推荐学习高中三年级学习数学上学期期中模拟试卷(一)(含解析)

合集下载

高三数学上学期期中模拟试题含解析 试题

高三数学上学期期中模拟试题含解析 试题

卜人入州八九几市潮王学校2021届高三数学第一学期期中模拟试卷一、填空题(本大题一一共14小题,每一小题5分,一共70分,请把答案直接填写上在答卷纸...相应的位置),,那么_________.【答案】【解析】 【分析】 由题意化简集合,,根据集合交集运算求解即可.【详解】因为,,所以,故{0,7},故填.【点睛】此题主要考察了集合的描绘法,集合的交集运算,属于中档题. 满足〔为虚数单位〕,那么为__________.【答案】2 【解析】 由题意可得:,那么:.个,分为组,第组到第组的频数分别为,第组的频率为,那么第组的频数为________.【答案】8 【解析】 【分析】根据第5组的频率可求出第5组的频数,根据第1组到第5组的频数,可求出第6组的频数. 【详解】因为数据一共40个,第组的频率为,所以第5组的频数为,所以第6组的频数为.【点睛】此题主要考察了频率,频数的概念,属于中档题.4.如下列图的流程图,假设输入的值是,那么输出的结果________.【答案】1【解析】【分析】根据框图可知,当循环三次后时,可跳出循环,,输出结果.【详解】第一次,,第二次,,第三次,,跳出循环,,输出1.【点睛】此题主要考察了框图,框图的循环构造,属于中档题.,的值域为________.【答案】【解析】【分析】因为函数是增函数,根据函数增减性的性质可求出最大值,从而写出值域.【详解】因为函数在R上是增函数,所以当时,,又,所以,故函数的值域为.【点睛】此题主要考察了函数的单调性,利用函数求函数的值域,属于中档题.6.某有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,那么他们在同一个食堂用餐的概率为__________.【答案】【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况一共有〔种〕,其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为.点睛:此题主要考察有关计数原理、古典概型概率的计算等有关方面的知识和运算技能,属于中低档题型,也是高频考点.在计算古典概型中任意一随机事件发的概率时,关键是要找出该试验的根本领件总数和导致事件发的根本领件数,在不同情况下根本领件数的计算可能涉及排列、组合数的计算和使用分类计数、分步计数原理.7.满足,那么的最大值为_________.【答案】1【解析】【分析】由条件作出不等式组对应的平面区域,那么k的几何意义为点到定点的斜率,利用数形结合即可得出结论.【详解】画出可行域如图:因为k的几何意义为点到定点的斜率,那么由图象可知AB的斜率最大,其中,此时,故填1.【点睛】此题主要考察了线性规划的应用,直线的斜率,数形结合的思想,属于中档题.的左、右焦点分别为,,为该双曲线上一点,假设与轴垂直,,那么该双曲线的离心率为_________.【答案】【解析】【分析】由条件可推导出,由此可求出双曲线离心率.【详解】因为,所以,,即,,即,故填【点睛】此题主要考察了双曲线的离心率的求法,双曲线的定义,属于中档题.9.一个圆锥的母线长为2,侧面展开是半圆,那么该圆锥的体积为__________________.【答案】【解析】试题分析:一个圆锥的母线长为,它的侧面展开图为半圆,圆的弧长为,即圆锥的底面的周长为,设圆锥的底面半径是,那么得到,这个圆锥的底面半径为,所以圆锥的高为,所以圆锥的体积为.考点:圆锥的体积及侧面展开图的应用.【方法点晴】此题主要综合考察了有关扇形和圆锥的相关计算,根本的解题思想:解决此类问题时要抓住两者之间的两个对应关系:〔1〕圆锥的母线长等于侧面展开图的扇形半径;〔2〕圆锥的底面周长HY羽侧面展开图的扇形弧长,正确的对这两个关系的记忆和灵敏应用是解题的关键,同时着重考察了学生的空间想象才能和推理、运算才能,属于中档试题.10.在△ABC中,所对边的长分别为a,b,c.a+c=2b,sinB=sinC,那么=_______.【答案】【解析】试题分析:因为sinB=sinC,由正弦定理得:,由余弦定理得:考点:正余弦定理11.在平面直角坐标系xOy中,直线被圆截得的弦长是定值〔与实数m无关〕,那么实数k的值是__________.【答案】【解析】【分析】根据圆心距,半弦长,半径为直角三角形可知,直线的弦长为定值时,为定值,即可求出k.【详解】由圆的方程可得,所以圆心为,圆心到直线的间隔,由题意,不管m取何值时,此式为定值,所以时,为定值1,即.【点睛】此题主要考察了直线与圆的相交,点到直线的间隔,圆的平面几何性质,属于中档题.12.,,,那么的最小值为.【答案】【解析】试题分析:设那么而,所以最小值为考点:根本不等式函数,假设函数恰有个不同的零点,那么实数的取值范围为________.【答案】【解析】分析:函数恰有4个零点,等价于的图象与有四个交点,只需,与,,与轴都有两个交点,画出图象,利用数形结合思想求解即可.详解:由题意,当时,即方程有四个解,又由函数与函数大致形状可知,直线与函数的左右两支曲线与都有两个交点,当时,函数的最大值为,那么,同时在上的最小值,当时,在上,要使恰有四个零点,那么满足,即,解得,故答案为.点睛:此题主要考察函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的互相转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地提醒了函数的性质,为研究函数的数量关系提供了“形〞1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.,定义:,数列满足,,,设表示数列的前和,假设,那么的值是__________.【答案】118【解析】【分析】对a分类讨论,利用递推关系可得周期性,进而得出所求结果.【详解】①当时,因为,,可得:,同理可得:故可知,数列是周期为5的周期数列,所以,解得或者,不合题意舍去.②当时,因为,,可得:,同理可得:故可知,数列是周期为5的周期数列,所以,解得或者〔舍去〕所以,,,所以,故填118.【点睛】此题主要考察了数列递推关系,数列的周期性,分类讨论方法,属于难题.二、解答题(本大题一一共6个小题,一共90分,请在答题卷区域内答题,解答时应写出文字说明、证明过程或者演算步骤)15..〔1〕假设,求角的值;〔2〕求的最小值.【答案】〔1〕〔2〕【解析】试题分析:〔1〕先由向量垂直坐标表示得,即,再根据角范围,确定〔2〕先根据向量的模的定义得,再根据同角三角函数关系及配角公式得,最后根据角的范围,根据余弦函数确定最值试题解析:〔1〕因为,且所以,即,又,所以,〔2〕因为,所以因为,所以,故当时,取到最小值.考点:向量垂直及模,三角函数性质16.如图,在直三棱柱中,,点为棱的中点.求证:(1)平面;(2)平面平面.【答案】〔1〕见解析〔2〕见解析【解析】试题分析:〔1〕与平面内的平行,所以平面.〔2〕通过证明,可得平面.结合平面,可得平面平面.试题解析:〔1〕在三棱柱中,,又平面,平面,所以平面.〔2〕在直三棱柱中,平面,又平面,所以.因为,所以.又因为点为棱的中点,所以.又,平面,所以平面.又平面,所以平面平面.点睛:此题第一问考察的是直线与平面平行的断定。

2023-2024学年青岛版三年级上册期中模拟检测数学试卷(含答案解析)

2023-2024学年青岛版三年级上册期中模拟检测数学试卷(含答案解析)

2023-2024学年青岛版三年级上册期中模拟检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、口算和估算1.直接写得数。

400×9=5×80=500×0=900+8=80÷4=300÷6=8×607=180÷9=2.直接写得数。

438÷3=700×9=420÷6=612×3=38×7≈419×6≈509×3≈613×7≈二、填空题3.计量较轻物品有多重,通常用()作单位;计量很重的物品或大宗物品有多重,通常用()作单位。

