2019年中考数学试题及答案分类汇编:圆
2019全国中考数学真题分类汇编:与圆的有关计算及参考答案

一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵A B为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【解析】由题意可知∠BOC=2∠A=45°⨯2=90°,S阴=S扇△-SOBC,S扇=144π42=4π,△S O BC=1.3、(2019·遂宁)如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8B.2πC.4πD.8π-8【答案】A1S圆=2⨯42=8,所以阴影部分的面积为4π-8,故选A.4(2019·广元)如图,AB,AC分别是O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.25B.4C.213D.4.8第6题图【答案】C【解析】∵AB是直径,∴∠C=90°,∴BC=AB2-AC2=6,又∵OD⊥AC,∴OD∥BC,∴△OAD∽△BAC,∴CD=AD =12AC=4,∴BD=BC2+C D2=213,故选C.A.5342B.42C.23-π5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.32πB.2πC.3πD.6π【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=nπr180,得6π.故选D. 6.(2019·绍兴)如图,ABC内接于圆O,∠B=65°,∠C=70°,若BC=22,则弧BC的长为() A.π B.2π C.2π D.22π【答案】A【解析】在△ABC中,得∠A=180°-∠B-∠C=45°,连接OB,OC,则∠BOC=2∠A=90°,设圆的半径为r,由勾股定理,得r2+r2=(22)2,解得r=2,所以弧BC的长为90π⨯2180=π.7.(2019·山西)如图,在△R t ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()-π53π+ D.43-π2第10题图【答案】A-=-,故选【解析】根据扇形的面积公式,S==12π,故本题选:C.2C.2D.【解题过程】在△R t ABC中,连接OD,∠ABC=90°,AB=23,BC=2,∴∠A=30°,∠DOB=60°,过点D作DE⊥AB于点E,∵AB=23,∴AO=OD=3,∴DE=32,∴S阴影=S△ABC-S△AOD-S扇形BOD=23-334π53π242A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【】A.2πB.4πC.12πD.24π【答案】C120×π×623609.(2019·武汉)如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.π352C【答案】A【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6MAP3412E4tO56QNB设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)2tDt⨯2π⨯1∴=360=22t⨯2π⨯22 B.π【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=1D.8-如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D的半径为2,4tMNPQ36010.(2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为1A.π C.2π D.3π【答案】C1ODOE=OA,在△R t AOD中,sinA==22OA 1nπr,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB==2π,故选C.218011.(2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2π1π2【解析】在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=⋅AD⋅AB 45⋅π⋅42周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=×10×12π=60π,故选D.2B.2π8D.【答案】C12=8,S扇形ABE==8-2π,故选C.36012.(2019·巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r=6,h=8,所以母线为10,即为侧面扇形的半径,底面1213.(2019·凉山)如图,在△AOC中,OA=3cm,OC=lcm,将△AOC绕点D顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为(▲)cm2A.πC.17π19π8【答案】B【解析】AC边在旋转过程中所扫过的图形的面积=△SOCA+S扇形OAB-S扇形OCD-△SODB①△由旋转知:OCA≌△ODB,∴△SOCA=S△ODB,∴①式=S扇形OAB-S扇形OCD=90π⨯3290π⨯12-=2π,故选B.360360∴S正方形ABCD BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在△R t OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.=∴正方形==≈.lR ,∴l = ·∴下面圆锥的侧面积 lR = · · 2 R = 2 .故选 D . 15.(2019·湖州)已知圆锥的底面半径为 5cm ,母线长为 13cm ,则这个圆锥的侧面积是()A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【答案】B .【解析】∵r =5,l =13,∴S 锥侧=πrl =π×5×13=65π(cm 2).故选 B .16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积 为 1,则下面圆锥的侧面积为()A.2B.3C.ABD3 2D. 2C【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设 AB 长为 R ,则 BD 长为 2 R .∵上面圆锥的侧面积为 1,即 1=1 22 R为1 12 2 2 R17.(2019·宁波)如图所示,矩形纸片 ABCD 中,AD =6cm,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则 AB 的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】B【解析】AE=1∴AC1⋅2π⋅AB,右侧圆的周长为π⋅DE,∵恰好能作为一个圆锥的底面和侧面,∴,⋅2π⋅AB=44π⋅DE,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18.(2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
2019中考数学试卷分类汇编:圆大题【解析版】

中考数学全国试题汇编------圆【2017湖北黄冈20】已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.【解析】证明:(1)∵ME平分∠DMN,∴∠OME=∠DME,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE∥DM,∵DM⊥DE,∴OE⊥DE,∵OE过O,∴DE是⊙O的切线;(2)连接EN,∵DM⊥DE,MN为⊙O的半径,∴∠MDE=∠MEN=90°,∵∠NME=∠DME,∴△MDE∽△MEN,∴=,∴ME2=MD•MN【2017湖北十堰23】已知AB 为半⊙O 的直径,BC ⊥AB 于B ,且BC =AB , D 为半⊙O 上的一点,连接BD 并延长交半⊙O 的切线AE 于E . (1) 如图1,若CD =CB ,求证:CD 是⊙O 的切线; (2) 如图2,若F 点在OB 上,且CD ⊥DF ,求AEAF 的值.(1)证明:略;(此问简单) (2)连接AD . ∵DF ⊥DC ∴∠1+∠BDF =90° ∵AB 是⊙O 的直径 ∴∠2+∠BDF =90° ∴∠1=∠2又∵∠3+∠ABD =90°, ∠4+∠ABD =90° ∴∠3=∠4 ∴△ADF ~△BCDAF ADBC BD=【2017湖北武汉27】如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长图1ED C图2DBE4321FOED CBA∵∠3+∠EAD =90°,∠E+∠EAD =90° ∴∠3=∠E又∵∠ADE=∠ADB=90° ∴△AD E ~△ABD∴AE ADAB BD =∴AE AF AB BC = ∴1AE AB AF BC==【解析】(1)证明见解析;(2)310;9013. (2)过点C 作CE ⊥AB 于E∵sin ∠BAC =35,设AC =5m ,则CE =3m∴AE =4m ,BE =m在RtΔCBE 中,m 2+(3m )2=36 ∴m =3105,∴AC =310 延长AO 交BC 于点H ,则AH ⊥BC ,且BH =CH =3,【2017湖北咸宁】如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵若52cos ,4==A AE ,求DF 的长【解析】(1)证明:如图,连接OD ,作OG ⊥AC 于点G ,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【2017湖北孝感23】如图,O的直径10,=∠的平分线交OAB=弦6,AC ACB于,D过点D作DE AB交CA延长线于点E,连接,.AD BD(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:DE是O的切线;(3)求线段DE的长.【解析】解:(1)如图,连接OD,∵AB 是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5, ∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD ⊥AB , ∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形, ∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC , ∴tan ∠EAF=tan ∠CBA , ∴=,即=,∴,∴DE=DF +EF=+5=.【2017湖北荆州25】如图在平面直角坐标系中,直线y=﹣x +3与x 轴、y 轴分别交于A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 长为半径作⊙Q . (1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.