2020届广东省六校高三第二次联考数学(文)试题
2020年广东省“六校联盟”高三上第二次联考数学试卷文科解析版

2015-2016学年广东省“六校联盟”高三(上)第二次联考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},则集合B=()A.{2,5}B.[2,4,5}C.{2,5,6}D.{2,4,5,6}2.(5分)已知sin(﹣α)=,则sin2α的值为()A.B.C.D.﹣3.(5分)设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥β,则α⊥β.那么()A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题4.(5分)已知A(﹣1,1)、B(x﹣1,2x),若向量与(O为坐标原点)的夹角为锐角,则实数x 的取值范围是()A.(﹣1,)∪(,+∞)B.(﹣1,+∞)C.(﹣1,3)∪(3,+∞)D.(﹣∞,﹣1)5.(5分)各项都是正数的等比数列{a n},若a2,a3,2a1成等差数列,则的值为()A.2 B.2或﹣1 C.D.或﹣16.(5分)已知函数f(x)是偶函数,当0≤x1<x2时,>0恒成立,设a=f(﹣2),b=f(1),c=f(3),则a,b,c的大小关系为()A.a<b<c B.b<c<a C.a<b<c D.b<a<c7.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则函数f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+) D.f(x)=2sin(2x+)8.(5分)给出如下四个判断:①若“p或q”为假命题,则p、q中至多有一个为假命题;②命题“若a>b,则log2a>log2b”的否命题为“若a≤b,则log2a≤log2b”;③对命题“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;④在△ABC中,“sinA>”是“∠A>”的充分不必要条件.其中不正确的判断的个数是()A.3 B.2 C.1 D.09.(5分)已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC 的内部,则t的取值范围是()A.B.C.D.10.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.3π+2﹣1 B.3π+2C.2π+2﹣1 D.2π+211.(5分)定义运算法则如下:a⊕b=+b﹣2,a⊗b=lga2﹣lg;若M=27⊕,N=⊗25,则M+N=()A.2 B.3 C.4 D.512.(5分)已知数列{a n}满足a1=a,a n+1=,若a3=a1成立,则a在(0,1]内的可能值有()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知=(2,1),=(﹣1,﹣3),若(+λ)⊥,则λ=.14.(5分)若曲线y=xlnx上点P处的切线平行与直线2x﹣y+1=0,则点P的坐标是.15.(5分)若实数x,y满足,且x2+y2的最大值等于25,则正实数a=.16.(5分)2015年10月4日凌晨3点,代号为“彩虹”的台风中心位于A港口的东南方向B处,且台风中心B与A港口的距离为400千米.预计台风中心将以40千米/时的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续小时.三、解答题:第17到21题为必做题,从第22、23、24三个小题中选做一题,满分60分.17.(12分)在锐角△ABC中,a,b,c为角A,B,C所对的三边,设向量=(cosA,sinA),=(cosA,﹣sinA),且与的夹角为.(1)求角A的值;(2)若a=,设内角B为x,△ABC的周长为y,求y=f(x)的最大值.18.(12分)已知:数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=n,n∈N*(1)求数列{a n}的通项;(2)设b n=log3,求数列{}的前n项和S n.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,P为线段AD1上的动点,(1)当P为AD1中点时,求证:PD⊥平面ABC1D1(2)求证:无论P在何处,三棱锥D﹣PBC1的体积恒为定值;并求出这个定值.20.