ϫ2u2c2ͮ,͑27͒where␣෈͕0,1,2,...,6͖,cϭ␦x␦t͑28͒is‘‘the speed of light’’in the system͑which is usually set to be unity in the literature͒,e␣ϭͭ͑0,0͒,␣ϭ0͑cos␪␣,sin␪␣͒c,␪␣ϭ͑␣Ϫ1͒␲/3,␣ϭ1,2,...,6͑29͒andw␣ϭͭ1/2,␣ϭ01/12,␣ϭ1,2, (6)͑30͒Note that the substitution of RTϭc s2ϭc2/4,where c s is the sound speed of the system,has been made in Eq.͑27͒,and RTϭc s2ϭc2/4is equivalent toʈ␰␣ʈϭc for␣ 0.The coef-ficient W␣defined in Eq.͑14͒is explicitly given byW␣ϭ͑2␲RT͒D/2e␰␣2/2RT w␣.͑31͒Similarly,the equilibrium distribution function for the6-bit LBE model,which is a degenerate case of the7-bit model,can be obtained easily by solving two equations for one abscissa and the weight coefficient of the Hermite-Gauss formula͓35͔with modification for the integral on half real axis͓36͔.The solutions are␻1ϭ12and␥ϭ1.Then,we havef␣͑eq͒ϭ␳6ͭ1ϩ2͑e␣•u͒c2ϩ4͑e␣•u͒2c4Ϫu2c2ͮ,͑32͒where␣෈͕1,2,...,6͖.The sound speed of the6-bit LBE model is c sϭc/&,and w␣ϭ16.B.Two-dimensional9-bit square lattice modelTo recover the9-bit LBE model on square lattice space, the Cartesian coordinate system is used and,accordingly,␺͑␰͒can be set to␺m,n͑␰͒ϭ␰x m␰y n,where␰x and␰y are the x and y components of␰.The integral of the moments,defined by Eq.͑18͒,becomesIϭ͵␺m,n͑␰͒f͑eq͒d␰ϭ␳␲͑ͱ2RT͒mϩnͭͩ1Ϫu22RTͪI m I n ϩ2͑u x I mϩ1I nϩu y I m I nϩ1͒ͱ2RTϩu x2I mϩ2I nϩ2u x u y I mϩ1I nϩ1ϩu y2I m I nϩ2RTͮ,͑33͒whereI mϭ͵ϪϱϩϱeϪ␨2␨m d␨,␨ϭ␰/ͱ2RTis the m th order moment of the weight function eϪ␨2on the real axis.Naturally,the third-order Hermite formula͓35͔is the optimal choice to evaluate I m for the purpose of deriving the9-bit LBE model:I mϭ͚jϭ13␻j␨j m.The three abscissas of the quadrature are␨1ϭϪͱ3/2,␨2ϭ0,␨3ϭͱ3/2,͑34͒and the corresponding weight coefficients are␻1ϭͱ␲/6,␻2ϭ2ͱ␲/3,␻3ϭͱ␲/6.͑35͒Then,the integral of the moment in Eq.͑33͒becomesIϭ␳␲͚i,jϭ13␻i␻j␺͑␰i,j͒ͭ1ϩ͑␰i,j•u͒RTϩ͑␰i,j•u͒22͑RT͒2Ϫu22RTͮ,͑36͒where␰i,jϭ(␰i,␰j)ϭͱ2RT(␨i,␨j).Obviously,we can identify the equilibrium distribution function withf i,j͑eq͒ϭ␻i␻j␲␳ͭ1ϩ͑␰i,j•u͒RTϩ͑␰i,j•u͒22͑RT͒2Ϫu22RTͮ.͑37͒Employing the notations of566815THEORY OF THE LATTICE BOLTZMANN METHOD:...e ␣ϭͭ͑0,0͒,␣ϭ0͑cos ␪␣,sin ␪␣͒c ,␪␣ϭ͑␣Ϫ1͒␲/2,␣ϭ1,2,3,4&͑cos ␪␣,sin ␪␣͒c ,␪␣ϭ͑␣Ϫ5͒␲/2ϩ␲/4,␣ϭ5,6,7,8͑38͒andw ␣ϭ␻i ␻j␲ϭͭ4/9,i ϭj ϭ2,␣ϭ01/9,i ϭ1,j ϭ2,...,␣ϭ1,2,3,41/36,i ϭj ϭ1,...,␣ϭ5,6,7,8,͑39͒and with the substitution of RT ϭc s 2ϭc 2/3͑or ʈͱ2RT ␨1ʈϭͱ3RT ϭc ͒,we obtain the equilibrium distribution function of the 9-bit LBE model:f ␣͑eq ͒ϭw ␣␳ͭ1ϩ3͑e ␣•u ͒c 2ϩ9͑e ␣•u ͒22c 4Ϫ3u 22c2ͮ.͑40͒C.Three-dimensional 27-bit square lattice modelThe 27-bit LBE model in 3D square lattice space is a straightforward extension of the 2D 9-bit model.The abscis-sas ␰i ,as well as the corresponding weight coefficients ␻i ,of the quadrature to evaluate the moments remain the same.Therefore,I ϭ␳␲3/2͚i ,j ,k ϭ13␻i ␻j ␻k ␺͑␰i ,j ,k ͒ϫͭ1ϩ͑␰i ,j ,k •u ͒RT ϩ͑␰i ,j ,k •u ͒22͑RT ͒2Ϫu 22RTͮ,͑41͒where ␰i ,j ,k ϭ(␰i ,␰j ,␰k )ϭͱ2RT (␨i ,␨j ,␨k ).With the fol-lowing notations similar to the 9-bitmodel,e ␣ϭΆ͑0,0,0͒,␣ϭ0͑Ϯ1,0,0͒c ,͑0,Ϯ1,0͒c ,͑0,0,Ϯ1͒c ,␣ϭ1,2,...,6͑Ϯ1,Ϯ1,0͒c ,͑Ϯ1,0,Ϯ1͒c ,͑0,Ϯ1,Ϯ1͒c ,␣ϭ7,8,...,18͑Ϯ1,Ϯ1,Ϯ1͒c ,␣ϭ19,20,...,26͑42͒and w ␣ϭ␻i ␻j ␻k␲3/2ϭΆ8/27,i ϭj ϭk ϭ2,␣ϭ02/27,i ϭj ϭ2,k ϭ1,...,␣ϭ1,2,...,61/54,i ϭj ϭ1,k ϭ2,...,␣ϭ7,8,...,181/216,i ϭj ϭk ϭ1,...,␣ϭ19,20, (26)͑43͒we obtain the equilibrium distribution function of the 27-bit LBE model:f ␣͑eq ͒ϭw ␣␳ͭ1ϩ3͑e ␣•u ͒c 2ϩ9͑e ␣•u ͒22c 4Ϫ3u 22c2ͮ.͑44͒Note that the f ␣(eq)of the 27-bit model is exactly the same as that of the 9-bit model except for the values of the coeffi-cients w ␣.Also,the sound speed of the 27-bit model is identical to that of the 9-bit model because in both modelsRT ϭc s 2ϭc 2/3.V.CONCLUSIONRecently,a number of gas kinetic methods have been de-veloped for solving Navier-Stokes equations of simple andcomplex fluids ͓27–33͔.All these methods are based uponthe solution of the BGK equation ͑1͒.In particular,these gas kinetic methods are basically a finite-volume solution of Eq.