4.估算304×8时,可以把304看成(),估算的结果是()。

5.与东南方向相对的是()方向,与西南方向相对的是()方向。

6.在计算324×2时,4×2得8个(),3×2得6个()。

7.868÷4的商的最高位上的数字是();662里面有()个2。

8.□56÷4,要使它的商是三位数,□里最小填()。

9.在括号里填上合适的计量单位。

一头狮子重200()。

一盒饼干重100()。

一头大象重4()。

鲸鱼每小时游30()。

10.27×4的积是()位数;125×8的积的末尾有()个0。

11.武阳小学星期一教师食堂的菜单如下。

如果一份盒饭含一个荤菜和一个素菜,那么星期一的盒饭有()种配菜方法。

12.○+○+△=56,○+○+△+△=72,○=();△=()。

三、选择题13.一袋大米重10千克,()袋大米重1吨。

A.20B.50C.10014.下列运动中是旋转现象的是()。

A.钟面上秒针的转动B.教室里窗户的滑动C.气球下落的运动15.要使□2×3的积是三位数,□里最小填()。

A.3B.4C.916.小明计算一个数除以5,得到的结果是商103余7。

2023-2024学年沪教版三年级上册期中模拟学业检测数学试卷(含答案解析)

2023-2024学年沪教版三年级上册期中模拟学业检测数学试卷(含答案解析)

2023-2024学年沪教版三年级上册期中模拟学业检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、口算和估算1.直接写得数。

150+35=38×5=780-290=30+7×30=600×4=350÷5=540÷9=765-35-65=81÷3=320×5=36÷9÷2=200-100÷5=二、竖式计算2.横式计算。

215×8=247÷2=3.列竖式计算,带※的要验算。

8×305=572÷3=※653÷6=三、脱式计算4.递等式计算(能巧算的要巧算)。

722-278-32265×(35-27)368+32×51000-286+14420÷7×628×6+4×28四、文字题5.列综合算式计算。

5除375的商比39多多少?6.列综合算式计算。

一个数除以7,商29余5,求这个数。

五、解答题7.一只梅花鹿高126厘米,一只长颈鹿的高度是梅花鹿的4倍,这只长颈鹿高多少厘米?8.一副的价钱是105元,一本相册的价钱是25元,买2副画和3本相册一共需要多少元?9.有574张彩色纸,平均分给5个班,每班能分到多少张?还剩下多少张?10.小亚家买了5箱猕猴桃,每箱25个,每个4元。

这些猕猴桃一共多少钱?11.学校买了5个同样的足球共用去525元,如果买这样的足球8个需多少元?12.小丁丁看一本漫画书,每天看16页,他连续看了8天后,还剩7页没看。

这本漫画书一共有多少页?六、填空题13.在括号里填上“<”“>”或“=”。

38×40()50×38480÷6()640÷814.估一下,68×7的积在()和()之间,更接近()。

2020-2021高中必修三数学上期中第一次模拟试卷带答案(2)

2020-2021高中必修三数学上期中第一次模拟试卷带答案(2)

2020-2021高中必修三数学上期中第一次模拟试卷带答案(2)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.153.一组数据如下表所示:x1 2 3 4y e3e 4e 6e已知变量y 关于x 的回归方程为+0.5ˆbx ye =,若5x =,则预测y 的值可能为( ) A .5eB .112eC .132eD .7e4.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( ) A .12B .13C .14D .155.在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为( ) A .115B .112C .111D .146.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<7.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A .25B .1225C .1625D .458.如图,是民航部门统计的某年春运期间12个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高.B .深圳和厦门的平均价格同去年相比有所下降.C .平均价格从高到低居于前三位的城市为北京、深圳、广州.D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门.9.A 地的天气预报显示,A 地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生09-之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数: 402 978 191 925 273 842 812 479 569 683 231 357 394 027 506 588 730 113 537 779 则这三天中至少有两天有强浓雾的概率近似为( )A .14B .25C .710D .1510.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .71011.如图所示是为了求出满足122222018n +++>L 的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n12.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .11二、填空题13.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.14.已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是______. 15.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是______.16.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.17.某班全体学生参加英语成绩的频率分布直方图如图,若低于60分的人数是15,则该班的学生人数是__________.18.执行如图所示的流程图,则输出的的值为 .s=,则正整数M为__________.19.执行如图所示的程序框图,如果输出3s=,则正整数M为__________.20.执行如图所示的程序框图,如果输出1320三、解答题21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷11985的零件数y(件)(1)画出散点图;(2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$y abx =+$ 42.0≈27.5≈61i ii x y =∑621ii x=∑621ii y=∑()621ii x x =-∑()621ii yy=-∑17950 9100 39158 1750 75823.为检验,A B 两条生产线的优品率,现从两条生产线上各抽取6件产品进行检测评分,用茎叶图的形式记录,并规定高于90分为优品.前5件的评分记录如下,第6件暂不公布.(1)求所抽取的A 生产线上的6个产品的总分小于B 生产线上的第6个产品的总分的概率;(2)已知,A B 生产线的第6件产品的评分分别为90,97.①从A 生产线的6件产品里面随机抽取2件,设非优品的件数为η,求η的分布列和数学期望;②以所抽取的样本优品率来估计B 生产线的优品率,从B 生产线上随机抽取3件产品,记优品的件数为X ,求X 的数学期望.24.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00各自的点击量,得到如图所示的茎叶图,根据茎叶图回答下列问题.(1)甲、乙两个网站点击量的极差分别是多少? (2)甲网站点击量在[10,40]间的频率是多少? (3)甲、乙两网站哪个更受欢迎?并说明理由.25.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000的这段应抽取多少人? 26.某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x (单位:千万元)对年销售量y (单位:千万件)的影响,统计了近10年投入的年研发费用i x 与年销售量()1,2,,10i y i =L 的数据,得到散点图如图所示:(Ⅰ)利用散点图判断,y a bx =+和dy c x =⋅(其中c ,d 为大于0的常数)哪一个更适合作为年研发费用x 和年销售量y 的回归方程类型(只要给出判断即可,不必说明理由);(Ⅱ)对数据作出如下处理:令ln i u x =,ln i y υ=,得到相关统计量的值如下表:根据(Ⅰ)的判断结果及表中数据,求y 关于x 的回归方程; (Ⅲ)已知企业年利润z (单位:千万元)与x ,y 的关系为27z y x e=-(其中2.71828e =L ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据()()()1122,,,,,,n n u u u υυυL ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆnniii ii i nni i i i u u u nu u uu nuυυυυβ====---==--∑∑∑∑,ˆˆˆu αυβ=-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214aa a ππ-=-.考点:几何概型,圆的面积公式. 2.B解析:B 【解析】 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.3.C解析:C 【解析】 【分析】令ln z y $=,求得,x z 之间的数据对照表,结合样本中心点的坐标满足回归直线方程,即可求得b ;再令5x =,即可求得预测值y . 【详解】将式子两边取对数,得到$ln 0.5y bx =+,令ln z y $=,得到0.5z bx =+, 根据已知表格数据,得到,x z 的取值对照表如下:12342.54x +++==,1346 3.54z +++==, 利用回归直线过样本中心点,即可得3.5 2.50.5b =+, 求得 1.2b =,则 1.20.5z x =+, 进而得到$ 1.2+0.5x y e =,将5x =代入, 解得136.52y e e ==.故选:C .【点睛】本题考查利用样本中心点坐标满足回归直线方程求参数值,以及由回归方程进行预测值得求解,属中档题.4.C解析:C 【解析】 【分析】甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,甲、乙将贺年卡都送给丁有1种情况,利用古典概型求解即可. 【详解】(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种, 所以甲、乙将贺年卡送给同一人丁的情况一种,概率是:14, 故选C . 【点睛】本题主要考查了古典概型的定义及计算,排列,计数原理,属于中档题.5.C解析:C 【解析】 【分析】根据题意结合组合的知识可知,总的答案的个数为11个,而正确的答案只有1个,根据古典概型的计算公式,即可求得结果. 【详解】总的可选答案有:AB ,AC ,AD ,BC ,BD ,CD , ABC ,ABD ,ACD ,BCD ,ABCD ,共11个, 而正确的答案只有1个, 即得5分的概率为111p =. 故选:C. 【点睛】本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.6.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.7.C解析:C 【解析】 【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,42()()105P A P B ===, 则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C . 【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.8.D解析:D 【解析】 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】由图可知,选项A 、B 、C 都正确,对于D ,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误. 故选D . 【点睛】本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.9.D解析:D 【解析】 【分析】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天有强浓雾的有可以通过列举得到共4组随机数,根据概率公式,得到结果. 【详解】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天有强浓雾的有,可以通过列举得到共5组随机数:978,479、588、779,共4组随机数, 所求概率为41205=, 故选D . 【点睛】本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.10.B解析:B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.11.A解析:A 【解析】 【分析】通过要求122222018n +++>L 时输出且框图中在“是”时输出确定“”内应填内容;再通过循环体确定输出框的内容. 【详解】因为要求122222018n +++>L 时输出,且框图中在“是”时输出, 所以“”内输入“2018S >?”,又要求n 为最小整数, 所以“”中可以填入输出1n -,故选:A . 【点睛】本题考查了程序框图的应用问题,是基础题.12.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-;4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.二、填空题13.【解析】【分析】首先计算出五位数的总的个数然后根据可被或整除的五位数的末尾是偶数或计算出满足的五位数的个数根据古典概型的概率计算公式求出概率即可【详解】因为五位数的总个数为:能被或整除的五位数的个数解析:35【解析】 【分析】首先计算出五位数的总的个数,然后根据可被2或5整除的五位数的末尾是偶数或5计算出满足的五位数的个数,根据古典概型的概率计算公式求出概率即可. 【详解】因为五位数的总个数为:55A =120,能被2或5整除的五位数的个数为:443A =72⨯, 所以7231205P ==. 故答案为:35. 【点睛】本题考查排列组合在数字个数问题方面的应用,难度一般.涉及到不同数字组成的几位数个数问题时,若要求数字不重复,可以通过排列数去计算相应几位数的个数.14.【解析】数据4849525556的平均数为×(48+49+52+55+56)=52∴该组数据的方差为:s2=×(48–52)2+(49–52)2+(52–52)2+(55–52)2+(56–52)2 解析:0.1【解析】数据4.8,4.9,5.2,5.5,5.6的平均数为15x =×(4.8+4.9+5.2+5.5+5.6)=5.2, ∴该组数据的方差为:s 2=15×[(4.8–5.2)2+(4.9–5.2)2+(5.2–5.2)2+(5.5–5.2)2+(5.6–5.2)2]=0.1.故答案为0.1.15.7【解析】【分析】根据系统抽样的定义和抽取方法求得样本间隔进行抽取即可求解得到答案【详解】由题意从该校高一年级全体800名学生中抽50名学生其样本间隔为因为在33~48这16个数中取的数是39所以从解析:7 【解析】 【分析】根据系统抽样的定义和抽取方法,求得样本间隔,进行抽取,即可求解,得到答案. 【详解】由题意,从该校高一年级全体800名学生中抽50名学生,其样本间隔为8001650=, 因为在33~48这16个数中取的数是39, 所以从33~48这16个数中取的数是第3个数, 所以第1组1~16中随机抽到的数是392167-⨯=. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的概念和抽取的方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.16.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x 使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求 解析:23【解析】 【分析】求出不等式的解集,计算长度,运用几何概型即可求出概率 【详解】11x +≥Q0x ∴≥或2x ≤-则在区间[]33-,上随机取一个数x ,使得11x +≥成立的概率为4263= 故答案为23【点睛】本题考查了几何概型中的长度型概率,只需将题目中的含有绝对值不等式进行求解,然后计算出长度,即可得到结果17.【解析】由图可知低于分的频率为故该班人数为故答案为解析:50【解析】由图可知,低于60分的频率为(0.0050.01)200.3+⨯=,故该班人数为15500.3=,故答案为50.18.【解析】试题分析:由程序框图第一次循环时第二次循环时第三次循环时第四次循环时退出循环输出考点:程序框图 解析:4【解析】试题分析:由程序框图,第一次循环时,1,1k S ==,第二次循环时,22,112k S ==+=,第三次循环时,23,226k S ==+=,第四次循环时,24,63156k S ==+=>,退出循环,输出4k =.考点:程序框图.19.27【解析】依次运行框图所示的程序可得第一次:不满足条件;第二次:不满足条件;第三次:不满足条件;……第二十四次:不满足条件;故判断框内的条件是答案:27点睛:程序框图的补全及逆向求解问题的解题策略解析:27 【解析】依次运行框图所示的程序,可得第一次:1331log 4log 4,4S k =⨯==,不满足条件; 第二次:2343log 4log 5log 5,5S k =⨯==,不满足条件; 第三次:3353log 5log 6log 6,6S k =⨯==,不满足条件; ……第二十四次:243263log 26log 27log 273,27S k =⨯===,不满足条件; 故判断框内的条件是27?k ≥。