【解析】(1)证明:如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴==,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.(2)解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.易知PQ=DQ=3t,CQ=•3t=,∵OC+CQ+AQ=4,∴m+t+5t=4,∴m=4﹣t.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM 是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.(3)解:存在.理由如下:如图4中,当⊙Q在y则的右侧与y轴相切时,3t+5t=4,t=,由(2)可知,m=﹣或.如图5中,当⊙Q在y则的左侧与y轴相切时,5t﹣3t=4,t=2,由(2)可知,m=﹣或.综上所述,满足条件的点C的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).【2017湖北黄石21】如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E 为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.【解析】(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC,∴=,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.【2017湖北恩施23】.如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE ∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【解析】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,[∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴DE=BC,在Rt△DEF和Rt△BCP中,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【2017湖北随州22】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).【解析】(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD 平分∠BAC ;(2)∵在Rt △ABC 中,∠C=90°,AC=BC ,∴∠B=∠BAC =45°, ∵BC 相切⊙O 于点D ,∴∠ODB=90°, ∴OD=BD ,∴∠BOD=45°, 设BD=x ,则OD=OA=x ,OB=x ,∴BC=AC=x +1,∵AC 2+BC 2=AB 2,∴2(x +1)2=(x +x )2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE =﹣=1﹣.【2017湖北襄阳22】.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠BAC=∠DAC ,过点C 做直线EF ⊥AD ,交AD 的延长线于点E ,连接BC . (1)求证:EF 是⊙O 的切线;(2)若DE=1,BC=2,求劣弧的长l .【解析】(1)证明:连接OC ,∵OA=OC ,∴∠OAC=∠DAC ,∴∠DAC=∠OCA ,∴AD ∥OC , ∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF 是⊙O 的切线; (2)连接OD ,DC , ∵∠DAC=DOC ,∠OAC=BOC ,∴∠DAC=∠OAC , ∵ED=1,DC=2,∴sin ∠ECD=,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【2017湖北宜昌21】已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【解析】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴△ABO ≌△CDE ,∴AB=CD , ∴四边形A ∴D 是平行四边形, ∴∠DAE=∠DOE=30°,∴∠1=∠DAE , ∴CD=AD ,∴▱ABCD 是菱形.【2017江苏南通24】如图,Rt △ABC 中,∠C=90°,BC=3,点O 在AB 上,OB=2,以OB 为半径的⊙O 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.【解析】解:连接OD ,作OE ⊥BF 于点E .∴BE=BF , ∵AC 是圆的切线,∴OD ⊥AC , ∴∠ODC=∠C=∠OFC=90°, ∴四边形ODCF 是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC ﹣EC=BC ﹣OD=3﹣2=1, ∴BF=2BE=2.【2017江苏镇江26】.如图,ACB Rt ∆中,090=∠C ,点D 在AC 上,A CBD ∠=∠,过D A ,两点的圆的圆心O 在AB 上.(1)利用直尺和圆规在图1中画出⊙O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);(2)判断BD 所在直线与(1)中所作的⊙O 的位置关系,并证明你的结论; (3)设⊙O 交AB 于点E ,连接DE ,过点E 作BC EF ⊥,F 为垂足.若点D 是线段AC 的黄金分割点(即ACADAD DC =,)如图2,试说明四边形DEFC 是正方形.【2017江苏扬州25】如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .(1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)①求证:CF=OC ;②若半圆O 的半径为12,求阴影部分的周长.【解析】解:(1)结论:DE 是⊙O 的切线. 理由:∵四边形OABC 是平行四边形, 又∵OA=OC ,∴四边形OABC 是菱形, ∴OA=OB=AB=OC=BC ,∴△ABO ,△BCO 都是等边三角形, ∴∠AOB=∠BOC=∠COF=60°, ∵OB=OF ,来源:Z 。
2019年初中中考数学试卷试题及答案分类汇编:圆

优选文档2019 中考数学试题及答案分类汇编:圆一、选择题(天津3分)已知⊙O1与⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则⊙O1与⊙O2的地址关系是(A) 订交(B) 相离(C) 内切(D) 外切【答案】D。
【考点】圆与圆地址关系的判断。
【解析】两圆半径之和3+4=7,等于两圆圆心距O1O2=7,依照圆与圆地址关系的判断可知两圆外切。
(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的地址关系是A、订交B、外切C、外离D、内含【答案】B。
【考点】两圆的地址关系。
【解析】依照两圆的地址关系的判断:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),订交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。
∵圆心距是1+2=3厘米,∴这两个圆的地址关系是外切。
应选B。
3,(内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的均分线交AC于点D,则∠CDP等于A、30°B、60°C、45°D、50°【答案】【考点】角均分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【解析】连接OC,∵OC=OA,,PD均分∠APC,∴∠CPD=∠DPA,∠CAP=∠ACO。
∵PC为⊙O的切线,∴OC⊥PC。
∵∠CPD+∠DPA+∠CAP+∠ACO=90°,∴∠DPA+∠CAP=45°,即∠CDP=45°。
应选C。
(内蒙古呼和浩特3分)以下列图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为A.14B.15C. 32D. 23.优选文档【答案】B。
2019年浙江省中考数学分类汇编专题圆(解析版)

2019年浙江省中考数学分类汇编专题:圆(解析版)一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.【答案】C【考点】弧长的计算【解析】【解答】解:把已知数导入弧长公式即可求得:。
故答案为:C。
【分析】求弧长,联想弧长公式,代入数字即可。
2.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B.C.D.【答案】B【考点】圆周角定理,切线的性质【解析】【解答】解:连接OA∵∠ABC=30°弧AC=弧AC∴∠AOC=2∠ABC=60°∵AP是圆O的切线,∴OA⊥AP∴∠OAP=90°∴AP=OAtan60°=1× =故答案为:B【分析】连接OA,利用圆周角定理可求出∠AOC的度数,再根据切线的性质,可证△AOP是直角三角形,然后利用解直角三角形求出PA的长。
3.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A. πB. πC. 2πD. π【答案】A【考点】圆周角定理,弧长的计算【解析】【解答】解:连接OC、OB,∵∠A=180°-∠ABC-∠ACB∴∠A=180°-65°-70°=45°∵弧BC=弧BC∴∠BOC=2∠A=2×45°=90°∵OB=OC在Rt△OBC中,∠OBC=45°∴OC=BCsin45°= =2∴弧BC的长为:故答案为:A【分析】利用三角形内角和定理求出∠A,再根据圆周角定理,求出∠BOC的度数,就可证得△BOC是等腰直角三角形,利用解直角三角形求出OC的长,然后利用弧长公式计算可求出弧BC的长。
4.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2B. 3C. 4D. 4-【答案】A【考点】切线的性质,解直角三角形的应用,切线长定理【解析】【解答】解:设AB、AC的切点分别为D、E,连结OD、OE,如图,∵AB、AC与⊙O相切于点D、E,∴AD=AE,∠ODB=∠OEC=90°,又∵△ABC是边长为8的等边三角形,∴AB=AC=BC=8,∠B=60°,∴BD=CE,∵OD=OE,∴△ODB≌△OEC(SAS),∴OB=OC= BC=4,在Rt△ODB中,∴sin60°= ,即OD=OBsin60°=4× =2 ,∴⊙O的半径为2 .故答案为:A.【分析】设AB、AC的切点分别为D、E,连结OD、OE,根据切线的性质和切线长定理得AD=AE,∠ODB=∠OEC=90°,由等边三角形性质得AB=AC=BC=8,∠B=60°,等量代换可得BD=CE,根据全等三角形判定SAS 得△ODB≌△OEC,再由全等三角形性质得OB=OC=4,在Rt△ODB中,根据锐角三角函数正弦定义即可求得答案.5.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2【答案】B【考点】圆锥的计算【解析】【解答】解:设圆锥母线为R,圆锥底面半径为r,∵R=13cm,r=5cm,∴圆锥的侧面积S= ·2 r.R= ×2 ×5×13=65 (cm2).故答案为:B.【分析】根据圆锥侧面展开图为扇形,再由扇形面积计算即可求得答案.6.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°【答案】C【考点】正多边形和圆【解析】【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C= (5−2)×180°=108°,∵CD=CB,∴∠CBD== (180°−108°)=36°,∴∠ABD=∠ABC-∠CBD=72°,故答案为:C.【分析】由正多边形的内角和公式可求得∠ABC和∠C的度数,又由等边对等角可知∠CBD=∠CDB,从而可求得∠CBD,进而求得∠ABD。