͑8͒and they do not require discretization of the velocity space ␰.While the lattice Boltzmann equation is in the in-compressible limit due to the small-Mach-number expansion,the gas kinetic methods are particularly suitable for shock capture.In conclusion,we have derived lattice Boltzmann models from the Boltzmann BGK equation,which is completely in-dependent of lattice-gas automata.The derivation directly connects the lattice Boltzmann equation to the Boltzmann equation;thus,the framework of the lattice Boltzmann equa-tion can rest on that of the Boltzmann equation and the rig-orous results of the Boltzmann equation can be extended to the lattice Boltzmann equation via this explicit connection.Insight to improve the previous LBE models can also be gained from the results obtained in this paper ͓24–26͔.Fur-thermore,the analysis here also points out the relationship between the LBE method and other newly developed gas kinetic methods ͓27–33͔.ACKNOWLEDGMENTSThe authors would like to express their gratitide to Dr.Gary D.Doolen,and X.Y.H.to Dr.Micah Dembo of LANL for support and encouragement during this work.681656XIAOYI HE AND LI-SHI LUO͓1͔G.McNamara and G.Zanetti,Phys.Rev.Lett.61,2332͑1988͒.͓2͔F.J.Higuera,S.Succi,and R.Benzi,Europhys.Lett.9,345͑1989͒;F.J.Higuera and J.Jeme´nez,ibid.9,663͑1989͒.͓3͔H.Chen,S.Chen,and W.H.Matthaeus,Phys.Rev.A45, R5339͑1991͒;Y.H.Qian,D.d’Humie`res,and llemand, Europhys.Lett.17,479͑1992͒.͓4͔Lattice Gas Methods for Partial Differential Equations,edited by Gary D.Doolen͑Addison-Wesley,Redwood City,CA, 1990͒;Lattice Gas Methods:Theory,Applications,and Hard-ware,edited by Gary D.Doolen͑MIT,Cambridge,1991͒.͓5͔R.Benzi,S.Succi,and M.Vergassola,Phys.Rep.222,145͑1992͒.͓6͔J.Stat.Phys.81,1/2͑1995͒,special issue on lattice-based models and related topics,edited by J.L.Lebowitz,S.A.Orszag,and Y.H.Qian.͓7͔S.Chen,H.Chen,D.Martı´nez,and W.Matthaeus,Phys.Rev.Lett.67,3776͑1991͒.͓8͔X.Shan and H.Chen,Phys.Rev.E47,1815͑1993͒;49,2941͑1994͒;M.R.Swift,W.R.Osborn,and J.M.Yeomans,Phys.Rev.Lett.75,830͑1995͒.͓9͔dd,J.Fluid Mech.271,285͑1994͒;271,311͑1994͒.͓10͔B.M.Boghosian,P.V.Coveney,and A.N.Emerton,Proc.R.Soc.Ser.A452,1221͑1996͒.͓11͔S.Chen,S.P.Dawson,G.D.Doolen,D.R.Janecky,and A.Lawniczak,Comput.Chem.Eng.19,617͑1995͒.͓12͔S.Chen,K.Diemer,G.D.Doolen,K.Eggert,C.Fu,S.Gut-man,and B.J.Travis,Physica D47,72͑1991͒.͓13͔U.Frisch,B.Hasslacher,and Y.Pomeau,Phys.Rev.Lett.56, 1505͑1986͒;S.Wolfram,J.Stat.Phys.45,471͑1986͒.͓14͔U.Frisch,D.d’Humie`res,B.Hasslacher,llemand,Y.Pomeau,and J.-P.Rivet,Complex Syst.1,649͑1987͒.͓15͔P.L.Bhatnagar,E.P.Gross,and M.Krook,Phys.Rev.94, 511͑1954͒.͓16͔S.Harris,An Introduction to the Theory of the Boltzmann Equation͑Holt,Rinehart and Winston,New York, 1971͒.͓17͔R.L.Liboff,Kinetic Theory͑Prentice Hall,Englewood Cliffs, NJ,1990͒.͓18͔J.M.V.A.Koelman,Europhys.Lett.15,603͑1991͒.͓19͔G.McNamara and B.J.Alder,Physica A194,218͑1993͒.͓20͔F.J.Alexander,S.Chen,and J.D.Sterling,Phys.Rev.E47, R2249͑1993͒.͓21͔Y.Chen,Ph.D.thesis,University of Tokyo,1994;Y.Chen,H.Ohashi,and M.Akiyama,Phys.Rev.E50,2766͑1994͒;Phys.Fluids7,2280͑1995͒;J.Stat.Phys.81,71͑1995͒.͓22͔G.McNamara,A.L.Garcia,and B.J.Alder,J.Stat.Phys.81, 395͑1995͒.͓23͔S.Succi,G.Amati,and R.Benzi,J.Stat.Phys.81,5͑1995͒.͓24͔X.He and L.-S.Luo,Phys.Rev.E55,R6333͑1997͒.͓25͔X.He and L.-S.Luo,put.Phys.129,357͑1996͒.͓26͔X.He and L.-S.Luo,Physica A239,276͑1997͒.͓27͔K.H.Prendergast and K.Xu,put.Phys.109,53͑1993͒.͓28͔K.Xu and K.H.Prendergast,put.Phys.114,9͑1993͒.͓29͔K.Xu,L.Martinelli,and A.Jameson,put.Phys.120, 48͑1995͒.͓30͔K.Xu,J.Stat.Phys.81,147͑1995͒.͓31͔K.Xu,C.Kim,L.Martinelli,and A.Jameson,put.Fluid Dyn.7,213͑1996͒.͓32͔K.Xu,put.Phys.134,122͑1997͒.͓33͔A.D.Kotelnikov and D.C.Montgomery,put.Phys.134,364͑1997͒.͓34͔C.D.Levermore,J.Stat.Phys.83,1021͑1996͒.͓35͔P.J.Davis and P.Rabinowitz,Methods of Numerical Integra-tion,2nd ed.͑Academic,New York,1984͒.͓36͔N.M.Steen,G.P.Byrne,and E.M.Gelbard,put.23,661͑1969͒.566817THEORY OF THE LATTICE BOLTZMANN METHOD:...。