2020-2021高中必修三数学上期中第一次模拟试卷附答案(1)

2020-2021高中必修三数学上期中第一次模拟试卷附答案(1)

2020-2021高中必修三数学上期中第一次模拟试卷附答案(1)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .143.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 4.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示:x1234y0.1m 3.14则实数m ()A.0.8B.0.6C.1.6D.1.85.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i=A.9B.8C.7D.66.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( ) .A.12B.13C.23D.17.下面的算法语句运行后,输出的值是()A.42B.43C.44D.458.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,20B .200,20C .100,10D .200,109.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是 A .14,9.5B .9,9C .9,10D .14,910.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .71011.某五所大学进行自主招生,同时向一所重点中学的五位学习成绩优秀,并在某些方面有特长的学生发出提前录取通知单.若这五名学生都乐意进这五所大学中的任意一所就读,则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率是( ) A .15B .24125C .48125D .9612512.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为( ). A .16,26,8B .17,24,9C .16,25,9D .17,25,8二、填空题13.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是______. 14.判断大小,,,,则、、、大小关系为_____________.15.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________16.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若3b =,三内角A ,B ,C 成等差数列,则该三角形的外接圆半径等于______________;17.若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则221x y +<的概率为__________. 18.执行如图所示的框图,输出值______.19.已知变量,x y 之间的一组数据如下表:x0 1 2 3 y 1357则y 与x 的线性回归方程y b x a ∧∧∧=+必过点_______________20.已知方程0.85 2.1ˆ87yx =-是根据女大学生的身高预报其体重的回归方程, ˆ,x y 的单位是cm 和kg ,则针对某个体()160,53的残差是__________.三、解答题21.某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据: 单价x (元)66.2 6.4 6.6 6.8 7 销量y (万件) 807473706558数据显示单价x 与对应的销量y 满足线性相关关系.(1)求销量y (件)关于单价x (元)的线性回归方程ˆˆˆybx a =+; (2)根据销量y 关于单价x 的线性回归方程,要使加工后收益P 最大,应将单价定为多少元?(产品收益=销售收入-成本).参考公式:ˆb=() 121()()ni iiniix x y yx x==---∑∑=1221ni iiniix y nxyx nx==--∑∑,ˆˆa y bx=-22.随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份20142015201620172018年份代号t12345人均纯收入y547810(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?附:回归直线的斜率和截距的最小二乘估计公式分别为()()()121ni iiniit t y ybt t==--=-∑∑$,a y bt=-$$.23.某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积m(单位:平方米,60130m≤≤)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价y(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积m(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为X,求X的分布列与数学期望;(3)根据散点图选择ˆˆˆy a x=+ˆˆˆlny c d x=+两个模型讲行拟合,经过数据处理得到两个回归方程,分别为ˆ0.93690.0285y x=+ˆ0.95540.0306lny x=+,并得到一些统计量的值,如表所示:ˆ0.93690.0285y x=+ˆ0.95540.0306lny x=+()()1ni iix x y y=--∑0.0054590.005886()()2211n ni ii ix x y y==--∑∑0.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:ln20.69≈,ln3 1.10≈,ln15 2.71≈,3 1.73≈,15 3.87≈,17 4.12≈参考公式:()()()()12211ni iin ni ii ix x y yrx x y y===--=--∑∑∑24.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x元,对应的销量为y(万份).从历史销售记录中抽样得到如下5组x与y的对应数据:x元2530384552销量为y(万份)7.57.1 6.0 5.6 4.8由上表,知x与y有较强的线性相关关系,且据此计算出的回归方程为10.0ˆy bx=-.(ⅰ)求参数b的值;(ⅱ)若把回归方程10.0ˆy bx=-当作y与x的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.25.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值. y (微克)x (千克)x vy u vw v()281ii x x =-∑()821ii w w =-∑()()81iii x x y y =--∑ ()()81iii w w y y =--∑3 38 11 10 374 -121 -751其中2x ω=(I )根据散点图判断,ˆybx a =+与2ˆy dx c =+,哪一个适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)若用解析式2ˆydx c =+作为蔬菜农药残量ˆy 与用水量x 的回归方程,求出ˆy 与x 的回归方程.(c ,d 精确到0.1)(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据5 2.236≈)附:参考公式:回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为: ()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑ 26.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式. 2.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .3.B解析:B 【解析】 【分析】计算18x =,27.2x =,210.4s =,22 2.16s =得到答案.【详解】17888985x ++++==,26677107.25x ++++==,故12x x >.()()()()()222222178888888980.45s -+-+-+-+-==;()()()()()222222267.267.277.277.2107.2 2.165s -+-+-+-+-==,故2212s s <.故选:B. 【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.4.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m my +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】模拟执行程序,当3,1n i == ,n 是奇数,得10,2n i ==,不满足条件1n =,不满足条件n 是奇数,5,3n i == ,不满足条件1n =,满足条件n 是奇数,16,4n i ==,不满足条件1n =,不满足条件n 是奇数,8,5n i ==,不满足条件1n =,不满足条件n 是奇数,4,6n i ==,不满足条件1n =,不满足条件n 是奇数,2,7n i ==,不满足条件1n =,不满足条件n 是奇数,1,8n i ==,满足条件1n =,输出8i =,选B.点睛:本题主要考查的知识点是循环结构的程序框图,当循环的次数不多或有规律时,常常采用模拟循环的方法解答,属于基础题.6.C解析:C 【解析】 【分析】 【详解】解:甲,乙,丙三人中任选两名代表有233C =种选法,甲被选中的情况有两种,所以甲被选中的概率23223P C ==,故选C.7.C解析:C 【解析】 【分析】根据算法语句可知,程序实现功能为求满足不等式22000i <的解中最大自然数,即可求解. 【详解】 由算法语句知,运行该程序实现求不等式22000i <的解中最大自然数的功能, 因为24520252000=>,24419362000=<,所以44i =, 故选:C 【点睛】本题主要考查算法语句,考查了对循环结构的理解,属于中档题.8.B解析:B 【解析】 【分析】 【详解】试题分析:由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B. 【考点定位】本题考查分层抽样与统计图,属于中等题.9.A解析:A 【解析】2班共有8个数据,中间两个是9和10,因此中位数为9.5,只有A 符合,故选A .(1班10个数据最大为22,最小为8,极差为14).10.B解析:B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.11.C解析:C 【解析】五所学生自由录取五名学生,共有55种不同的录取情况其中满足条件:仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的情况的录取情况有:213554C C A 种,则:则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率:2135545485125C C A p == 本题选择C 选项.12.D解析:D 【解析】 【分析】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,从而求出三个营区被抽中的人数. 【详解】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,记为{},n a n N +∈,其中13a =,公差12d =,则第n 个号()11129n a a n d n =+-=-.令200n a ≤,即5129200,1712n n -≤∴≤,所以第一营区抽17人; 令500n a ≤,即5129500,4212n n -≤∴≤,所以第二营区抽421725-=人; 三个营区共抽50人,所以第三营区抽5017258--=人. 故选: D . 【点睛】本题考查系统抽样,属于基础题.