辽宁省2019年、2020年中考数学试题分类汇编(11)——圆(含答案)

2019年、2020年辽宁省数学中考试题分类(11)——圆一.圆周角定理(共4小题)1.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°2.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°3.(2019•营口)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°̂的中点,BD交OC于4.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是AC点E,∠AOC=100°,∠OCD=35°,那么∠OED=.二.三角形的外接圆与外心(共3小题)5.(2020•鞍山)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30°B.25°C.15°D.10°̂的长为.6.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则AC7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.三.直线与圆的位置关系(共2小题)8.(2020•丹东)如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=13,DF=2,求⊙O的半径.9.(2019•抚顺)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O 经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作▱GDEC.(1)判断DE与⊙O的位置关系,并说明理由.(2)若点B是DBĈ的中点,⊙O的半径为2,求BĈ的长.四.切线的性质(共6小题)10.(2019•阜新)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°11.(2020•大连)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=512,BC=1,求PD的长.12.(2020•鞍山)如图,AB是⊙O的直径,点C,点D在⊙O上,AĈ=CD̂,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=35,求⊙O的半径.13.(2019•营口)如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.14.(2019•沈阳)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4√5,CD=4,则⊙O的半径是.15.(2019•大连)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五.切线的判定与性质(共11小题)16.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.17.(2020•沈阳)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.18.(2020•营口)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tan A=34,AD=2,求BO的长.19.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.20.(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=√5,求⊙O的半径.21.(2019•鞍山)如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE =∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.22.(2019•盘锦)如图,△ABC内接于⊙O,AD与BC是⊙O的直径,延长线段AC至点G,使AG=AD,连接DG交⊙O于点E,EF∥AB交AG于点F.(1)求证:EF与⊙O相切.(2)若EF=2√3,AC=4,求扇形OAC的面积.̂=BN̂,弦MN交AB 23.(2019•锦州)如图,M,N是以AB为直径的⊙O上的点,且AN于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.24.(2019•葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O 交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.25.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2√3,求阴影部分的面积.26.(2019•本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=12,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.六.正多边形和圆(共3小题)27.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,−√3)B.(1,√3)C.(1,﹣2)D.(2,1)28.(2020•葫芦岛)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EF A的度数是.29.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.七.弧长的计算(共4小题)30.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BĜ的长是( )A .π3B .π2C .2π3D .3π431.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DÊ的长为( )A .4π3B .πC .2π3D .π332.(2019•鞍山)如图,AC 是⊙O 的直径,B ,D 是⊙O 上的点,若⊙O 的半径为3,∠ADB =30°,则BĈ的长为 .33.(2019•铁岭)如图,点A ,B ,C 在⊙O 上,∠A =60°,∠C =70°,OB =9,则AB̂的长为 .八.扇形面积的计算(共2小题)34.(2020•朝阳)如图,点A ,B ,C 是⊙O 上的点,连接AB ,AC ,BC ,且∠ACB =15°,过点O 作OD ∥AB 交⊙O 于点D ,连接AD ,BD ,已知⊙O 半径为2,则图中阴影面积为 .35.(2019•抚顺)如图,直线l 1的解析式是y =√33x ,直线l 2的解析式是y =√3x ,点A 1在l 1上,A 1的横坐标为32,作A 1B 1⊥l 1交l 2于点B 1,点B 2在l 2上,以B 1A 1,B 1B 2为邻边在直线l 1,l 2间作菱形A 1B 1B 2C 1,分别以点A 1,B 2为圆心,以A 1B 1为半径画弧得扇形B 1A 1C 1和扇形B 1B 2C 1,记扇形B 1A 1C 1与扇形B 1B 2C 1重叠部分的面积为S 1;延长B 2C 1交l 1于点A 2,点B 3在l 2上,以B 2A 2,B 2B 3为邻边在l 1,l 2间作菱形A 2B 2B 3C 2,分别以点A 2,B 3为圆心,以A 2B 2为半径画弧得扇形B 2A 2C 2和扇形B 2B 3C 2,记扇形B 2A 2C 2与扇形B 2B 3C 2重叠部分的面积为S 2………按照此规律继续作下去,则S n = .(用含有正整数n 的式子表示)九.圆锥的计算(共2小题)36.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.37.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.一十.圆的综合题(共2小题)38.(2020•盘锦)如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当AFBF =25,CE=4时,直接写出CG的长.39.(2019•丹东)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O 与边BC相切于点E,与边AC相交于点G,且AĜ=EĜ,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.2019年、2020年辽宁省数学中考试题分类(11)——圆参考答案与试题解析一.圆周角定理(共4小题)1.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.2.【解答】解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.3.【解答】解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故选:A.4.【解答】解:连接OB.∵AB̂=BĈ,∴∠AOB=∠BOC=50°,∴∠BDC=12∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.二.三角形的外接圆与外心(共3小题)5.【解答】解:连接OB和OC,∵圆O半径为2,BC=2,∴OB=OC=BC,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=12∠BOC=30°,故选:A .6.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴AC ̂的长=60⋅π⋅6180=2π, 故答案为2π.7.【解答】解:∵OD ⊥AC ,∴AD =DC ,∵BO =CO ,∴AB =2OD =2×2=4,∵BC 是⊙O 的直径,∴∠BAC =90°,∵OE ⊥BC ,∴∠BOE =∠COE =90°,∴BÊ=EC ̂, ∴∠BAE =∠CAE =12∠BAC =12×90°=45°, ∵EA ⊥BD ,∴∠ABD =∠ADB =45°,∴AD =AB =4,∴DC =AD =4,∴AC=8,∴BC=√AB2+AC2=√42+82=4√5.