化学专业英语常用词9剖析

化学专业英语常用词9剖析

law of mass conservation 质量守恒定律low of definite (or constant) composition 定组成定律low of definite proportions 定比定律low of multiple proportions 倍比定律nucleus ['njuːkl iəs] n 原子核electron [i'lektrɔn] n 电子proton ['prəutɔn] n 质子neutron ['njuːtrɔn] n 中子atomic number 原子序数mass number 质量数subscript ['sʌbskript] n 下标superscript ['suːpəskri pt; 'sjuː pəskript] n 上标isotope ['aisətəup] n 同位素relative atomic mass/atomic weight/average atomic mass 相对原子质量abundance [ə'bʌnd(ə)ns] n 丰度standard atomic weight 标准原子质量unified atomic mass unit/atomic mass unit 规定原子质量单位ion ['aiən] n 离子anion ['ænaiən] n 阴离子cation ['kætaiən] n 阳离子monatomic [,mɔnə'tɔmik] adj 单原子的polyatomic [,pɔliə'tɔmik] adj 多原子的oxyanion 含氧阴离子radical ion 自由基离子light [lait] n 光electromagnetic radiation/radiant energy 电磁辐射diffraction [di'frækʃn] n 衍射interference [intə'fiər(ə)ns] n 干涉frequency ['friːkw(ə)nsi] n 频率wavelength ['wei vleŋθ; 'we i v leŋkθ] n 波长wave number 波数amplitude ['æmpli tjuːd] n 振幅intensity [in'tensiti] n 强度quantum ['kwɔntəm] n 量子Planck's constant 普朗克常数photoelectric effect 光电效应photon ['fəutɔn] n 光子spectrum ['spektrəm] n 光谱continuous spectrum 连续谱,连续光谱discrete spectrum 离散谱,不连续光谱line spectrum 线状谱,光谱线quantum number 量子数ground state 基态excited state 激发态wavelike properties 波动性matter wave 物质波,德布罗意波momentum [mə'mentəm] n 动量Heisenberg's uncertainty principle 海森堡测不准原理Schrödinger's wave equation薛定谔波动方程wavelike and particle-like behavior 波粒二象性quantum mechanic 量子力学wave mechanic 波动力学wave function 波函数probability density 概率密度,几率密度electron density distribution 电子密度分布atomic orbital 原子轨道principal quantum number 主量子数shell [ʃel] n 层azimuthal /angular /orbital quantum number 角量子数subshell ['sʌbʃel] n 亚层magnetic quantum number 磁量子数Cartesian label 笛卡尔坐标spin quantum number 自旋量子数Pauli exclusion principle 泡利不相容原理diamagnetic [,daiəmæg'netik] adj 反磁性的,抗磁性的paramagnetic [pærəmæg'netik] adj 顺磁性的orbital ['ɔːb it(ə)l] n 轨道electron configuration 电子构型Aufbau principle 构造原理orbital diagram 轨道图degenerate orbital 简并轨道Hundred' s Rule 洪特规则valence shell 价层core electrons 核电子periodic table 周期表group/family 族period 周期alkali metals 碱金属alkaline earth metals 碱土金属halogens ['hælədʒənz] n 卤素nitrogens ['naitrədʒ(ə)nz] n 氮族元素chalcogens ['tʃælkɔgənz] n 氧族元素noble gases 稀有气体representative/maingroup elementstransition elements/metals 过渡元素inner transition elements 内过渡元素lanthanide ['lænθənaid] n 镧系元素actinide ['ækti,naid] n 锕系元素nuclear charge 核电荷electrostatic attraction 静电吸引effective nuclear charge 有效核电荷shield [ʃiːld] n /screen [skriːn] n 屏蔽octet [ɔk'tet] n 八隅体atomic radius 原子半径ionization energy 电离能electron affinity 电子亲和性electronegativity [i'lektrəu,neɡə't ivəti] n 电负性isoelectronic [,aisəuilek'trɔnik; ,aisəuelek'trɔnik] adj 等电子的ionization potential 电离电势,电离位first/second ionization energy 第一/第二电离能electropositive [ilektrə(u)'pɔzitiv] adj 带正电的metal ['met(ə)l] n 金属nonmetal ['nɔn,metəl] n 非金属metalloid ['met(ə)lɔid] n 类金属semiconductor [,semikən'dʌktə] n 半导体metallic character 金属性allotrope ['ælətrəup] n 同素异形体peroxide [pə'rɔksaid] n 过氧化物superoxide [,supər'ɔksaid] n 超氧化物chemical bond 化学键valence electron 共价键ionic [ai'ɔnik] adj 离子的covalent [kəu'veil(ə)nt] adj 共价的metallic [mi'tælik] adj 金属的Lewis symbol 