(12分)已知函数f(x)=a﹣(x∈R)为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈[﹣1,],不等式f(t2+2)+f(t2﹣tk)>0恒成立,求实数k的取值范围.21.(12分)设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)记g(x)=f′(x)﹣+m,试讨论是否存在x0∈(0,)∪(,+∞),使得g(x0)=f(1)成立.【选修4-1:几何证明选讲】22.(10分)如图,已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分∠DAB,AD与圆O 相交于点E(1)求证:AD⊥CD(2)若AE=3,CD=2,求OC的长.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4sinθ(1)直线l的参数方程化为极坐标方程;(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)【选修4-5:不等式选讲】24.设函数f(x)=|x﹣2|﹣|x+1|﹣1,g=﹣x+a.(1)求不等式f(x)≥0的解集;(2)若方程f(x)=g(x)有三个不同的解,求a的取值范围.2015-2016学年广东省“六校联盟”高三(上)第二次联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015秋•广东月考)设集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},则集合B=()A.{2,5}B.[2,4,5}C.{2,5,6}D.{2,4,5,6}【分析】根据交集和并集的定义即可求出,【解答】解:∵设集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},∴B={2,4,5,6},故选:D.【点评】本题主要考查集合的交集并集,属于基础题.2.(5分)(2015秋•贺州月考)已知sin(﹣α)=,则sin2α的值为()A.B.C.D.﹣【分析】直接利用两角和一次的正弦函数化简,利用平方求解即可.【解答】解:sin(﹣α)=,可得(cosx﹣sinx)=,即cosx﹣sinx=,两边平方可得1﹣sin2x=,sin2α=.故选:B.【点评】本题考查两角和与差的三角函数,二倍角公式的应用,考查计算能力.3.(5分)(2015秋•广东月考)设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥β,则α⊥β.那么()A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题【分析】本题考查的知识点是空间中线面关系,线线关系和面面关系,我们根据空间空间中线面关系的判定及性质定理逐个分析题目中的两个结论,即可求出答案.【解答】解:若α∥β,则l与m可能平行也可能异面,故①为假命题;若l⊥β,l⊂α时,根据平面与平面垂直的判定定理可得α⊥β,故②为真命题;故选:B.【点评】要证明一个结论是正确的,我们要经过严谨的论证,要找到能充分说明问题的相关公理、定理、性质进行说明;但要证明一个结论是错误的,我们只要举出反例即可.4.(5分)(2015秋•贺州月考)已知A(﹣1,1)、B(x﹣1,2x),若向量与(O为坐标原点)的夹角为锐角,则实数x的取值范围是()A.(﹣1,)∪(,+∞)B.(﹣1,+∞)C.(﹣1,3)∪(3,+∞)D.(﹣∞,﹣1)【分析】由条件利用两个向量的夹角公式,两个向量共线的性质,可得1﹣x+2x>0,且≠,由此求得x的范围.【解答】解:若向量与(O为坐标原点)的夹角为锐角,则>0 且向量与不共线,∴1﹣x+2x>0,且≠,求得x>﹣1,且x≠,故选:A.【点评】本题主要考查两个向量的夹角公式,两个向量共线的性质,属于基础题.5.(5分)(2016春•莆田校级期末)各项都是正数的等比数列{a n},若a2,a3,2a1成等差数列,则的值为()A.2 B.2或﹣1 C.D.或﹣1【分析】设等比数列{a n}的公比为q,由题意得q>0,根据条件和等差中项的性质列出方程求出q的值,利用等比数列的通项公式化简即可得答案.