故答案为:4√5.三.直线与圆的位置关系(共2小题)8.【解答】解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF=DFBD=13,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O 的半径为5.9.【解答】解:(1)DE 是⊙O 的切线; 理由:连接OD ,∵∠ACB =90°,CA =CB ,∴∠ABC =45°,∴∠COD =2∠ABC =90°,∵四边形GDEC 是平行四边形,∴DE ∥CG ,∴∠EDO +∠COD =180°,∴∠EDO =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)连接OB ,∵点B 是DBĈ的中点, ∴BĈ=BD ̂, ∴∠BOC =∠BOD ,∵∠BOC +∠BOD +∠COD =360°,∴∠COB =∠BOD =135°,∴BC ̂的长=135⋅π×2180=32π.四.切线的性质(共6小题)10.【解答】解:如图:连接OB,∵∠A=25°,∴∠COB=2∠A=2×25°=50°,∵BC与⊙O相切于点B,∴∠OBC=90°,∴∠C=90°﹣∠BOC=90°﹣50°=40°.故选:D.11.【解答】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD 是⊙O 的切线,∴OD ⊥DP ,∴∠ODP =90°,又∵AD̂=CD ̂, ∴OD ⊥AC ,AE =EC ,∴∠DEC =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ECP =90°,∴四边形DECP 为矩形,∴DP =EC ,∵tan ∠CAB =512,BC =1,∴CB AC =1AC =512,∴AC =125, ∴EC =12AC =65,∴DP =65.12.【解答】(1)证明:∵AF 与⊙O 相切于点A , ∴F A ⊥AB ,∴∠F AB =90°,∴∠F +∠B =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAE +∠CEA =90°,∵AĈ=CD ̂, ∴∠CAE =∠D ,∴∠D +∠CEA =90°,∵∠D =∠B ,∴∠B +∠CEA =90°,∴∠F =∠CEA ,∴AE =AF .(2)解:∵AE =AF ,∠ACB =90°,∴CF =CE =12EF =6,∵∠ABF =∠D =∠CAE ,∴sin ∠ABF =sin ∠CAE =35,∴CE AE =6AE =35, ∴AE =10,∴AC =√AE 2−CE 2=√102−62=8,∵sin ∠ABC =AC AB =8AB =35, ∴AB =403, ∴OA =12AB =203. 即⊙O 的半径为203.13.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AE ⊥BC ,∴AD ⊥OA ,∵AO 是⊙O 的半径,∴AD 是⊙O 的切线,又∵DF 是⊙O 的切线,∴AD =DF ,同理可得CE =CF ,∵CD =DF +CF ,∴CD =AD +CE .(2)解:连接OD ,AF 相交于点M ,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE=√(5t)2−(3t)2=4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=AOAD=2t4t=12,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵EF̂=EF̂,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=1 2.14.【解答】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO =∠ABC ,∴∠CBD =∠ABC .;(2)解:连接AC ,在Rt △BCD 中,BC =4√5,CD =4,∴BD =√BC 2−CD 2=8,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB =∠CDB =90°,∵∠ABC =∠CBD ,∴△ABC ∽△CBD ,∴AB BC =CB BD ,即4√5=4√58, ∴AB =10,∴⊙O 的半径是5,故答案为5.15.【解答】(1)证明:作DF ⊥BC 于F ,连接DB ,∵AP 是⊙O 的切线,∴∠P AC =90°,即∠P +∠ACP =90°,∵AC 是⊙O 的直径,∴∠ADC =90°,即∠PCA +∠DAC =90°,∴∠P =∠DAC =∠DBC ,∵∠APC =∠BCP ,∴∠DBC =∠DCB ,∴DB =DC , ∵DF ⊥BC ,∴DF 是BC 的垂直平分线,∴DF 经过点O ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3,在△DEC 和△CFD 中,{∠DCE =∠FDC∠DEC =∠CFD DC =CD,∴△DEC ≌△CFD (AAS )∴DE =FC =3,∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =DE 2AE =92, ∴AC =2+92=132,∴⊙O 的半径为134.五.切线的判定与性质(共11小题)16.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB AC,∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF AD,∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,在Rt△ABF中,BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2﹣BH2,BD=BH,则BD2=98.∴BD=7√2.17.【解答】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC =√3OD =√3,故答案为:√3. 18.【解答】 (1)证明:过O 作OH ⊥AB 于H ,∵∠ACB =90°,∴OC ⊥BC ,∵BO 为△ABC 的角平分线,OH ⊥AB ,∴OH =OC ,即OH 为⊙O 的半径,∵OH ⊥AB ,∴AB 为⊙O 的切线;(2)解:设⊙O 的半径为3x ,则OH =OD =OC =3x ,在Rt △AOH 中,∵tan A =34,∴OH AH =34, ∴3xAH =34, ∴AH =4x ,∴AO =√OH 2+AH 2=√(3x)2+(4x)2=5x ,∵AD =2,∴AO =OD +AD =3x +2,∴3x +2=5x ,∴x =1,∴OA =3x +2=5,OH =OD =OC =3x =3,∴AC =OA +OC =5+3=8,在Rt △ABC 中,∵tan A =BCAC ,∴BC =AC •tan A =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.19.【解答】(1)证明:连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠AEB,∵AE=AB,∴∠AEB=∠ABC,∴∠DAE=∠ABC,∴△AED≌△BAC(SAS),∴∠DEA=∠CAB,∵∠CAB=90°,∴∠DEA=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切;(2)解:∵∠ABC=60°,AB=AE=4,∴△ABE是等边三角形,∴AE=BE,∠EAB=60°,∵∠CAB=90°,∴∠CAE=90°﹣∠EAB=90°﹣60°=30°,∠ACB=90°﹣∠B=90°﹣60°=30°,∴∠CAE=∠ACB,∴AE=CE,∴CE=BE,∴S△ABC=12AB•AC=12×4×4√3=8√3,∴S△ACE=12S△ABC=12×8√3=4√3,∵∠CAE=30°,AE=4,∴S扇形AEF=30π×AE2360=30π×42360=4π3,∴S阴影=S△ACE﹣S扇形AEF=4√3−4π3.20.【解答】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH ,∵AD 是⊙O 的直径,∴∠AHD =∠DF A =90°,∴∠DFB =90°,∵AD =AB ,DH =√5,∴DB =2DH =2√5,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2,∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴AD 2−(AD −2)2=(2√5)2−22,∴AD =5.∴⊙O 的半径为52. 21.【解答】解:(1)∵∠ACB =90°,点B ,D 在⊙O 上, ∴BD 是⊙O 的直径,∠BCE =∠BDE ,∵∠FDE =∠DCE ,∠BCE +∠DCE =∠ACB =90°,∴∠BDE +∠FDE =90°,即∠BDF =90°,∴DF ⊥BD ,又∵BD 是⊙O 的直径,∴DF 是⊙O 的切线.(2)如图,∵∠ACB =90°,∠A =30°,BC =4,∴AB=2BC=2×4=8,∴AC=√AB2−BC2=√82−42=4√3,∵点D是AC的中点,∴AD=CD=12AC=2√3,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴DE=12AD=12×2√3=√3,在Rt△BCD中,BD=√BC2+CD2=√42+(2√3)2=2√7,在Rt△BED中,BE=√BD2−DE2=√(2√7)2−(√3)2=5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴DFBD =DEBE,即2√7=√35,∴DF=2√21 5.22.【解答】(1)证明:如图1,连接OE,∵OD=OE,∴∠D=∠OED,∵AD=AG,∴∠D=∠G,∴∠OED=∠G,∴OE∥AG,∵BC是⊙O的直径,∴∠BAC=90°,∵EF∥AB,∴∠BAF+∠AFE=180°,∴∠AFE=90°,∵OE∥AG,∴∠OEF=180°﹣∠AFE=90°,∴OE⊥EF,∴EF与⊙O相切;(2)解:如图2,连接OE,过点O作OH⊥AC于点H,∵AC=4,∴CH=12AC=2,∵∠OHF=∠HFE=∠OEF=90°,∴四边形OEFH是矩形,∴OH=EF=2√3,在Rt△OHC中,OC=√CH2+OH2=√22+(2√3)2=4,∵OA=AC=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴S扇形OAC=60π⋅42360=83π.23.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)如图,连接AN,ON̂=BN̂,∵AN∴AN=BN=4̂=BN̂,∵AB是直径,AN∴∠ANB=90°,ON⊥AB∴AB=√AN2+BN2=4√2∴AO=BO=ON=2√2∴OC=√CN2−ON2=√9−8=1∴AC=2√2+1,BC=2√2−1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴ACCM = CNBC∴AC•BC=CM•CN ∴7=3•CM∴CM=7 324.