路易斯符号electron pairs 电子对octet rule 八隅体规则bonding pairs/shared pair 成键电子对lone pairs/unshared pair 孤电子resonance structure 共轭结构ionic bond 离子键lattice structure 晶格结构lattice energy 晶格能Born-Haber cycle玻恩-哈伯循环covalent bond 共价键bond order 键级single bond 单键double bond 双键triple bond 三键bond energy/enthalpy/strength 键能bond length 键长network covalent solid 网络共价固体bond polarity 键极性nonpolar covalent bond 非极性共价键polar bond 极性键dipole ['daipəul] n 偶极dipole moment 偶极距permanent dipole moment 永久偶极距electric field 电场polarization [,pəulərai'zeiʃən] n极化polarizability ['pəulə,raizə'biləti] n 极化性,极化度metallic bond 金属键valence shell electron-pair repulsion (VSEPR) 价层电子对互斥理论molecular geometry/shape 分子构型steric number (SN) 立体数bond angle 键角linear ['liniə] adj 线性的trigonal ['trig(ə)n(ə)l] adj 三角形的tetrahedral [,tetrə'hiːdrəl] adj 四面体的trigonal bipyramidal 三角双锥的octahedral [,ɔktə'hidrəl] 八面体的bend [bend] 弯的/angular ['æŋgj ulə] adj有棱角的seesaw ['siːsɔː] adj 交互的,前后动的T-shaped T形的square pyramidal 四棱锥的square planar 平面正方形valence-bond (VB) theory 价键理论overlap [əuvə'læp] n 重叠hybridize ['haɪbrɪdaɪz] n 杂交nonequivalent ['nɔni'kwivələnt] adjequivalent [i'kwiv(ə)l(ə)nt] adj 相等的sp hybrid orbital sp杂化轨道sigma (σ) bondσ键pi (π) bondπ键sp3 hybrid orbital sp3杂化轨道sp3d2 hybrid orbital sp3d2杂化轨道sp3d hybrid orbital sp3d杂化轨道sp3d orbital sp3d轨道Molecular orbital (MO) theory 分子轨道理论molecular orbital 分子轨道bonding orbital 成键轨道antibonding orbital 反键轨道sigma (σ) molecular obitalσ分子轨道sigma star (σ*) molecular obital σ*分子轨道pi(π) molecular obitalπ分子轨道pi star(π*) molecular obital π*分子轨道molecular orbital diagram 分子轨道图intramolecular forces 分子内作用力intermolecular force 分子间作用力ion-dipole 离子偶极dipole-dipole force 取向力hydrogen bonding 氢键dispersion force/ London force 色散力/伦敦力Van der Waals’ force范德瓦尔斯力Van der Waals radius 范德瓦尔斯半径chemical reaction 化学反应reactant [ri'ækt(ə)nt] n 反应物product ['prɔdʌkt] n 产物Derect Combination (Synthesis) 化合反应Chemical Decomposition (Analysis) 分解反应Single Displacement (Substitution) 置换反应Double Displacement (Metathesis) 复分解反应Acid-base reaction 酸碱反应Oxidation-reduction (Redox) reaction 氧化还原反应oxidation number(oxidation state) 氧化数oxidizing agent / oxidant/oxidizer 氧化剂reducing agent/reductant/reducer 还原剂combustion [kəm'bʌstʃ(ə)n] n 燃烧,氧化exothermic reaction 吸热反应endothermic reaction 放热反应Isomerization Reaction 异构化反应Disproportionation Reaction 歧化反应Hydrolysis [hai'drɔlisis] n 水解作用chemical equation 化学方程式law of conservation of mass 质量守恒定律law of conservation of charge 电荷守恒定律stoichiometric coefficient 化学计量系数molecular equation 分子方程式ionic equation 离子方程式total ionic equation 总离子方程式spectator ion 不相关离子net ionic equation 净离子方程式yield [jiːld] n 产率theoretical yield 理论产率actual yield 实际产率percent yield产率百分比vapor [veipə] n 蒸汽gas lows 气体定律Boyle’s Low波义耳定律Charles’s Law查理定律Avogadro’s Law阿伏加德罗定律standard temperature and pressure (STP) 标准温度和压强molar volume 摩尔体积ideal gas law 理想气体定律ideal-gas-equation 理想气体方程ideal gas 理想气体proportionality constant 比例常数gas constant 气体常数partial pressure 分压Dalton’s law of partial pressures道尔顿分压定律mole fraction 摩尔分数Kinetic Molecular Theory 分子动理论continuous [kən'tinjuəs] adj 连续的,不间断的random ['rændəm] adj 无规则的,混乱的attractive/repulsive force 引力/斥力elastic [i'læstik] adj 弹性的average kinetic energy 平均动能root-mean-square 均方根most probable speedmean speed 平均速率effusion [i'fjuːʒ(ə)n] n 渗出,泻出Graham’s law格拉哈姆定律diffusion [di'fjuːʒ(ə)n] n 扩散mean free path 平均自由程real gas 真实气体van der Waals equation范德瓦耳斯方程aqueous solution 水溶液solution [sə'luːʃ(ə)n] n溶液solvent ['sɔlv(ə)nt] n溶剂solute ['sɔljuːt; sɔ'ljuːt] n溶质electrolyte [i'lektrəlait] n 电解质non-electrolyte 非电解质strong electrolyte 强电解质weak electrolyte 弱电解质chemical equilibrium 化学平衡concentration [kɔns(ə)n'treiʃ(ə)n] n 浓度percent composition 组成百分比molarity [məu'læriti] n 摩尔浓度molality [mo'læləti] n 质量摩尔浓度grams per liter 克每升mole fraction 摩尔分数parts per million (ppm) 百万分之一concentrated ['kɔnsntreitid] adj 浓缩的dilution [dai'luːʃn] n 稀释Precipitation reaction 沉淀反应Precipitate [pri'sipiteit] n 沉淀物Solubility [,sɔlju'biləti] n 溶解度Insoluble [in'sɔljub(ə)l] adj 不可溶的Titration [tai'treiʃən] n 滴定Analyte ['ænəlait] n 分析物Titrant ['taitrənt] n 滴定剂Primary standard 一级标准Equivalence point 等当点Indicator ['indikeitə] n 指示剂Chemical equilibrium 化学平衡Forward /reverse reaction 正、逆反应Dynamic equilibrium 动力学平衡Incomplete [inkəm'pliːt] / reversible [ri'vɜːs ib(ə)l] 不完全反应,可逆反应Law of chemical equilibrium 化学平衡定律Law of mass action 质量作用定律Equilibrium constant expression 平衡常数表达式Equilibrium constant 平衡常数Homogeneous equilibria 均相平衡Heterogeneous [,het(ə)rə(u)'dʒiːn iəs; -'dʒen-] adj 均匀的Reaction quotient 反应系数Le Châtelier’s principle勒夏特利原理Thermodynamics [,θɜːmə(u)dai'næmiks] n 热力学Thermochemistry [θɜːməu'kemistri] n 热化学Potential energy 势能Kinetic energy 动能System ['sistəm] n 系统Surrounding [sə'raundiŋ] n 环境Boundary ['baund(ə)ri] n 边界,界限Open system 敞开系统Closed system 封闭系统Isolated system 孤立系统State [steit] n 状态State variable 状态变量State function 状态函数Path function 过程方程Heat [hiːt] n 热量Work [wɜːk] n 功Energy ['enədʒi] n 能量Internal energy 内能First law of thermodynamics 热力学第一定律Law of conservation of energy 能量守恒定律State function 状态函数Endothermic [,endəu'θɜːm ik] 放热的Press-volume work 压力体积功Enthalpy ['enθ(ə)lpi; en'θælp i] n 焓Enthalpy of reaction 反应焓Calorimetry [,kælə'rimitri] n 量热法Calorimeter [,kælə'rimitə] n 量热计Heat capacity 热容Molar heat capacity 摩尔热容Specific heat 比热Bomb calorimeter 弹式量热计Hess’s law盖斯定律Enthalpy of formation 生成焓Standard enthalpy 标准焓Standard enthalpy of formation 标准生成焓Molar heat of solution 摩尔溶解热Heat of dilution 稀释热Molar heat of fusion 熔融热Molar heat of vaporization 摩尔汽化热Arrhenius acid/base 阿伦尼乌斯酸、碱Hydronium [hai'droniəm] n 水合氢离子Neutralization reaction 中和反应Salt [sɔːlt; sɔlt] n 盐Amphoteric [,æmfə'terik] adj 两性的Conjugate base/acid 共轭酸/碱Conjugate acid-base pair 共轭酸碱对Autoionization [,ɔːtəu,aiənai'zeiʃən] n 自电离Ion-product constant 电离平衡常数Acidity [ə'siditi] n 酸性Basicity [bei'sisiti] n 碱性Strong acid 强酸Superacid [,sju:pə'æsid] n 过酸Weak acid 弱碱Acid/base-dissociation constant 酸碱电离常数Degree of ionization 电离度Monoprotic /diprotic /triprotic /polyprotic acid 一元/二元/三元/多元酸Oxoacid 含氧酸Carboxylic acid 羧基Leveling effect 拉平效应Leveling solvent 拉平溶剂Differentiating solvent 辨别溶剂Adduct [ə'dʌkt] n 加合物Common-ion effect 同离子效应Buffer solution 缓冲溶液Buffer capacity 缓冲能力Buffer range 缓冲范围Henderson-Hasselbalch equation汉-哈氏公式Acid-base titration 酸碱滴定pH titration curve pH 滴定曲线pH indicator pH 指示剂solubility equilibrium 溶解平衡solubility-product constant(solubility product) 溶解平衡常数insoluble [in'sɔljub(ə)l]不可溶的slightly soluble 微溶的complex ion 配离子formation constant 形成常数amphoteric metal hydroxide 两亲金属氧化物selective precipitation 选择性沉淀qualitative analysis 定性分析metal complex 金属配合物complex ['kɔmpleks] n 络合物coordination compound 配位化合物ligand ['lig(ə)nd] n 配体donor atom供电子原子;配位原子coordination sphere配位层coordinate covalent bond配位共价键complexing agent络合剂;配位剂coordination number配位数monodentate/unidentate 单齿配体bidentate [bai'denteit] n 两齿配体polydentate 多齿配体chelating agent 螯合剂chelate effect 螯合效应isomer ['aisəmə] n 同分异构体isomerism [ai'sɔmərizəm] n 同分异构现象structural isomer 结构异构体linkage isomerism 键合异构ambidentate 两可配位基的coordination isomer 配位异构体stereoisomer [,steriəu'aisəmə; ,stiə-] n 立体异构体geometric isomerism 几何异构optical isomerism 光学异构cis-trans isomer 顺反异构crystal-field theory 晶体场理论crystal field effect 晶体场效应crystal field splitting energy 晶体场分裂能strong-field ligand 强场配体weak-field ligand 弱场配体d-d transition d-d跃迁spectrochemical series光谱化学系列spin-pairing energy 自旋配对能low-spin complex 低自旋配合物high-spin complex 高自旋配合物porphine卟吩porphyrin ['pɔːf irin] n 