二、填空题13.7【解析】【分析】根据系统抽样的定义和抽取方法求得样本间隔进行抽取即可求解得到答案【详解】由题意从该校高一年级全体800名学生中抽50名学生其样本间隔为因为在33~48这16个数中取的数是39所以从解析:7【解析】【分析】根据系统抽样的定义和抽取方法,求得样本间隔,进行抽取,即可求解,得到答案.【详解】由题意,从该校高一年级全体800名学生中抽50名学生,其样本间隔为80016 50=,因为在33~48这16个数中取的数是39,所以从33~48这16个数中取的数是第3个数,所以第1组1~16中随机抽到的数是392167-⨯=.【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的概念和抽取的方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.14.a<c<b<d【解析】【分析】利用中间值01来比较得出a<00<b<10<c<1d>1再利用中间值12得出bc的大小关系从而得出abcd的大小关系【详解】由对数函数的单调性得a=log305<log解析:.【解析】【分析】利用中间值、来比较,得出,,,,再利用中间值得出、的大小关系,从而得出、、、的大小关系.【详解】由对数函数的单调性得,,即,,即,,即.又,即,因此,,故答案为.【点睛】本题考查对数值的大小比较,对数值大小比较常用的方法如下:(1)底数相同真数不同,可以利用同底数的对数函数的单调性来比较;(2)真数相同底数不同,可以利用对数函数的图象来比较或者利用换底公式结合不等式的性质来比较;(3)底数不同真数也不同,可以利用中间值法来比较.15.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为解析:12【解析】五种抽出两种的抽法有2510C =种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12. 16.1【解析】ABC 成等差数列所以解析:1 【解析】A ,B ,C 成等差数列,所以32213sin sin 3b B R R B ππ=∴===⇒= 17.【解析】分析:不等式组表示的是正方形区域面积为满足的平面区域为阴影部分的面积利用几何概型概率公式可得结果详解:根据题意画出图形如图所示则不等式组表示的是正方形区域面积为其中满足的平面区域为阴影部分的 解析:36p 【解析】 分析:不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,利用几何概型概率公式可得结果.详解:根据题意,画出图形,如图所示, 则不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,其中满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,故所求的概率为4936P ππ==,故答案为36p . 点睛:对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.18.-1【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得a=2i=1不满足条件i≥2 解析:【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得,不满足条件,执行循环体,, 不满足条件,执行循环体,, 不满足条件,执行循环体,,观察规律可知a 的取值周期为3,由于,可得:不满足条件,执行循环体,,此时,满足条件,退出循环,输出a 的值为.故答案为:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.19.【解析】由题意∴x 与y 组成的线性回归方程必过点(154) 解析:()1.5,4【解析】由题意,()()110123 1.5,1357444x y =+++==+++= ∴x 与y 组成的线性回归方程必过点(1.5,4)20.-029【解析】所以残差是解析:-0.29【解析】0.8516082.71ˆ53.29y=⨯-= ,所以残差是5353.290.29.-=- 三、解答题21.(1)ˆ20200yx =-+;(2)6.5元. 【解析】 【分析】(1)由题意计算平均数和回归系数,即可写出回归直线方程;(2)由题意写出收益函数P 的解析式,求出P 取最大值时对应的x 值即可. 【详解】解:(1)由题意得,x =16×(6+6.2+6.4+6.6+6.8+7)=6.5, y =16×(80+74+73+70+65+58)=70; 则()61()5 1.20.30 1.5614iii x x y y =--=------=-∑,621()0.250.090.010.010.090.250.7ii x x =-=+++++=∑;所以142007ˆ.b-==- ,() 7020 6.5200ˆˆa y bx =-=--⨯= 所以所求回归直线方程为20200ˆy x =-+. (2)由题意可得,()()()3202ˆ003P yx x x =-=-+-, 整理得P =-20(x -6.5)2+245, 当x =6.5时,P 取得最大值为245;所以要使收益达到最大,应将价格定位6.5元. 【点睛】本题考查了线性回归方程的求法与应用问题,也考查了计算与推理能力,是基础题. 22.(1)$1.2 3.6y t =+ (2)2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元;10.8千元 【解析】 【分析】(1)根据所给数据利用公式计算,t ,y ,()51=-∑ii tt ,()()51=--∑i ii t ty y ,然后代入()()()1211==--=-∑∑$niii ni tty y btt,a y bt =-$$求解,再写出回归方程.(2)根据(1)的结果,由b$的正负来判断,将6t =,代入回归方程,预测该地区2019年农村居民家庭人均纯收入. 【详解】(1)由所给数据计算得()11234535t =⨯++++=, ()15678107.25y =⨯++++=,()514101410ii tt =-=++++=∑,()()()()()()()512 2.21 1.200.210.82 2.812iii tty y =--=-⨯-+-⨯-+⨯-+⨯+⨯=∑()()()1211121.210niii ni tty y bt t==--===-∑∑$, $7.2 1.23 3.6ay bt =-=-⨯=$, 所求回归方程为$1.2 3.6y t =+.(2)由(1)知, 1.20b=>$,故2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元.2019年时6t =,$1.26 3.610.8y =⨯+=,故预测该地区2019年农村居民家庭人均纯收入约为10.8千元. 【点睛】本题主要考查线性回归分析,还考查了运算求解的能力,属于中档题.23.(1)96;(2)1.2;(3)模型ˆ0.95540.0306ln yx =+的拟合效果更好,预测2019年8月份的二手房购房均价1.038万元/平方米. 【解析】 【分析】(1)求解每一段的组中值与频率的乘积,然后相加得出结果;(2)分析可知随机变量X 服从二项分布,利用二项分布的概率计算以及期望计算公式来解答;(3)根据相关系数的值来判断选用哪一个模型,并进行数据预测. 【详解】 解:(1)650.05750.1850.2950.251050.21150.151250.05m =⨯+⨯+⨯+⨯+⨯+⨯+⨯96=. (2)每一位市民购房面积不低干100平方米的概率为0.200.150.050.4++=, ∴~(3,0.4)X B ,∴33()0.40.6k k kP X k C -==⨯⨯,(0,1,2,3)k =3(0)0.60.216P X ===,123(1)0.40.60.432P X C ==⨯⨯=,223(2)0.40.60.288P X C ==⨯⨯=,3(3)0.40.064P X ===,∴X 的分布列为(3)设模型ˆ0.9369y=+ˆ0.95540.0306ln y x =+的相关系数分别为1r ,2r则10.0054590.006050r =,20.0058860.006050r =,∴12r r <,∴模型ˆ0.95540.0306ln yx =+的拟合效果更好, 2019年8月份对应的15x =,∴ˆ0.95540.0306ln15y=+0.95540.0306ln15 1.038=+≈万元/平方米. 【点睛】相关系数r 反映的是变量间相关程度的大小:当||r 越接近1,相关程度就越大,当||r 越接近0,则相关程度越小.24.(1)0.275;(2)(ⅰ)0.1b =;(ⅱ)99万元 【解析】试题分析:(1)根据平均值为0.275各组的组中值与面积的乘积之和,计算得;(2)(ⅰ)先求得38x =; 6.2y =,由10y bx =-,得1038 6.2b -=.解得0.1b =;(ⅱ)易得这款保险产品的保费收入为()()()()220100.13600.140f x x x x =+-=--⇒当40x =,即每份保单的保费为60元时,保费收入最大为360万元⇒预计这款保险产品的最大利润为3600.27599⨯=万元.试题解析:(1)收益率的平均值为0.050.10.150.20.250.25⨯+⨯+⨯0.350.30.450.10.050.050.275+⨯+⨯+⨯=.(2)(ⅰ)25303845521903855x ++++===; 7.57.1 6.0 5.6 4.831 6.255y ++++===由10y bx =-,得1038 6.2b -=.解得0.1b =.(ⅱ)设每份保单的保费为()20x +元,则销量为100.1y x =-. 则这款保险产品的保费收入为()()()20100.1f x x x =+-万元. 于是,()()2220080.13600.140f x x x x =+-=--.所以,当40x =,即每份保单的保费为60元时,保费收入最大为360万元. 预计这款保险产品的最大利润为3600.27599⨯=万元.25.(1)见解析; (2)2ˆ 2.060.0yx =-+;(3)需要用4.5千克的清水清洗一千克蔬菜.【解析】 【分析】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型;(II )令2x ω=,先建立y 关于w 的线性回归方程,平均数公式可求出ω与y 的值从而可得样本中心点的坐标,从而求可得公式()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑, =38ˆˆ211=60cy dw =-+⨯,可得y 关于w 的回归方程,再代换成y 关于x 的回归方程可得结果;(III )解关于x 的不等式,求出x 范围即可. 【详解】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型; (Ⅱ)令2w x =,先建立y 关于w 的线性回归方程,由于()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑,∴=38ˆˆ211=60c y dw =-+⨯. ∴y 关于w 的线性回归方程为 2.060.ˆ0yw =-+, ∴y 关于x 的回归方程为22.06.0ˆ0yx =-+. (Ⅲ)当ˆ20y<时,22.060.020x -+<, 4.5x >≈ ∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜. 【点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误. 26.(1)0.05;(2)0.45;(3)1200. 【解析】 【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果. 【详解】把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC 、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=120=0.05.(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=920=0.45.(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=220=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义。