【解答】(1)证明:连接OF,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD=AFAM=35,∵AF=6,∴6AM =35,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD=ADAC=35,∴8AC =35,∴AC=40 3,∴FC=403−6=22325.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=12∠AOE,∵∠EDA=12∠AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2√3,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2√3,∴S扇形AOE=60⋅π×(2√3)2360=2π,在Rt△OAF中,OF=OA•sin∠EAO=2√3×√32=3,∴S△AOE=12AE•OF=12×2√3×3=3√3,∴阴影部分的面积=2π﹣3√3.26.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP ≌△CBP (SAS ),∴∠CDP =∠CBP ,∵∠BCD =90°,∴∠CBP +∠BEC =90°,∵OD =OE ,∴∠ODE =∠OED ,∠OED =∠BEC ,∴∠BEC =∠OED =∠ODE ,∴∠CDP +∠ODE =90°,∴∠ODP =90°,∴DP 是⊙O 的切线;(2)∵∠CDP =∠CBE ,∴tan ∠CBE =tan ∠CDP =CE BC =12,∴CE =12×4=2, ∴DE =2,∵∠EDF =90°,∴EF 是⊙O 的直径,∴∠F +∠DEF =90°,∴∠F =∠CDP ,在Rt △DEF 中,DE DF =12, ∴DF =4,∴EF =√DE 2+DF 2=√42+22=2√5,∴OE=√5,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴PEPD =PDPF=DEDF,设PE=x,则PD=2x,∴x(x+2√5)=(2x)2,解得x=23√5,∴OP=OE+EP=√5+2√53=5√53.六.正多边形和圆(共3小题)27.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,√3),点C与C4关于原点对称,∴C4(1,−√3),∴顶点∁i的坐标是(1,−√3),故选:A.28.【解答】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠F AB=60°,∴∠EAF=108°﹣60°=48°,∵AE=AF,∴∠AEF=∠AFE=12×(180°﹣48°)=66°,故答案为:66°.29.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA =OB =AB =2,∴扇形AOB 的面积=60⋅π×22360=2π3, 故答案为:2π3.七.弧长的计算(共4小题)30.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°, ∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BF OD =BE OE ,∵OB =OD ,OE :EB =1:√3, ∴tan ∠BOF =BF OB =√3,∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BG ̂的长=60π×2180=23π, 故选:C .31.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =AB AE =√32, ∴∠BAE =30°,∴∠EAD =60°,∴DÊ的长=60⋅π×2180=2π3, 故选:C .32.【解答】解:由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠BOC =180°﹣60°=120°,∴BC ̂的长=120π×3180=2π, 故答案为:2π.33.【解答】解:连接OA ,∵OA =OC ,∴∠OAC =∠C =70°,∴∠OAB =∠OAC ﹣∠BAC =70°﹣60°=10°,∵OA =OB ,∴∠OBA =∠OAB =10°,∴∠AOB =180°﹣10°﹣10°=160°,则AB ̂的长=160π×9180=8π, 故答案为:8π.八.扇形面积的计算(共2小题)34.【解答】解:∵∠ACB =15°,∴∠AOB =30°,∵OD ∥AB ,∴S △ABD =S △ABO ,∴S 阴影=S 扇形AOB =30π×22360=π3. 故答案为:π3. 35.【解答】解:过A 1作A 1D ⊥x 轴于D ,连接B 1C 1,B 2C 2,B 3C 3,B 4C 4, ∵点A 1在l 1上,A 1的横坐标为32,点A 1(32,√32), ∴OD =32,A 1D =√32,∴OA 1=√A 1D 2+OD 2=(√32)2+(32)2=√3, ∴在Rt △A 1OD 中,A 1D =12OA 1, ∴∠A 1OD =30°,∵直线l 2的解析式是y =√3x ,∴∠B 1OD =60°,∴∠A 1OB 1=30°,∴A 1B 1=OA 1•tan ∠A 1OB 1=1,∵A 1B 1⊥l 1交l 2于点B 1,∴∠A 1B 1O =60°,∴∠A 1B 1B 2=120°,∴∠B 1A 1C 1=60°,∵四边形A 1B 1B 2C 1是菱形,∴△A 1B 1C 1是等边三角形,∴S 1=2(S扇形B 1A 1C 1−S △B 1A 1C 1)=2×(60⋅π×12360−√34×12)=π3−√32,∵A 1C 1∥B 1B 2,∴∠A 2A 1C 1=∠A 1OB 1=30°,∴A 2C 1=12,A 2B 2=A 2C 1+B 2C 1=32,∠A 2B 2O =60°,同理,S 2=2(S扇形B 2A 2C 2−S △B 2A 2C 2)=2×[60⋅π×(32)2360−√34×(32)2]=(π3−√32)×(32)2, S 3=(π3−√32)×(32)4, …∴S n =(π3−√32)×(32)2(n ﹣1)=(π3−√32)×(32)2n ﹣2. 故答案为:(π3−√32)×(32)2n ﹣2.九.圆锥的计算(共2小题)36.【解答】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl =π×3×5=15π,故答案为:15π37.【解答】解:设该圆锥的底面半径为r ,根据题意得2πr =216⋅π⋅5180,解得r =3. 故答案为3.一十.圆的综合题(共2小题)38.【解答】(1)证明:∵EF ⊥AB ,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF ∥AC ,∴EC BE =AF BF =25, ∵CE =4,∴BE =10,∵BC ⊥AD ,∴AĈ=CD ̂, ∴∠CAE =∠ABC ,∵∠AEC =∠AEB =90°,∴△AEB ∽△CEA ,∴AE CE =EB EA ,∴AE 2=4×10,∵AE >0,∴AE =2√10,∴AH =AE =2√10,∵∠G =∠G ,∠CHG =∠AEG =90°,∴△GHC ∽△GEA ,∴GH GE =HC EA =GC GA , ∴y x+4=2√10=2√10+y , 解得x =283.39.【解答】解:(1)证明:①如图1,连接OE ,∵⊙O 与BC 相切于点E ,∴∠OEB =90°,∵∠ACB =90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,̂=EĜ,∵AG∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=12AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∵OG=OE,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE=√GE2−CG2=√62−32=3√3,∴S阴影=S梯形GCEO﹣S扇形OGE=12(6+3)×3√3−60π⋅62360=27√32−6π.。
2019年全国各地中考数学真题汇编:圆

一、选择题1.已知的半径为,的半径为,圆心距,则与的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】C2.如图,为的直径,是的弦,,则的度数为()A. B. C. D.【答案】C3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C4.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【答案】C5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【答案】D6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.B.40πm2C.D.55πm2【答案】A7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【答案】A8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为()A. B. C. D.【答案】C10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()。
A.27°B.32°C.36°D.54°【答案】A11.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【答案】B12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【答案】D13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.B.C.D.【答案】C14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【答案】B15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D16.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【答案】A17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为()A. B. C. 34 D. 10【答案】D18.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A二、填空题19.已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.【答案】620.一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为________cm.【答案】21.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。