卟啉chlorophyll ['klɔːrəfil; 'klɔ-] n 叶绿素Hemoglobin [,hiːməu'ɡləubin] n 血红蛋白Nuclear chemistry 核化学Radiochemistry 放射化学Radiation chemistry 辐射化学Nucleon ['njuːkl iɔn] n 核子Nuclide ['njuːkla id] n 核素Nuclear decay 核衰变Radioactive [,reidiəu'æktiv] adj 放射性的Radionuclide [,reidiəu'njuːkla id] n 放射性核素Radioisotope [,reidiəu'aisətəup] n 放射性同位素Strong/nuclear force 核力、强相互作用Parent ['peər(ə)nt] n 母体Daughter ['dɔːtə]Positron ['pɔzitrɔn] n 正电子Antimatter ['ænti,mætə] n 反物质Activity [æk'tiviti] n 活度Becquerel(Bq) ['bɛkərɛl] n 贝克Curie ['kjuəri] n 居里Geiger counters盖革计数器Scintillation counters闪烁计数器Half-life 半衰期Radiocarbon dating放射性碳测定年代Mass defect质量亏损Nuclear binding energy核结合能Binding energy per nucleon 每个核子的结合能Belt of stability 稳定带Magic number 幻数Radioactive series 放射系Nuclear disintegration series核蜕变[分裂]系Nuclear transmutation核嬗变, 核转化Linear accelerator线性加速器、直线加速器Cyclotron回旋加速器Nuclear fission 核裂变Nuclear chain reaction 核链式反应Critical mass临界物质Nuclear power核动力Nuclear weapon核动力Breeder reactor增殖反应堆Nuclear fusion 核聚变Thermo-nuclear reaction 热核反应Ionizing radiation 电离辐射Absorbed dose 吸收剂量Gray(Gy) [grei] n 戈瑞Rad [ræd] n拉德(辐射剂量单位)Equivalent dose 剂量当量Sieverts (Sv) 希沃特Rems雷姆。

职称英语理工类A阅读理解速记口诀

职称英语理工类A阅读理解速记口诀
5.钻孔钻入火山心
第十七篇地球防晒霜
1:虽难还是有办法解决变暖问题
2:人为问题已解决
3:美沙酮缓解毒瘾有效办法
4:给地球使用防晒霜
5:防晒霜减小温室气体不是真
第十八篇石油匮乏
1:石油供应在减少
2:除油之外煤破坏最重不是真
3:最大消费是美国
4:很快面临能源危机
5:海面上升不是真
第十九篇石墨烯超强力量
1:改变电器未来是石墨烯
5:适用大众仍需时日不是真
第八篇Eiffel is Eyeful
1.各国游客涂鸦铁塔
2.奇怪喜爱涂鸦不爱景
3.爬上铁塔不是真
4.铁塔用来多领域研究
5.自由想象塔意义
第九篇埃及遭受饥荒
1、金字塔建造者不能救文明
2、气候变化毁文明
3、青白尼罗河是支流
4、王国衰落干旱后
5、devastating竟为damaging毁灭
4.女性起降失速操作错误最常见
5.男性决策错误多
第二十七篇分散注意力驾驶
1.Coyne驾驶不为真撞到妇女不可能
2.三段四段找发现,三个答案全正确
3.初步结果在五段,环境不同神不变
4.确定导航最好的方式
5.男爱总体女爱线路
第二十八篇睡眠使记忆归档
1.睡觉中大脑归类整理记忆
2.大脑两个区域是相互作用的
3.记忆越差,葡萄糖越少
4:实验对象是俩志愿者
5:标题可换你的想法可被扫描
第三十三篇专家呼吁区域控制核废料地
1:withdrawal意思为canceling撤销
2:存放地点应当地人和政府同意
3:国会的决议通过当地认可不是真
4:存放地设置应努力和当地情况适合
5:废料存放应靠近反应堆并适应情况

小学下册E卷英语第3单元全练全测(有答案)

小学下册E卷英语第3单元全练全测(有答案)

小学下册英语第3单元全练全测(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The dog is ________ in the park.2.I call my grandmother . (我叫我的奶奶。

)3.The seabird can be seen soaring over the ______ (海洋).4.My favorite thing to do is ________ (看书).5.The __________ is a region of the Earth characterized by its unique climate.6.My cousin is really into _______ (名词). 她每天都 _______ (动词).7.The dog is ___ a stick. (fetching)8. A habitat is where an animal __________.9.My uncle is a __________ (历史学家).10.The man has a funny ________.11.The spider spins its web to catch ______ (昆虫).12.I can ______ my homework. (finish)13.The chemical symbol for chromium is ______.14.I love to ride my ______ in the park.15.The process of crystallization is used to purify ______.16._____ (园艺技巧) can be learned through practice.17.The _____ (动物园) has many animals.18.She is _____ (making) a scrapbook.19.The clock is on the ___ (wall/table).20.The _____ (森林) is full of wildlife.21.The baby is very ___. (happy)22.The parrot repeats _______ (句子) I say.23.The chemical formula for mercury(II) chloride is ______.24.The rabbit loves to dig in the _________. (土壤)25.My sister has a collection of ____ (postcards).26. A solution that has a low concentration of solute is called a ______ solution.27.The porcupine can defend itself with its sharp ________________ (刺).28.My friend is __________ (具有创造力).29.My favorite fruit is _______ (西瓜).30.The ______ is a type of plant that can survive in the desert.31.New York City is famous for its _____ (37).32.What is the name of the famous volcano in Italy?A. Mount St. HelensB. Mount VesuviusC. Mount FujiD. Mount Etna 答案:B.Mount Vesuvius33.The ______ is known for her artistic talent.34.The ______ (鲸鱼) is a majestic creature of the sea.35. A zebra is a type of ______.36.Acids can react