人教版三年级上册数学期中模拟检测试卷

人教版三年级上册数学期中模拟检测试卷

人教版三年级上册数学期中模拟检测试卷一、填空题(共8题;共18分)1.千米和米之间的进率是。

千克和吨之间的进率是。

2.一只老虎重250千克,只这样的老虎重1吨.3.被减数是356,差是89,减数是。

4.某工程队修一条路,第一天修了890米,第二天修了799米。

890+799表示的是,890-799表示的是。

5.1袋化肥重 100千克,袋化肥重 1 吨; 1 头牛重 250 千克,头牛重 1 吨;1袋面粉重50千克,袋面粉重1吨。

6.200分钟= 小时 1085千克= 吨千克7.用1,2,3,4,5,6组成三个两位数a,b,c,那么c-b+a的值最大是8.有一些大小相同的铁环连在一起,拉紧后如下图。

这4个铁环连在一起的长度为。

二、判断题(共5题;共15分)9.小刚的体重是35吨。

()10.相邻两个长度单位之间的进率都是10。

()11.一个人唱一首歌需要4分钟,6个人一起唱这首歌需要24分钟。

()12.一台电视约重6吨。

()13.最小的四位数减去最大的三位数差是1。

()三、单选题(共4题;共12分)14.操场跑道一圈是400米,跑了2圈后,再跑()米是1千米。

A.200 B.400 C.600 D.80015.饮料瓶高 20()。

A.分米B.毫米C.厘米D.米16.买一台微波炉,妈妈付了八张100元,找回的钱不到50元,这台微波炉()元。

A.750 B.758 C.848 D.80017.下面数量中,与1.2分米不相等的是()A.0.12米B.1.20分米C.1.02分米D.12厘米四、计算题(共2题;共20分)18.(8分)直接写出得数1000-600= 540-200= 450+50= 670-60=243+300= 1900-600= 60+370= 1800+200=19.(12分)竖式计算。

756+168= 487+568= 947-659= 1000-688=五、作图题(共1题;共4分)20.(4分)画条4厘米长的线段。

2019-2020年高三上学期期中模拟(一)数学试卷含答案

2019-2020年高三上学期期中模拟(一)数学试卷含答案

2019-2020年高三上学期期中模拟(一)数学试卷含答案一、填空题:(本大题共14小题,每小题5分,共70分。

请将答案填入答题纸填空题的相应答题线上)1. 设全集为R ,集合}41|{<<=x x A ,集合}03|{≤-=x x B ,则⋂A (∁B R )= ▲2. 若9=z z (其中z 表示复数z 的共轭复数),则复数z 的模为 ▲3. 函数)12(log 1)(21+=x x f 的定义域为 ▲4. 已知向量)1,3(=a ,)1,0(-=b ,)3,(k c =,若c b a //)2(-,则实数=k ▲5. 数列{n a }的前n 项和为n S ,且21n n S a =-,则{n a }的通项公式n a = ▲6. 已知()()xx x f 21ln -+=的零点在区间()()N k k k ∈+1,上,则k 的值为 ▲ 7. 已知b a ,为非零向量,且b a ,夹角为3π,若向量||||b b a a p +=,则=||p ▲8. 函数]2,0[,sin 21π∈-=x x x y 的单调增区间为 ▲ 9. 设)(x f 是定义在R 上周期为4的奇函数,若在区间]2,0()0,2[⋃-,⎩⎨⎧≤<-<≤-+=20,102,)(x ax x b ax x f ,则=)2015(f ▲ 10.己知()y f x =是定义在R 上的奇函数.,且当x ≥0时,11()42x xf x =-+,则此函数的值域为 ▲ 11. 设函数)102)(36sin(2)(<<-+=x x x f ππ的图像与x 轴交于点A ,过点A 的直线l 与函数)(x f 的图像交于另外两点C B ,.O 是坐标原点,则OA OC OB •+)(= ▲ 12.若函数)(x f 定义在R 上的奇函数,且在)0,(-∞上是增函数,又0)2(=f ,则不等式0)1(<+x xf 的解集为 ▲13. 已知函数)(|1|)(22R m x mx x x f ∈--+=,若)(x f 在区间)0,2(-上有且只有1个零点,则实数m 的取值范围是 ▲ 。