2019年中考数学全国部分地区有关圆的综合题真题汇编(含答案解析)

有关圆的综合题1.(2019浙江温州22题)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=38AB时,求⊙O的直径长.2.(2019浙江绍兴21题)在屏幕上有如下内容:如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答0(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.(2)以下是小明,小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的条件是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.3.(2019浙江宁波26题)如图1, O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F.(1)求证:BD=BE. (2)当AF :EF=3:2,AC=6时,求AE 的长。
(3)设 EFAF =x,tan ∠DAE=y. ①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值4.(2019浙江金华21题)如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.5. (2019浙江湖州23题)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的2为半径画圆.一个动点,以Q为圆心,2①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN 是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图26.(2019浙江杭州23题)如图,已知锐角三角形ABC 内接于☉O,OD ⊥BC 于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA; ②当OA=1时,求△ABC 面积的最大值;(2)点E 在线段OA 上,OE=OD.连接DE,设∠ABC=m ∠OED,∠ACB=n ∠OED(m,n 是正数).若∠ABC<∠ACB,求证:m-n+2=0.7.(2019四川宜宾23题)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE 交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.8.(2019四川雅安23题)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC 于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.9.(2019四川遂宁24题)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.10.(2019四川内江27题)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB =5,OB与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.11.(2019四川泸州24题)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O 上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.12.(2019四川广元23题)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P 作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.13.(2019四川达州22题)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.14.(2019四川巴中25题)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.参考答案第1题答案.第2题答案.第3题答案. (1)证明:∵△ABC 为等边三角形,∴∠BAC=∠C=60 .∵∠DEB=∠BAC=60 ,∠D=∠C=60∴∠DEB=∠D.∴BD=BE(2)解:如图,过点A 作AG ⊥EC 于点G.∵△ABC 为等边三角形,AC=6,∴BG=21 BC= 21AC=3. ∴在Rt △ABG 中,AG=BG=3 . ∵BF ⊥EC ,∴BF ∥AG.∵AF:EF=3:2,∴BE= BG=2.∴EG=BE+BG=3+2=5.∴在Rt △AEG 中,AE=.(3)解:①如图,过点E 作EH ⊥AD 于点H.∵∠EBD=∠ABC=60°,∴在Rt △BEH 中, BE EH =sin60 = 23. ∴∴∵BG=xBE.∴AB=BC=2BG-2xBE.∴AH-AB+BH=2xBE+ 21BE=(2x+ 21)BE. ∴在Rt △AHE 中,tan EAH =143+=x y ②如图,过点O 作OM ⊥EC 于点M.设BE=a.∵∴CG=BG=xBE=x.∴EC=CG+BG+BE=a+2ax.∴AM=21EC= 21a+ax. ∴BM=EM-BE=ax- 21a ∵BF ∥AG , ∴△EBF ∽△EGA.∴∵AG= 3BG= 3ax ∴BF=x+11 AG= x ax +13 ∴△OFB 的面积=∴△AEC 的面积=∵△AEC 的面积是△OFB 的面积10倍 ∴∴ 解得∴ 93=y 或73 第4题答案. (1)如图,连结OB ,设⊙O 半径为r ,∵BC 与⊙O 相切于点B ,∴OB ⊥BC ,又∵四边形OABC 为平行四边形,∴OA ∥BC ,AB=OC ,∴∠AOB=90°,又∵OA=OB=r ,∴AB= 2r ,∴△AOB ,△OBC 均为等腰直角三角形,∴∠BOC=45°,∴弧CD 度数为45°.(2)作OH ⊥EF ,连结OE ,由(1)知EF=AB= 2r ,∴△OEF 为等腰直角三角形,∴OH=21 EF= 22r , 在Rt △OHC 中,∴sin ∠OCE=21222==r r OC OH , ∴∠OCE=30°.第5题答案.【解答】(1)如图1,连结BP ,过点P 作PH ⊥OB 于点H ,图3则BH =OH .∵AO =BO =3, ∴∠ABO =45°,BH =12OB =2,∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322, 从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q ,使得△QMN 是等腰直角三角形,∵直线l 1经过点A (-3,0),B (0,3),∴l 的函数解析式为y =x +3.记直线l 2与l 1的交点为F ,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q在线段CF的延长线上时,同理可得m=3+2,Q的坐标为(3+2,6+32).∴存在这样的点Q1(3-2,6-32)和Q2(3+2,6+32),使得△QMN是等腰直角三角形.第6题答案. 解析(1)①证明:连接OB,OC.因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以∠OBD=30°,所以OD=OB=OA.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到.由①知,BC=2BD=,所以△ABC的面积=BC·AF≤××=,即△ABC面积的最大值是.(2)证明:设∠OED=∠ODE=α,∠COD=∠BOD=β.因为△ABC是锐角三角形,所以∠ABC+∠ACB+∠BAC=180°,即(m+n)α+β=180°.(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC=2mα+β.因为∠OED+∠ODE+∠EOD=180°,所以2(m+1)α+β=180°.(**)由(*) (**),得m+n=2(m+1),即m-n+2=0.第7题答案.【解答】(1)证明:∵OA=OD,∠A=∠B=30°,∴∠A=∠ADO=30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是半径,∴BD是⊙O的切线;(2)∵∠ODB=90°,∠DBC=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,∵BD是⊙O的切线,BE是⊙O的割线,∴BD2=BM•BE,∴BM===.第8题答案.【解答】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.第9题答案. 解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.第10题答案.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l ,∴∠BCA+∠BPC=90°,∵OA=OP ,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3 ,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r ,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.第11题答案.第12题答案.(1)证明:连接OD,∵PC是⊙O的切线,∴∠PCO=90°,即∠PCD+∠OCD=90°,∵OA⊥CD ,∴CE=DE∴PC=PD∴∠PDC=∠PCD∵OC=OD∴∠ODC=∠OCD,∴∠PDC+∠ODC=∠PCD+∠OCD=90°,∴PD是⊙O的切线.(2)如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴tan B==设AC=m,BC=2m,则由勾股定理得:m2+(2m)2=102,解得:m=,AC=2,BC=4,∵CE×AB=AC×BC,即10CE=2×4,∴CE=4,BE=8,AE=2在Rt△OCE中,OE=OA﹣AE=3,OC=5,∴CE===4,∵∴OP×OE=OC×OC,即3OP=5×5,∴OP=,P A=OP﹣OA=﹣5=.(3)AB2=4OE•OP如图2,∵PC切⊙O于C,∴∠OCP=∠OEC=90°,∴△OCE∽△OPC∴,即OC2=OE•OP∵OC=AB∴,即AB2=4OE•OP.第13题答案. (1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD ,∴=,∴OD⊥BC,∵DF∥BC ,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.第14题答案. ①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.。