with metals to produce ______ gas.37. A chemical reaction may produce a gas, a liquid, or a ______.38.We have a ______ (快乐的) family tradition for special occasions.39.What do we call the study of weather?A. BiologyB. AstronomyC. MeteorologyD. Ecology答案:C. Meteorology40.The state of matter with a definite volume but no definite shape is ______.41.The ______ (小鸟) chirps in the morning.42.My uncle is a fantastic ____ (gardener).43.The __________ was a significant time of exploration in the 15th century. (大航海时代)44.What is the name of the famous mountain range in Asia?A. AndesB. RockiesC. HimalayasD. Alps答案: C45.The _____ (乌鸦) is known for its intelligence and problem-solving skills. 乌鸦以其聪明才智和解决问题的能力而闻名。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -l a t /0409150v 1 27 S e p 20043-d lattice SU(3)free energy to four loops∗MIT-CTP-3541;UPRF-2004-18F.Di Renzo a ,A.Mantovi a ,V.Miccio a ,Y.Schroder b ,C.Torrero a aDipartimento di Fisica,Universit`a degli Studi di Parma,and INFN,Gruppo Collegato di Parma,ItaliabCenter for Theoretical Physics,MIT,Cambridge,MA,USAWe report on the perturbative computation of the 3d lattice Yang-Mills free energy to four loops by means of Numerical Stochastic Perturbation Theory.The known first and second orders have been correctly reproduced;the third and fourth order coefficients are new results and the known logarithmic IR divergence in the fourth order has been correctly identified.Progress is being made in switching to the gluon mass IR regularization and the related inclusion of the Faddeev-Popov determinant.1.IntroductionThe main goal of finite temperature QCD is to characterize the deconfinement transition bet-ween the low temperature regime,ruled by con-finement,and the high temperature regime ruled by asymptotic freedom.In this respect the free energy density,i.e.the pressure ,is a sort of ‘theoretical laboratory’in which to study such a transition,and,eventually,a potential candidate observable in heavy ion collisions.Evidently,the large T limit of the pressure is that of an ideal gas of non-interacting particles,p ∝T 4;unfortu-nately,lattice simulations across the whole tem-perature range are not feasible and our efforts and understanding are confined to the opposite ends of the temperature range:namely,the low temperature regime (up to some 4÷5times the transition temperature T c ∼200MeV)which is accessible to actual computational resources,and the high temperature regime at which the pres-sure exhibits a purely perturbative behaviour.Dimensional reduction [1]has been applied [2]to fill the gap:4d QCD is matched to 3d SU (3)Yang-Mills (YM)coupled to a Higgs field in the adjoint representation;such a theory can then be matched to 3d SU (3)YM,which captures the ultrasoft degrees of freedom;both these reduc-tions have been successfully performed in the∗Presentedby Andrea Mantovischeme.Finally,3d YM has to be treated non-perturbatively,the only effective means being the lattice.Indeed lattice computations can be con-sistently incorporated into the dimensional reduc-tion strategy:the theory is superrenormalizable and all divergences can be computed perturba-tively;this allows a clean matching of the schemes in the continuum.It is well known that comput-ing at high orders in LPT is quite hard a task;in this respect the approach of Numerical Stochastic Perturbation Theory (NSPT)[3]is a very efficient one.Let f ≡−V ln Z be the free energy associated with the Wilson action S W =β0 P (1−ΠP ),β0=2N c /(a 4−d g 20)being the dimensionless bare lattice inverse coupling in d dimensions.To com-pute the free energy one can revert to the com-putation of the plaquette,being1−ΠP =2a d∂β01β0+c 