【解答】解:设等比数列{a n}的公比为q,则q>0,因为a2,a3,2a1成等差数列,所以2×a3=a2+2a1,则,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),所以===,故选:C.【点评】本题考查等比数列的通项公式,以及等差中项的性质,考查整体思想,方程思想,属于中档题.6.(5分)(2015秋•广东月考)已知函数f(x)是偶函数,当0≤x1<x2时,>0恒成立,设a=f(﹣2),b=f(1),c=f(3),则a,b,c的大小关系为()A.a<b<c B.b<c<a C.a<b<c D.b<a<c【分析】根据条件先判断函数在[0,+∞)上是增函数,结合函数奇偶性和单调性之间的关系进行转化求解即可.【解答】解:当0≤x1<x2时,>0恒成立,∴此时函数f(x)在[0,+∞)上是增函数,∵函数f(x)是偶函数,∴a=f(﹣2)=f(2),b=f(1),c=f(3),则f(1)<f(2)<f(3),即f(1)<f(﹣2)<f(3),则b<a<c,故选:D【点评】本题主要考查函数值的大小比较,根据条件判断函数的单调性,利用函数奇偶性和单调性之间的关系进行转化是解决本题的关键.7.(5分)(2016•岳阳校级模拟)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则函数f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+) D.f(x)=2sin(2x+)【分析】根据函数的图象求出函数的周期,利用函数的对称性求出ω和φ的值即可得到结论.【解答】解:∵函数的图象上相邻两个最高点的距离为π,∴函数周期T=π,即T==π,即ω=2,即f(x)=2sin(2x+φ),若将函数f(x)的图象向左平移个单位长度后,得f(x)=2sin[2(x+)+φ)]=2sin(2x++φ),若图象关于y轴对称.则+φ=+kπ,即φ=+kπ,k∈Z,∵0<φ<π,∴当k=0时,φ=,即f(x)=2sin(2x+),故选:C.【点评】本题主要考查三角函数解析式的求解,根据三角函数的性质求出ω和φ的值是解决本题的关键.8.(5分)(2015秋•广东月考)给出如下四个判断:①若“p或q”为假命题,则p、q中至多有一个为假命题;②命题“若a>b,则log2a>log2b”的否命题为“若a≤b,则log2a≤log2b”;③对命题“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;④在△ABC中,“sinA>”是“∠A>”的充分不必要条件.其中不正确的判断的个数是()A.3 B.2 C.1 D.0【分析】根据“p或q”的真假性判断①是错误的;根据原命题与它的否命题的关系得出②是正确的;根据全称命题的否定是特称命题可判断③是错误的;根据sinA>时∠A>成立,充分性成立;∠A>时sinA>不一定成立,必要性不成立;得出④正确.【解答】解:对于①,若“p或q”为假命题,则p、q中两个都是假命题,故①错误;对于②,根据原命题与它的否命题的关系知,“若a>b,则log2a>log2b”的否命题为“若a≤b,则log2a≤log2b”,故②正确;对于③,命题“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1<1”,故③错误;对于④,△ABC中,当sinA>时,>∠A>,即∠A>成立,是充分条件;当∠A>时,不能得出sinA>,即不是必要条件;综上,“sinA>”是“∠A>”的充分不必要条件,故④正确.所以,不正确的判断是①③,共2个.故选:B.【点评】本题利用命题真假的判断考查了简易逻辑的应用问题,是综合性题目.9.(5分)(2011•浙江模拟)已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()A.B.C.D.【分析】用向量的加法法则将条件中的向量,都用以A为起点的向量表示得到,画出图形,结合点P落在△ABC的内部从而得到选项.【解答】解:在AB上取一点D,使得,在AC上取一点E,使得:.则由向量的加法的平行四边形法则得:,由图可知,若点P落在△ABC的内部,则.故选D.【点评】本题考查向量的线性运算性质及几何意义,向量的基本运算,定比分点中定比的范围等等10.(5分)(2015秋•广东月考)某几何体的三视图如图所示,则该几何体的表面积为()A.3π+2﹣1 B.3π+2C.2π+2﹣1 D.2π+2【分析】由已知中的三视图,可得该几何体是一个半球和一个三棱锥形成的组合体,分别计算各个面的面积,相加可得答案.