2019年全国各地中考数学试题分类汇编(第二期)专题30圆的有关性质(含解析)

圆的有关性质.选择题1. (2019?江苏无锡?3分)如图,PA是O O的切线,切点为A, PO的延长线交O O于点B,若/ P= 40°则/ B的度数为(A. 20 ° B . 25 °C. 40 °D. 50 °【分析】连接0A,如图,根据切线的性质得 / PAO = 90°,再利用互余计算出 / AOP = 50°, 然后根据等腰三角形的性质和三角形外角性质计算/B的度数.【解答】解:连接OA,如图,•/ PA是O O的切线,••• 0A丄AP,:丄 FAO= 90°•••/ F= 40°•••/ AOF= 50°•/ OA= OB,•••/ B= / OAB,•••/ AOF= / B+ / OAB ,•••/ B= 1 / AOP = 1烦。
=25°2 2故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径•若出现圆的切线, 必连过切点的半径,构造定理图,得出垂直关系.2. (2019?浙江杭州?3分)如图,P为圆O外一点,PA, PB分别切圆O于A, B两点,若FA= 3,贝U PB =( )A . 2B . 3 C. 4 D. 5【分析】连接OA、OB、OF,根据切线的性质得出OA丄FA , OB丄PB,然后证得Rt△ AOP B Rt△ BOP,即可求得PB= PA= 3.【解答】解:连接OA、OB、OP ,••• PA, PB分别切圆O于A, B两点,••• OA丄PA, OB 丄PB,在Rt △ AOP 和Rt △ BOP 中,二OB〔OPRP’• Rt △ AOP 也Rt △ BOP (HL ),PB= PA= 3,故选:B.【点评】本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.3. (2019?浙江湖州?4分)已知一条弧所对的圆周角的度数是15 °则它所对的圆心角的度数是30°.【分析】直接根据圆周角定理求解.【解答】解::•一条弧所对的圆周角的度数是15°•它所对的圆心角的度数为2X15°= 30°故答案为30°【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半..填空题1. (2019?铜仁凶分)如图,四边形ABCD为O O的内接四边形,/ A= 100 °则/ DCE的【解答】解:•/四边形ABCD为O O的内接四边形,•••/ DCE = / A= 100°故答案为:100°2. (201 9?江苏宿迁?3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2 .【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为'2(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边={八」「13,所以它的内切圆半径== 2.2故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为_,'2(其中a、b为直角边,c为斜边).3. (2 019江苏盐城3分)如图,点A、B、C、D、E在O O上,且弧AB为50 °则/ E +Z C = _________【答案】155【解析】如图,因为弧AB为50°则弧AB所对的圆周角为25° Z E+ Z C=180° -25 °=155° .4. (2019?广西北部湾经济区?3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉•在《九章算术》中记载有一问题今有圆材埋在壁中,不知大小•以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为______________ 寸. 【答案】26【解析】解:设O O的半径为r.在Rt A ADO 中,AD=5 , OD = r-1, OA=r, 则有r2=52+ (r-1) 2,解得r=13,•••O O的直径为26寸,故答案为:26.设O O 的半径为r .在Rt A ADO 中,AD=5 , OD=r-1, OA=r,则有r2=52+ (r-1) 2,解方程即可.本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5. (2019?广西贺州?10分)如图,BD是O O的直径,弦BC与OA相交于点E, AF与O O相切于点A,交DB的延长线于点F, / F = 30° / BAC= 120° BC = &(1)求/ ADB的度数;AF丄OA,由圆周角定理好已知条件得出/ F = Z DBC , 证出AF // BC,得出OA丄BC,求出Z BOA = 90°- 30°= 60°由圆周角定理即可得出结果;(2)由垂径定理得出BE = CE = —BC = 4,得出AB = AC,证明△ AOB是等边三角形,2得出AB = OB ,由直角三角形的性质得出OE = —OB , BE= 「OE= 4,求出OE =丄」,2 3即可得出AC= AB = OB= 2OE = ….3【解答】解:(1) ••• AF与O O相切于点A,• AF 丄OA,•/ BD是O O的直径,•••/ BAD = 90°•••/ BAC= 120°,•••/ DAC = 30°•••/ DBC = / DAC = 30°•••/ F = 30°•••/ F = / DBC ,• AF // BC,• OA丄BC,•••/ BOA= 90° - 30°= 60°•••/ ADB = --Z AOB = 30°2(2)•/ OA丄BC,• BE= CE =丄BC = 4,2• AB= AC,•••/ AOB= 60° OA = OB,•△ AOB是等边三角形,• AB= OB,•••/ OBE= 30°• OE= 1OB, BE = 7OE = 4,2• OE「",3• AC= AB= OB = 2OE =:3【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA丄BC是解题的关键.6. (2019?广东省广州市?12分)如图,O O的直径AB = 10,弦AC = 8,连接BC .(1 )尺规作图:作弦CD,使CD = BC (点D不与B重合),连接AD ;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.CB 为半径画弧,交 O O 于D ,线段CD 即为所求.(2)连接BD , OC 交于点E ,设0E = x ,构建方程求出x 即可解决问题.【解答】解:(1)如图,线段 CD 即为所求.(2)连接BD , 0C 交于点E ,设0E = x.•/ AB 是直径,•••/ ACB = 90°••• BC =「_6,•/ BC = CD , • :,= H, • 0C 丄 BD 于 E .• BE = DE ,2 2 2 2 2••• BE 2= BC 2- EC 2= OB 2-OE 2,^2 2 「2 2• 6 -( 5 - x )= 5 - x ,7 解得x =, 5•/ BE = DE , BO = OA ,14• AD = 2OE = ,5 14124 •四边形ABCD 的周长=6+6+10+ '. 55 【点评】本题考查作图-复杂作图,圆周角定理,解直角三角形等知识,解题的关键是c【分析】(1 )以C 为圆心,学会利用参数,构建方程解决问题.7. ( 2019?贵州省安顺市?12分)如图,在厶ABC中,AB = AC,以AB为直径的O O与边BC,AC分别交于D, E两点,过点D作DH丄AC于点H .(1)判断DH与O O的位置关系,并说明理由;(2)求证:H为CE的中点;【解答】(1)解:DH与O O相切.理由如下:连结OD、AD,如图,•/ AB为直径,•••/ ADB = 90° 即AD 丄BC ,•/ AB= AC,• BD = CD ,而AO = BO,• OD ABC的中位线,• OD // AC,•/ DH 丄AC,• OD 丄DH ,• DH为O O的切线;(2)证明:连结DE,如图,•••四边形ABDE为O O的内接四边形,• / DEC = / B,•/ AB= AC,• / B= / C,• / DEC = / C,•/ DH 丄CE ,••• CH = EH ,即H 为CE 的中点;(3)解:在 Rt A ADC 中,CD = _BC = 5,2•/ COSC = =^-L ,AC 5• - AC = 5 ~,• CE = 2CH = 2 匸,• - AE = AC — CE = 5■甘 3 — 2”;..:门j = 3 7.8. 如图,△ ABC 是O O 的内接三角形,AB 为O O 直径,AB = 6, AD 平分/ BAC ,交BC 于 点E ,交O O 于点D ,连接BD .【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD ,根据平角定义得到/ AEC = 55°,根据圆周角定理得到/ ACE = 90°,求得/ CAE = 35°,得到/ BOD = 2/ BAD = 70°,根据弧长公式即可得到结论.【解答】(1)证明:T AD 平分/ BAC ,•••/ CAD = Z CBD ,在 Rt A CDH 中,• CH =.,:cosC 「=I (1 )求证:/ BAD = Z CBD ;•••/ BAD = Z CBD ;(2 )解:连接OD ,•••/ AEB = 125° ,•••/ AEC= 55 ° ,••• AB为O O直径,•••/ ACE= 90 ° ,•••/ CAE= 35 ° ,•••/ DAB = Z CAE = 35°,•••/ BOD = 2/BAD = 70°,7=—n.69. (2019?广东省广州市?3分)平面内,O O的半径为1,点P到O的距离为2,过点P可作O O的切线条数为()A. 0条 B . 1条C. 2条 D .无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:vO O的半径为1,点P到圆心O的距离为2,• d > r,•••点P与O O的位置关系是:P在O O夕卜,•/过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.三•解答题1. (2019?江苏宿迁?10 分)在Rt A ABC 中,/ C = 90 °(1)如图①,点0在斜边AB上,以点0为圆心,0B长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F .求证:/ 1=7 2;(2)在图②中作O M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF ,可证得OF // BC,结合平行线的性质和圆的特性可求得7 1=7 OFB =7 2,可得出结论;(2)由(1)可知切点是7 ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出O M .【解答】解:(1)证明:如图①,连接OF ,••• OE丄AC,•••7 C= 90°• OE / BC,•7 1= 7 OFB ,•/ OF = OB,•7 OFB = 7 2,•7 1= 7 2.