2(N c ,d )β30+c 4(N c ,d )616g 2(3)12−a−1c3648g60+O(a).so that thefirst four coefficients uniquely deter-mine the matching to the continuum;c1and c2 being long known,c3and c4were the aims of the computation.The presence has already been established[4]of a logarithmic IR divergence at fourth loop order;it was our aim to recover the scheme independent coefficient of such a loga-rithm:the tilde on c4reminds us that the IR divergence has to be isolated and subtracted by means of a definite IR regulator,which we choose to be the finite lattice size L inherent to any lat-tice simulation.putational setupWe have inserted the expansion Uµ(n)=1+ 8i=1β−i3subtracted c4.4.PerspectivesA definite IR regulator enables one to isolate afinite part out of the4loops contribution to the plaquette;we have been employing the finite volume inherent to any computer simulation.A mass is a commonly used regulator in continuum computations;the coupling itself(dimensionful in 3d YM)is quite a natural IR regulator for non-perturbative lattice simulations.Despite the fact that the coefficient of the logarithmic divergence is universal it is clear that definite coefficients re-late different regularizations.We are interested in the perturbative matching between the lattice and a continuum perturbative scheme:in both approaches the same gluon mass IR regulator can be employed so that the same mismatch shows up with respect to data coming from nonpertur-bative computer simulations with the coupling as IR regulator.Employing massive gluons is the na-tural extension of our computational programme. Inserting a mass into the gluon propagator amounts to switching to the Lie algebra for the definition of the new lattice action and this we perform at a definite step of the computation.It is well known that the Lie algebra YM action is made out of a gaugefixing term and the ghost action resulting from the FP determinant.Our NSPT strategy entails the construction of the Eu-ler scheme solution U′=exp(−ǫF)U to Eq.(4); the quantity F belongs to the Lie algebra and our algorithm entails going back and forth from the group to the algebra:at that stage we include the new contribution to the action.The strategy for a determinant is well established[6,7]and is employed by the Parma group in the unquenched NSPT approach to lattice QCD[8];the determi-nant is simulated without introducing fermion or ghostfields and the inversions of the nonlocal ma-trix is performed perturbatively via an efficient FFT by a back and forth procedure from Fourier space:the zeroth order of any propagator is di-agonal in momentum space and the construction of successive orders does not require any matrix inversion.The implementation of such a strategy is in progress;signals of the stabilization of gauge dependent quantities as well as of the invariance of gauge invariant quantities make us confident about the reliability of the whole procedure. REFERENCES1. E.Braaten and A.Nieto,Phys.Rev.D53,3421(1996);2.K.Kajantie,ine,K.Rummukainen andY.Schroder,Phys.Rev.Lett.86,10(2001);3. F.Di Renzo,E.Onofri,G.Marchesini andP.Marenzoni,Four loop result in SU(3)lat-tice gauge theory by a stochastic method:lat-tice correction to the condensate,Nucl.Phys.B426(1994)675,[hep-lat9405019].4.K.Kajantie,ine,K.Rummukainen andY.Schroder,Phys.Rev.sss D67,105008 (2003);5. F.Di Renzo, A.Mantovi,V.Miccio andY.Schroder,J.High Energy Phys.05(2004) 006;6.G.G.Batrouni,G.R.Katz,A.S.Kronfeld,G.P.Lepage,B.Svetitski and K.G.Wilson,Phys.Rev.D32(1985)2736.7.G.Burgio,F.Di Renzo,G.Marchesini,E.Onofri,M.Pepe,L.Scorzato,Nucl.Phys.B (Proc.Suppl.)73(1999)853.8. F.Di Renzo,L.Scorzato,Nucl.Phys.B(Proc.Suppl.)94(2001)567.。

相关文档
最新文档