【解答】解:由已知中的三视图,可得该几何体是一个半球和一个三棱锥形成的组合体,其直观图如下图所示:半球的曲面面积为:2π,半球的平面面积为:π﹣×2×1=π﹣1,棱锥侧面V AC和VBC的面积均为:=,棱锥侧面V AB的面积为:=,故组合体的表面积为:3π+2﹣1,故选:A【点评】本题考查的知识点是由三视图求体积和表面积,根据三视图判断出几何体的形状是解答的关键.11.(5分)(2015秋•广东月考)定义运算法则如下:a⊕b=+b﹣2,a⊗b=lga2﹣lg;若M=27⊕,N=⊗25,则M+N=()A.2 B.3 C.4 D.5【分析】利用两个新的运算法则及其指数与对数的运算法则即可得出.【解答】解:M=27⊕=+()﹣2=3+2=5,N=⊗25=lg()2﹣lg=﹣lg2﹣lg5=﹣1,∴M+N=5﹣1=4,故选:C【点评】本题考查了新的运算法则、及其指数与对数的运算法则,属于基础题.12.(5分)(2015秋•广东月考)已知数列{a n}满足a1=a,a n+1=,若a3=a1成立,则a在(0,1]内的可能值有()A.4个B.3个C.2个D.1个【分析】根据题意对a进行分类讨论,分别根据递推公式和条件列出方程,求出a在(0,1]内的所有值.【解答】解:由题意知,a1=a∈(0,1],a2=2a∈(0,2],①当a∈(0,]时,则a2=2a∈(0,1],所以a3=2a2=4a,由a3=a1得,4a=a,得a=0(舍去);②当a∈(,1]时,a2=2a∈(1,2],所以a3==,由a3=a1得,=a,得a=1或a=(舍去),综上得,a=1,即a在(0,1]内的可能值有1个,故选:D.【点评】本题考查数列的递推式的应用,以及分类讨论思想、方程思想的运用,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)(2015秋•贺州月考)已知=(2,1),=(﹣1,﹣3),若(+λ)⊥,则λ=.【分析】求出向量+λ,然后利用垂直条件,求解即可.【解答】解:=(2,1),=(﹣1,﹣3),+λ=(2﹣λ,1﹣3λ).(+λ)⊥,可得λ﹣2+9λ﹣3=0,解得λ=.故答案为:.【点评】本题考查斜率的数量积的应用,考查计算能力.14.(5分)(2014•江西)若曲线y=xlnx上点P处的切线平行与直线2x﹣y+1=0,则点P的坐标是(e,e).【分析】求出函数的导数,根据导数的几何意义,结合直线平行的性质即可得到结论.【解答】解:函数的定义域为(0,+∞),函数的导数为f′(x)=lnx+x=1+lnx,直线2x﹣y+1=0的斜率k=2,∵曲线y=xlnx上点P处的切线平行与直线2x﹣y+1=0,∴f′(x)=1+lnx=2,即lnx=1,解得x=e,此时y=elne=e,故点P的坐标是(e,e),故答案为:(e,e).【点评】本题主要考查导数的几何意义,以及直线平行的性质,要求熟练掌握导数的几何意义.15.(5分)(2015秋•广东月考)若实数x,y满足,且x2+y2的最大值等于25,则正实数a=1.【分析】作出不等式组对应的平面区域,利用x2+y2的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域,x2+y2的几何意义表示为点(x,y)到原点(0,0)的距离的平方,∵图象可知,可行域中的点B(,3)离(0,0)最远,故x2+y2的最大值为()2+32=25,即()2=16,即=4或﹣4,解得a=1或a=﹣(负值舍去),故答案为:1【点评】本题主要考查线性规划的应用,利用x2+y2的几何意义结合数形结合是解决本题的关键.16.(5分)(2015秋•广东月考)2015年10月4日凌晨3点,代号为“彩虹”的台风中心位于A港口的东南方向B处,且台风中心B与A港口的距离为400千米.预计台风中心将以40千米/时的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续15小时.【分析】过A作AC垂直BC,垂足为点C,则BC=AC=400千米,在BC线上取点D使得AD=500千米进而根据勾股定理求得DC,进而乘以2,再除以速度即是A港口受到台风影响的时间.