(2)如图②所示O M为所求.①②作BF的垂直平分线交AB于M,以MB为半径作圆,即O M为所求.证明:•/ M在BF的垂直平分线上,••• MF = MB ,•••/ MBF = / MFB ,又••• BF 平分/ ABC,•••/ MBF = / CBF ,•••/ CBF = / MFB ,• MF // BC,•••/ C= 90°• FM 丄AC,•O M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,2. (2019?贵阳?10分)如图,已知AB是O O的直径,点P是O O上一点,连接OP,点A 关于OP的对称点C恰好落在O O 上.(1)求证:OP // BC;(2)过点C作O O的切线CD,交AP的延长线于点 D .如果/ D= 90° DP = 1,求O O的直径.二/AOC ,再根据同弧所对的圆心角和圆周角的关系得出/ ABC = 2_/AOC ,利用同位角2 2相等两直线平行,可得出 PO 与BC 平行;(2)由CD 为圆O 的切线,利用切线的性质得到 OC 垂直于CD ,又AD 垂直于CD ,利 用平面内垂直于同一条直线的两直线平行得到OC 与AD 平行,根据两直线平行内错角相等得到/ APO = Z COP ,由/AOP = Z COP ,等量代换可得出 / APO = Z AOP ,再由OA =OP ,利用等边对等角可得出一对角相等,等量代换可得出三角形 AOP 三内角相等,确定出三角形 AOP 为等边三角形,根据等边三角形的内角为 60°得到Z AOP 为60°,由OP 平行于BC ,利用两直线平行同位角相等可得出Z OBC =Z AOP = 60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△+△数学中考教学资料2019年编△+△中考数学试题及答案分类汇编:圆一、选择题1. (天津3分)已知⊙1O 与⊙2O 的半径分别为 3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B)相离 (C)内切 (D)外切【答案】D 。
【考点】圆与圆位置关系的判定。
【分析】两圆半径之和3+4=7,等于两圆圆心距12O O =7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。
∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。
故选B 。
3,(内蒙古包头3分)已知AB 是⊙O的直径,点P 是AB 延长线上的一个动点,过P 作⊙O的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于A 、30°B 、60°C 、45°D 、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠CAP=∠ACO 。
∵PC 为⊙O的切线,∴OC ⊥PC 。
∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。
故选C 。
4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为A.14B.15C. 32D. 23【答案】B 。
【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。
【分析】以A 为圆心,AB 长为半径作圆,延长BA 交⊙A于F ,连接DF 。
根据直径所对圆周角是直角的性质,得∠FDB=90°;根据圆的轴对称性和DC ∥AB ,得四边形FBCD 是等腰梯形。
∴DF=CB=1,BF=2+2=4。
∴BD=2222BFDF 4115。
故选B 。
5.(内蒙古呼伦贝尔3分)⊙O1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A.相交 B.外切 C.外离 D. 内切【答案】A 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
由于5-2<4<5+2,所以两圆相交。
故选A 。
6.(内蒙古呼伦贝尔3分)如图,⊙O的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 【答案】C 。
【考点】垂直线段的性质,弦径定理,勾股定理。
【分析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM 长的最小值为点O 到弦AB 的垂直线段。
如图,过点O 作OM ⊥AB 于M ,连接OA 。
根据弦径定理,得AM =BM =4,在Rt △AOM 中,由AM =4, OA =5,根据勾股定理得OM =3,即线段OM 长的最小值为3。
故选C 。
7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O的直径,点C 、D 在⊙O上,∠BOD=110°,AC ∥OD ,则∠AOC 的度数A. 70° B. 60° C. 50° D. 40°【答案】D 。
【考点】等腰三角形的性质,三角形内角和定理,平角定义,平行的性质。
【分析】由AB 是⊙O的直径,点C 、D 在⊙O上,知OA =OC ,根据等腰三角形等边对等角的性质和三角形内角和定理,得∠AOC =1800-2∠OAC 。
由AC ∥OD ,根据两直线平行,内错角相等的性质,得∠OAC =∠AOD 。
由AB 是⊙O的直径,∠BOD=110°,根据平角的定义,得∠AOD =1800-∠BOD=70°。
∴∠AOC =1800-2×70°=400。
故选D 。
8.(内蒙古乌兰察布3分)如图, AB 为⊙ O 的直径, CD 为弦,AB ⊥ CD ,如果∠BOC = 700,那么∠A的度数为A 70B. 35C. 30D . 20【答案】B 。
【考点】弦径定理,圆周角定理。
【分析】如图,连接OD ,AC 。
由∠BOC = 700,根据弦径定理,得∠DOC = 140;根据同弧所对圆周角是圆心角一半的性质,得∠DAC = 70。
从而再根据弦径定理,得∠A的度数为350。
故选B 。
17.填空题1.(天津3分)如图,AD ,AC 分别是⊙O的直径和弦.且∠CAD=30°.OB ⊥AD ,交AC于点B .若OB=5,则BC 的长等于▲。
【答案】5。
【考点】解直角三角形,直径所对圆周角的性质。
【分析】∵在Rt △ABO中,OB 5OB 5AO53,AB10tan CAD tan30sin CADsin30C,∴AD=2AO=103。
连接CD,则∠ACD=90°。
∵在Rt△ADC中,0AC ADcos CAD103cos3015,∴BC=AC-AB=15-10=5。
2.(河北省3分)如图,点0为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D=▲.【答案】27°。
【考点】圆周角定理,三角形的外角定理,等腰三角形的性质。
【分析】∵∠AOC=108°,∴∠ABC=54°。
∵BD=BC,∴∠D=∠BCD=12∠ABC=27°。
3.(内蒙古巴彦淖尔、赤峰3分)如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC 切半圆与点C,已知PC=3,PB=1,则该半圆的半径为▲.【答案】4。
【考点】切线的性质,勾股定理。
【分析】连接OC,则由直线PC是圆的切线,得OC⊥PC。
设圆的半径为x,则在Rt△OPC中,PC=3,OC= x,OP=1+x,根据地勾股定理,得OP2=OC2+PC2,即(1+x)2= x 2+32,解得x=4。
即该半圆的半径为4。
【学过切割线定理的可由PC2=PA?PB求得PA=9,再由AB=PA-PB求出直径,从而求得半径】4.(内蒙古呼伦贝尔3分)已知扇形的面积为12,半径是6,则它的圆心角是▲。
【答案】1200。
【考点】扇形面积公式。
【分析】设圆心角为n,根据扇形面积公式,得2n612360=,解得n=1200。
18.解答题1.(天津8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(I) 如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(Ⅱ)如图②,连接CD、CE,若四边形ODCE为菱形.求ODOA的值.【答案】解:(I) 如图①,连接OC,则OC=4。
∵AB与⊙O相切于点C,∴OC⊥AB。
∴在△OAB中,由OA=OB,AB=10得1AC AB52。
∴在△RtOAB中,2222OA OC AC4541。
(Ⅱ)如图②,连接OC,则OC=OD。
∵四边形ODCE为菱形,∴OD=DC。
∴△ODC为等边三角形。
∴∠AOC=600。
∴∠A=300。
∴1OC1OD1 OC OA2OA2OA2,,即。
【考点】线段垂直平分线的判定和性质,勾股定理,等边三角形的判定和性质,300角直角三角形的性质。
【分析】(I) 要求OA的长,就要把它放到一个直角三角形内,故作辅助线OC,由AB与⊙O相切于点C可知OC是AB的垂直平分线,从而应用勾股定理可求OA的长。
(Ⅱ)由四边形ODCE为菱形可得△ODC为等边三角形,从而得300角的直角三角形OAC,根据300角所对的边是斜边的一半的性质得到所求。
2.(河北省10分)如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α= ▲度时,点P到CD的距离最小,最小值为▲.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=▲度,此时点N到CD的距离是▲.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)【答案】解:思考:90,2。
探究一:30,2。
探究二(1)当PM⊥AB时,点P到AB的最大距离是MP=OM=4,从而点P到CD的最小距离为6﹣4=2。
当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,此时旋转角最大,∠BMO的最大值为90°。
(2)如图4,由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°,如图5,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小,连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3。
在Rt △MOH 中,MO=4,∴sin ∠MOH=MH3OM4。
∴∠MOH=49°。
∵α=2∠MOH ,∴α最小为98°。
∴α的取值范围为:98°≤α≤120°。
【考点】直线与圆的位置关系,点到直线的距离,平行线之间的距离,切线的性质,旋转的性质,解直角三角形。
【分析】思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P 到CD的距离最小,∵MN=8,∴OP=4,∴点P 到CD 的距离最小值为:6﹣4=2。
探究一:∵以点M 为旋转中心,在AB ,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,∵MN=8,MO=4,NQ=4,∴最大旋转角∠BMO=30度,点N 到CD 的距离是 2。