2020-2021年高三数学第一学期期中试卷模拟题及答案

2020-2021年高三数学第一学期期中试卷模拟题及答案
20.(本大题18分)
已知函数 .
(Ⅰ)当a=1时,求函数 的单调区间;
(Ⅱ)是否存在实数a,使得 是曲线 的切线?若不存在,说明理由;若存在,求出实数a的值.
答案
一、选择题
1
2
3
4
5
6
7
8
9
10
C
D
D
A
B
A
C
C
C
D
二、填空题
11
12
13
14
15
钝角三角形
100
三、解答题
16.
解:(Ⅰ)由正弦定理可得 .
所以PA⊥CD.
又因为AD⊥CD,
平面 ,
平面 ,
所以CD⊥平面PAD.............................8分
(Ⅱ)过A作AD的垂线交BC于点M.
因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.
如图建立空间直角坐标系A-xyz,则A(0,0,0),B(2, 1,0),C(2,2,0),D(0,2,0),P(0,0,2).
所以函数f(x)的单调递增区间是 ,k∈Z.............................10分
(Ⅲ)当x∈ 时,2x- ∈ ,
sin ∈ ,f(x)∈ .
故f(x)的值域为 .............................16分
18.
解:(Ⅰ)因为PA⊥平面ABCD,且 平面 ,
2.若实数 ,则下列不等式中一定成立的是()
A. B. C. D.
3.下列函数中是奇函数的为( )
A. B. C. D.
4.已知不等式 的解集为 ,则 的值为()
A. B. C.14D.10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省南京市金陵中学河西分校高三(上)期中数学模拟试卷(一)一、填空题:.1.若集合A={0,1},集合B={0,﹣1},则A∪B=.2.命题“若a>b,则2a>2b”的否命题为.3.若幂函数f(x)=x a(a∈Q)的图象过点(2,),则a= .4.若,均为单位向量,且⊥(﹣2),则,的夹角大小为.5.若函数f(x)=是奇函数,则m= .6.已知点P是函数f(x)=cosx(0≤x≤)图象上一点,则曲线y=f(x)在点P处的切线斜率的最小值为.7.在等差数列{a n}中,S n是其前n项和,若S7=S5+4,则S9﹣S3= .8.在△ABC中,a,b,c分别为角A,B,C的对边,若a=4,b=3,A=2B,则sinB= .9.已知函数y=sinωx(ω>0)在区间[0,]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为.10.如图:梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若•=﹣12,则•= .11.如图,在等腰△ABC中,AB=AC,M为BC中点,点D、E分别在边AB、AC上,且AD=DB,AE=3EC,若∠DME=90°,则cosA= .12.若函数f(x)=x2+a|x﹣2|在(0,+∞)上单调递增,则实数a的取值范围是.13.在四边形ABCD中, ==(1,1),,则四边形ABCD的面积是.14.已知函数f(x)=,若命题“∃t∈R,且t≠0,使得f(t)≥kt”是假命题,则正实数k的取值范围是.二、解答题(共6小题,满分90分)15.已知函数f(x)=sinωx+acosωx满足f(0)=,且f(x)图象的相邻两条对称轴间的距离为π.(1)求a与ω的值;(2)若f(a)=1,a∈(﹣,),求cos(a﹣)的值.16.设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.(1)当m=2时,求A∩B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.17.设△ABC的面积为S,且2S+•=0(1)求角A的大小;(2)若||=,且角B不是最小角,求S的取值范围.18.如图是一块镀锌铁皮的边角料ABCD,其中AB、CD、DA都是线段,曲线段BC是抛物线的一部分,且点B是该抛物线的顶点,BA所在直线是该抛物线的对称轴,经测量,AB=2米,AD=3米,AB⊥AD,点C到AD、AB的距离CH、CR的长均为1米,现要用这块边角料截一个矩形AEFG(其中点F在曲线段BC或线段CD上,点E在线段AD上,点G在线段AB上).设BG的长为x米,矩形AEFG的面积为S平方米.(1)将S表示为x的函数;(2)当x为多少米时,S取得最大值,最大值是多少?19.已知奇函数f(x)的定义域为[﹣1,1],当x∈[﹣1,0)时,f(x)=﹣.(1)求函数f(x)在[0,1]上的值域;(2)若x∈(0,1], f2(x)﹣f(x)+1的最小值为﹣2,求实数λ的值.20.已知函数f(x)=e x,g(x)=x﹣m,m∈R.(1)若曲线y=f(x)与直线y=g(x)相切,求实数m的值;(2)记h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;(3)当m=0时,试比较e f(x﹣2)与g(x)的大小.2015-2016学年江苏省南京市金陵中学河西分校高三(上)期中数学模拟试卷(一)参考答案与试题解析一、填空题:.1.若集合A={0,1},集合B={0,﹣1},则A∪B={﹣1,0,1} .【考点】并集及其运算.【专题】计算题;集合.【分析】A∪B={x|x∈A或x∈B}.【解答】解:A∪B={﹣1,0,1}.故答案为:{﹣1,0,1}.【点评】本题考查了集合的运算,属于基础题.2.命题“若a>b,则2a>2b”的否命题为若a≤b,则2a≤2b.【考点】四种命题.【专题】综合题.【分析】根据原命题与否命题的关系,可知若原命题为:若p,则q,否命题为:若┐p,则┐q,易得答案.【解答】解:根据否命题的定义:若原命题为:若p,则q,否命题为:若┐p,则┐q.∵原命题为“若a>b,则2a>2b”∴否命题为:若a≤b,则2a≤2b故答案为:若a≤b,则2a≤2b.【点评】本题考查的知识点是四种命题,解题的关键是掌握四种命题之间的关系.若原命题为:若p,则q,逆命题为:若q,则p;否命题为:若┐p,则┐q;逆否命题为:若┐q,则┐p.3.若幂函数f(x)=x a(a∈Q)的图象过点(2,),则a= .【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】由于幂函数f(x)=x a(a∈Q)的图象过点(2,),可得,解出即可.【解答】解:∵幂函数f(x)=x a(a∈Q)的图象过点(2,),∴,∴ =2a,∴a=﹣.故答案为:﹣.【点评】本题考查了幂函数的性质、指数的运算性质,属于基础题.4.若,均为单位向量,且⊥(﹣2),则,的夹角大小为.【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】先根据另个向量垂直以及其为单位向量得到cosθ=﹣即可求出两个向量的夹角.【解答】解:∵,均为单位向量,且⊥(﹣2),∴=﹣2=0,即1﹣2×1×1×cosθ=0,⇒cosθ=⇒θ=.故答案为.【点评】本题主要考查用数量积表示两个向量的夹角.解决此类问题的根据熟练掌握两个向量的数量积运算,以及两向量的夹角公式.5.若函数f(x)=是奇函数,则m= 2 .【考点】有理数指数幂的运算性质;函数奇偶性的性质.【专题】函数的性质及应用.【分析】利用奇函数的性质即可得出.【解答】解:∵函数f(x)=是奇函数,∴f(﹣x)+f(x)=+=0,化为(m﹣2)(2x﹣1)=0,∵上式恒成立,∴m﹣2=0,解得m=2.故答案为:2.【点评】本题考查了奇函数的性质,属于基础题.6.已知点P是函数f(x)=cosx(0≤x≤)图象上一点,则曲线y=f(x)在点P处的切线斜率的最小值为﹣.