【解答】解:由题意AB=400千米,过A作AC垂直BC,垂足为点C,则BC=AC=400千米台风中心500千米的范围都会受到台风影响所以在BC线上取点D使得AD=500千米因为AC=400千米,AD=500千米∠DCA是直角根据勾股定理DC=300千米因为500千米的范围内都会受到台风影响所以影响距离是300×2=600千米T==15(小时)故答案为15.【点评】本题主要考查了解三角形的实际应用.考查了考生运用所学知识解决实际问题的能力.三、解答题:第17到21题为必做题,从第22、23、24三个小题中选做一题,满分60分.17.(12分)(2015秋•贺州月考)在锐角△ABC中,a,b,c为角A,B,C所对的三边,设向量=(cosA,sinA),=(cosA,﹣sinA),且与的夹角为.(1)求角A的值;(2)若a=,设内角B为x,△ABC的周长为y,求y=f(x)的最大值.【分析】(1)由题知:||=||=1,cos==cos2A﹣sin2A,由此能求出A.(2)由正弦定理,得b=2sinx,c=2sin(120°﹣x),(x<120°),从而y=,利用导数性质能求出y=f(x)的最大值.【解答】解:(1)∵向量=(cosA,sinA),=(cosA,﹣sinA),∴由题知:||=||=1,∵与的夹角为,∴cos==cos2A﹣sin2A,即cos2A=﹣,又∵0<A<,0<2A<π,∴2A=,故A=.(2)由正弦定理,得==2,b=2sinx,c=2sin(120°﹣x),(x<120°),∴y=y′=2cosx﹣2cos(120°﹣x),令y′=2cosx﹣2cos(120°﹣x)=0,得x=60°,∴x=60°时,y=f(x)取最大值y max==3.【点评】本题考查角的大小的求法,考查三角形周长的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.18.(12分)(2015秋•广东月考)已知:数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=n,n∈N*(1)求数列{a n}的通项;(2)设b n=log3,求数列{}的前n项和S n.【分析】(1)利用递推关系即可得出.(2)b n=log3=n,=n•3n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)当n≥2时,数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=n,n∈N*,a1+3a2+32a3+…+3n﹣2a n﹣1=n﹣1,两式作差得:3n﹣1a n=1,∴a n=.当n=1时,a1=1也满足上式.∴a n=(n∈N*).(2)b n=log3=n,=n•3n﹣1.数列{}的前n项和S n=1+2×3+3×32+…+n•3n﹣1,3S n=3+2×32+…+(n﹣1)•3n﹣1+n•3n,∴﹣2S n=1+3+32+…+3n﹣1﹣n•3n=﹣n•3n,∴S n=﹣+.【点评】本题考查了等比数列的通项公式与求和公式、“错位相减法”、递推关系,考查了推理能力与计算能力,属于中档题.19.(12分)(2015秋•沈阳校级月考)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,P为线段AD1上的动点,(1)当P为AD1中点时,求证:PD⊥平面ABC1D1(2)求证:无论P在何处,三棱锥D﹣PBC1的体积恒为定值;并求出这个定值.【分析】(1)由正方形ADD1A1可得PD⊥AD1,由AB⊥平面ADD1A1可得AB⊥PD,故而PD⊥平面ABC1D1;(2)三棱锥P﹣BDC1的底面积为定值,由AD1∥BC1可知AD1∥平面BDC1,故P到平面BDC1的距离为定值,当P与A重合时,求出三棱锥C1﹣ABD的体积即可.【解答】证明:(1)在长方体ABCD﹣A1B1C1D1中,AB⊥平面AA1D1D,PD⊂平面AA1D1D,∴AB⊥PD.∵AD=AA1,∴四边形AA1D1D为正方形,P为对角线AD1的中点,∴PD⊥AD1,又∵AB∩AD1=A,AB⊂平面ABC1D1,AD1⊂平面ABC1D1,∴PD⊥平面ABC1D1.(2)在长方体ABCD﹣A1B1C1D1中,∵AD1∥BC1,BC1⊂平面BDC1,AD1⊄平面BDC1,∴AD1∥平面BDC1,∵P为线段AD1上的点,∴点P到平面BDC1的距离为定值.而三角形BDC1的面积为定值,∴三棱锥P﹣BDC1的体积为定值,即三棱锥D﹣PBC1的体积为定值.V=V=V=V==.【点评】本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.20.