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用;三角函数的求值.【分析】求出函数的导数,求出切线的斜率,再由正弦函数的单调性,即可求得范围.【解答】解:函数f(x)=cosx的导数f′(x)=﹣sinx,设P(m,cosm),则曲线y=f(x)在点P处的切线斜率为f′(m)=﹣sinm,由于0≤m≤,则0≤sinm≤,则﹣≤﹣sinm≤0,则在点P处的切线斜率的最小值为﹣.故答案为:﹣.【点评】本题考查导数的几何意义,考查运用三角函数的性质求切线的斜率的范围,考查运算能力,属于中档题.7.在等差数列{a n}中,S n是其前n项和,若S7=S5+4,则S9﹣S3= 12 .【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由等差数列的性质得:S5﹣S3,S7﹣S5,S9﹣S7仍然构成等差数列,然后利用等差中项的概念结合已知得答案.【解答】解:在等差数列{a n}中,由等差数列的性质得:S5﹣S3,S7﹣S5,S9﹣S7仍然构成等差数列,则S9﹣S7+S5﹣S3=2(S7﹣S5)=8,∴S9﹣S3=8+(S7﹣S5)=8+4=12.故答案为:12.【点评】本题考查了等差数列的性质,考查了等差数列的前n项和,是基础题.8.在△ABC中,a,b,c分别为角A,B,C的对边,若a=4,b=3,A=2B,则sinB= .【考点】正弦定理的应用.【专题】解三角形.【分析】由正弦定理可得,且sinA=sin2B=2sinBcosB,故可求sinB.【解答】解:A=2B⇒sinA=sin2B=2sinBcosB由正弦定理知⇒cosB=sinB==故答案为:.【点评】本题主要考察了正弦定理的应用,属于基础题.9.已知函数y=sinωx(ω>0)在区间[0,]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为{,,1} .【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件可得,k∈Z,由此求得ω的取值集合.【解答】解:由题意知,,即,其中 k∈Z,故有ω=、或ω=、或ω=1,故答案为:{,,1}.【点评】本题考查三角函数的图象与性质(单调性及对称性),三角函数除关注求最值外,也适当关注其图象的特征,如周期性、对称性、单调性等,属于中档题.10.如图:梯形ABCD中,AB∥C D,AB=6,AD=DC=2,若•=﹣12,则•= 0 .【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】首先,设,为基底,然后,根据•=﹣12,得到∠BAD=60°然后根据数量积的运算求解即可.【解答】解:以,为基底,则=+, =﹣,则=﹣=4﹣8cos∠BAD﹣12=﹣12,∴cos∠BAD=,则∠BAD=60°,则====4﹣4=0.故答案为:0.【点评】本题主要考查平面向量的数量积,体现化归转化思想.另本题还可通过建立平面直角坐标系将向量“坐标化”来解决.向量问题突出基底法和坐标法,但要关注基底的选择与坐标系位置选择的合理性,两种方法之间的选择.11.如图,在等腰△ABC中,AB=AC,M为BC中点,点D、E分别在边AB、AC上,且AD=DB,AE=3EC,若∠DME=90°,则cosA= .【考点】余弦定理的应用.【专题】综合题;平面向量及应用.【分析】建立如图所示的坐标系,设C(a,0),A(0,b),确定a,b的关系,再利用向量的夹角公式,即可求得结论.【解答】解:建立如图所示的坐标系,设C(a,0),A(0,b),则D(﹣,),E(, b),∴=(﹣,),=(, b),∵∠DME=90°,∴•=0,∴(﹣,)•(, b)=0,∴﹣+=0∴∵=(﹣,﹣),=(,﹣ b),∴cosA==.故答案为:.【点评】本题考查向量的夹角公式,考查坐标化的运用,考查学生的计算能力,属于中档题.12.若函数f(x)=x2+a|x﹣2|在(0,+∞)上单调递增,则实数a的取值范围是[﹣4,0] .【考点】二次函数的性质.【专题】函数的性质及应用.【分析】先通过讨论x的范围,将f(x)写出分段函数的形式,结合二次函数的性质,得到不等式组,解出即可.【解答】解:解:f(x)=x2+a|x﹣2|=,要使f(x)在[0,+∞)上单调递增,则:,解得﹣4≤a≤0;∴实数a的取值范围是[﹣4,0].故答案为:[﹣4,0].【点评】本题考查了二次函数的性质,考查了分段函数问题,是一道中档题.13.在四边形ABCD中, ==(1,1),,则四边形ABCD的面积是.【考点】向量的线性运算性质及几何意义.【专题】平面向量及应用.【分析】根据题意知四边形ABCD是菱形,其边长为,且对角线BD等于边长的倍,再由向量数量积运算的应用可得和,最终可得四边形ABCD的面积【解答】解:由题,可知平行四边形ABCD的角平分线BD平分∠ABC,四边形ABCD是菱形,其边长为,且对角线BD等于边长的倍,所以cos∠BAD==﹣,故sin∠BAD=,S ABCD=()2×=.故答案为:.【点评】本小题考查向量的几何运算,基础题.14.已知函数f(x)=,若命题“∃t∈R,且t≠0,使得f(t)≥kt”是假命题,则正实数k的取值范围是(,1] .【考点】命题的真假判断与应用.【专题】函数的性质及应用.【分析】由x<1时函数的单调性,画出函数f(x)的图象,把命题“存在t∈R,且t≠0,使得f(t)≥kt”是假命题转化为“任意t∈R,且t≠0,使得f(t)<kt恒成立”,作出直线y=kx,设直线与y=lnx (x≥1)图象相切于点(m,lnm),求出切点和斜率,设直线与y=x(x﹣1)2(x≤0)图象相切于点(0,0),得切线斜率k=1,由图象观察得出k的取值范围.【解答】解:当x<1时,f(x)=﹣|x3﹣2x2+x|=﹣|x(x﹣1)2|=,当x<0,f′(x)=(x﹣1)(3x﹣1)>0,∴f(x)是增函数;当0≤x<1,f′(x)=﹣(x﹣1)(3x﹣1),∴f(x)在区间(0,)上是减函数,在(,1)上是增函数;画出函数y=f(x)在R上的图象,如图所示;命题“存在t∈R,且t≠0,使得f(t)≥kt“是假命题,即为任意t∈R,且t≠0时,使得f(t)<kt恒成立;作出直线y=kx,设直线与y=lnx(x≥1)图象相切于点(m,lnm),则由(lnx)′=,得k=,即lnm=km,解得m=e,k=;设直线与y=x(x﹣1)2(x≤0)的图象相切于点(0,0),∴y′=[x(x﹣1)2]′=(x﹣1)(3x﹣1),则有k=1,由图象可得,当直线绕着原点旋转时,转到与y=lnx(x≥1)图象相切,以及与y=x(x﹣1)2(x≤0)图象相切时,直线恒在上方,即f(t)<kt恒成立,∴k的取值范围是(,1].故答案为:(,1].【点评】本题考查了分段函数的应用问题,也考查了存在性命题与全称性命题的互相转化问题以及不等式恒成立的问题,是较难的题目.二、解答题(共6小题,满分90分)15.已知函数f(x)=sinωx+acosωx满足f(0)=,且f(x)图象的相邻两条对称轴间的距离为π.(1)求a与ω的值;(2)若f(a)=1,a∈(﹣,),求cos(a﹣)的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;运用诱导公式化简求值.【专题】三角函数的图像与性质.【分析】(1)由f(0)=,即可解得a=,f(x)=2sin()且T=2π=,故可解得ω=1;(2)先求出α的值,代入即可求出cos()的值.【解答】解:(1)∵f(0)=,∴sin0+acos0=,解得a=,∴f(x)=sinωx+cosωx=2sin(),∵f(x)图象的相邻两条对称轴间的距离为π.∴T=2π=,∴ω=1.(2)∵f(α)=1,∴sin()=,∵α∈(﹣,),∴∈(﹣,),∴=,即有,∴cos()=cos=cos()=cos cos﹣sin sin=.【点评】本题主要考察了由y=Asin(ωx+φ)的部分图象确定其解析式,考察了运用诱导公式化简求值,属于中档题.16.设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.(1)当m=2时,求A∩B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断;对数函数的定义域.【专题】简易逻辑.【分析】(1)先求出A=(1,3),再求出B=(,2),取交集即可;(2)根据:“x∈A”是“x∈B”的必要不充分条件,得不等式解出即可.【解答】解:(1)由﹣x2+4x﹣3>0,解得:1<x<3,∴A=(1,3),又函数y=在区间(0,m)上单调递减,∴y∈(,2),即B=(,2),当m=2时,B=(,2),∴A∩B=(1,2);(2)首先要求m>0,而“x∈A”是“x∈B”的必要不充分条件,∴B ⊊A ,即(,2)⊊(1,3),从而≥1,解得:0<m≤1.【点评】本题考查了充分必要条件,是一道基础题.17.设△ABC 的面积为S ,且2S+•=0(1)求角A 的大小;(2)若||=,且角B 不是最小角,求S 的取值范围.【考点】余弦定理的应用. 【专题】解三角形.【分析】(1)化简可得sinA+cosA=0,从而有tanA=﹣,即可求角A 的大小;(2)由已知和正弦定理得b=2sinB ,c=2sinC ,故S=sin (2B+)﹣,又2B+∈(,)即可求得S ∈(0,).【解答】解:(1)设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c 由2S+,得2×,即有sinA+cosA=0,所以tanA=﹣,又A ∈(0,π),所以A=.(2)因为||=,所以a=,由正弦定理,得,所以b=2sinB ,c=2sinC ,从而S=bcsinA=sinBsinC=sinBsin ()=sinB (cosB ﹣sinB )=(sin2B ﹣)=sin (2B+)﹣又B ∈(,),2B+∈(,),所以S ∈(0,)【点评】本题主要考察了余弦定理的综合应用,属于中档题.18.如图是一块镀锌铁皮的边角料ABCD ,其中AB 、CD 、DA 都是线段,曲线段BC 是抛物线的一部分,且点B 是该抛物线的顶点,BA 所在直线是该抛物线的对称轴,经测量,AB=2米,AD=3米,AB⊥AD,点C 到AD 、AB 的距离CH 、CR 的长均为1米,现要用这块边角料截一个矩形AEFG (其中点F 在曲线段BC 或线段CD 上,点E 在线段AD 上,点G 在线段AB 上).设BG 的长为x 米,矩形AEFG 的面积为S 平方米.(1)将S表示为x的函数;(2)当x为多少米时,S取得最大值,最大值是多少?【考点】导数在最大值、最小值问题中的应用.【专题】函数的性质及应用;导数的综合应用.【分析】(1)由题意先根据已知条件建立平面直角坐标系,设出抛物线标准方程,然后将C点坐标给出来,代入方程求出p的值,然后分两段表示出S的值.(2)按照分段函数求最值的方法,在两段上分别求出其最大值,然后大中取大,注意前一段利用导数研究单调性后求最值.后一段是二次函数的最值问题.【解答】解:(1)以点B为坐标原点,BA所在直线为x轴,建立平面直角坐标系,设曲线段BC所在抛物线方程为y2=2px(p>0).将点C(1,1)代入,得2p=1.所以曲线段BC的方程为y=(0≤x≤1).又由点C(1,1),D(2,3)得线段CD的方程为y=2x﹣1(1≤x≤2),而GA=2﹣x,所以,(2)①当0<x≤1时,因为,所以,令S′=0得.当时,S′>0,所以此时S递增;当时,S′<0,所以此时S递减,所以当时,.②当1<x<2时,因为.所以当x=时,.综上,因为,所以当米时,.答:当x取值为米时,矩形AEFG的面积最大为.【点评】本题充分考查了分段函数的应用性问题,要注意抓住题目中的等量关系列出函数表达式,然后分两段研究其最值.19.已知奇函数f(x)的定义域为[﹣1,1],当x∈[﹣1,0)时,f(x)=﹣.(1)求函数f(x)在[0,1]上的值域;(2)若x∈(0,1], f2(x)﹣f(x)+1的最小值为﹣2,求实数λ的值.【考点】指数函数单调性的应用;函数的值域;二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】(1)利用函数的奇偶性、指数函数的单调性求出函数f(x)在[0,1]上的值域.(2)根据f(x)的范围,利用条件以及二次函数的性质,分类讨论求得实数λ的值.【解答】解:(1)设x∈(0,1],则﹣x∈[﹣1,0)时,所以f(﹣x)=﹣=﹣2x.又因为f(x)为奇函数,所以有f(﹣x)=﹣f(x),所以当x∈(0,1]时,f(x)=﹣f(﹣x)=2x,所以f(x)∈(1,2],又f(0)=0.所以,当x∈[0,1]时函数f(x)的值域为(1,2]∪{0}.(2)由(1)知当x∈(0,1]时,f(x)∈(1,2],所以f(x)∈(,1].令t=f(x),则<t≤1,g(t)=f2(x)﹣f(x)+1=t2﹣λt+1=+1﹣,①当≤,即λ≤1时,g(t)>g(),无最小值,②当<≤1,即1<λ≤2时,g(t)min=g()=1﹣=﹣2,解得λ=±2(舍去).③当>1,即λ>2时,g(t)min=g(1)=﹣2,解得λ=4,综上所述,λ=4.【点评】本题主要考查指数函数的单调性,求二次函数在闭区间上的最值,体现了分类讨论、转化的数学思想,属于中档题.20.已知函数f(x)=e x,g(x)=x﹣m,m∈R.(1)若曲线y=f(x)与直线y=g(x)相切,求实数m的值;(2)记h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;(3)当m=0时,试比较e f(x﹣2)与g(x)的大小.【考点】导数在最大值、最小值问题中的应用.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值.【解答】解:(1)设曲线f(x)=e x与g(x)=x﹣m相切于点P(x0,y0),由f′(x)=e x,知e=1解得x0=0.又可求得P为(0,1),所以代入g(x)=x﹣m,解得m=﹣1.(2)因为h(x)=(x﹣m)e x,所以h′(x)=e x+(x﹣m)e x=(x﹣(m﹣1))e x,x∈[0,1].①当m﹣1≤0,即m≤1时,h′(x)≥0,此时h(x)在[0,1]上单调递增,所以h(x)max=h(1)=(1﹣m)e;②当0<m﹣1<1,即1<m<2时,当x∈(0,m﹣1)时,h′(x)<0,h(x)单调递减,当x∈(m﹣1,1)时,h′(x)>0,h(x)单调递增,h(0)=﹣m,h(1)=(1﹣m)e.(i)当﹣m≥(1﹣m)e,即时,h(x)max=h(0)=﹣m.(ii)当﹣m<(1﹣m)e,即时,h(x)max=h(1)=(1﹣m)e.③当m﹣1≥1,即m≥2时,h′(x)≤0,此时h(x)在[0,1]上单调递减,所以h(x)max=h(0)=﹣m.综上,当m时,h(x)max=(1﹣m)e;当m时,h(x)max=﹣m.(3)当m=0时,,g(x)=x.①当x≤0时,显然e f(x﹣2)>g(x);②当x>0时, =e x﹣2.lng(x)=lnx.记函数,则=,可知ω′(x)在(0,+∞)上递增,又由ω′(1)<0,ω′(2)>0知:ω′(x)=0在(0,+∞)上有唯一实根x0,且1<x0<2,则,即,当x∈(0,x0)时ω′(x)<0,ω(x)递减;当x∈(x0,+∞)时,ω′(x)>0,ω(x)单调递增.所以,结合(*)式,,知x0﹣2=﹣lnx0,所以=,则ω(x)=e x﹣2﹣lnx>0,即e x﹣2>lnx,所以,综上e f(x﹣2)>g(x).【点评】本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小.。

相关文档
最新文档