(12分)(2015秋•广东月考)已知函数f(x)=a﹣(x∈R)为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈[﹣1,],不等式f(t2+2)+f(t2﹣tk)>0恒成立,求实数k的取值范围.【分析】(1)利用函数定义取到R的奇函数的性质:f(0)=0求解实数a的值.(2)利用定义法证明其单调性.(3)利用(2)函数的单调性,将不等式f(t2+2)+f(t2﹣tk)>0恒成立等价变换后求解实数k的取值范围.【解答】解:(1)由题意:∵函数f(x)=a﹣是定义域为R的奇函数,∴f(0)=0,即,解得:a=1.当a=1时,f(x)=1﹣=f(﹣x)═==﹣=﹣f(x),∴f(x)是奇函数.故得a=1满足题意.所以:a=1.(2)由(1)可知f(x)=;设x1<x2,那么:f(x1)﹣f(x2)=﹣=∵x1<x2,∴所以:f(x1)﹣f(x2)<0;故,函数f(x)为R上的增函数.(3)由(2)知:函数f(x)为R上的增函数,且f(x)是奇函数.从而不等式:f(t2+2)+f(t2﹣tk)>0等价于f(t2+2)>f(﹣t2+tk),即得:t2+2>﹣t2+tk.∴2t2﹣tk+2>0对任意于t∈[﹣1,],恒成立.记g(t)=2t2﹣tk+2,开口向上,对称轴x=,则g(t)在∈[﹣1,]上的最小值大于0.即恒成立.①当<﹣1时,即k<﹣4时,g(t)=2t2﹣tk+2在[﹣1,]上是单调增函数,g(t)min=g(﹣1)=4+k>0,解得:k>﹣4,故得k无解,②当﹣1≤时,即﹣4≤k≤2时,g(t)min=g()=2﹣>0,解得:4>k>﹣4,故得﹣4<k≤2.③当>时,即k>2时,g(t)=2t2﹣tk+2在[﹣1,]上是单调减函数,g(t)min=g()=>0,解得:k<5,故得2<k<5,综上所述:实数k的取值范围是{k|﹣4<k<5}.【点评】本题考查了函数的性质之奇函数的运用,单调性的证明以及恒等式的问题的转化为二次函数最值的讨论.属于难题.21.(12分)(2015秋•贺州月考)设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)记g(x)=f′(x)﹣+m,试讨论是否存在x0∈(0,)∪(,+∞),使得g(x0)=f(1)成立.【分析】(1)求出函数的导数,求得单调区间和极值,可得最小值;(2)假设存在x0∈(0,)∪(,+∞),使得g(x0)=f(1)成立.则方程g(x)=f(1)在区间(0,)∪(,+∞)上有解,求出m=﹣x3+x,设φ(x)=﹣x3+x,求出导数,求得x=1是φ(x)的最大值点,求出最大值,画出图象,讨论m的范围,即可得到所求的结论.【解答】解:(1)由题设,当m=e时,f(x)=lnx+,其定义域为(0,+∞),可得f′(x)=﹣=即有当0<x<e时,f′(x)<0,此时f(x)在(0,e)上单调递减;当x>e时,f′(x)>0,此时f(x)在(e,+∞)上单调递增;则当x=e时,f(x)取得最小值f(e)=lne+1=2;(2)假设存在x0∈(0,)∪(,+∞),使得g(x0)=f(1)成立.则方程g(x)=f(1)在区间(0,)∪(,+∞)上有解,由g(x)=f′(x)﹣x+m=﹣﹣x+m(x>0),f(1)=m,方程g(x)=f(1)可化为m=﹣x3+x,设φ(x)=﹣x3+x,则φ′(x)=﹣x2+1=﹣(x﹣1)(x+1),当0<x<1时,φ′(x)>0,此时φ(x)在(0,1)上单调递增;当x>1时,φ′(x)<0,此时φ(x)在(1,+∞)上单调递减;所以x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,φ(x)的最大值为φ(1)=﹣+1=又φ(0)=φ()=0,结合y=φ(x)的图象,可知①当m>或m=0时,方程g(x)=f(1)在区间(0,)∪(,+∞)上无解;②当0<m<时,方程g(x)=f(1)在区间(0,)∪(,+∞)上有两解;③当m<0或m=时,方程g(x)=f(1)在区间(0,)∪(,+∞)上有一个解.综上所述,当m>或m=0时,不存在x0∈(0,)∪(,+∞),使得g(x0)=f(1);当m≤且m≠0时,存在x0∈(0,)∪(,+∞),使得g(x0)=f(1).【点评】本题考查导数的运用:求单调性和极值、最值,考查存在性问题的解法,注意运用分类讨论的思想方法和数形结合的思想,考查运算能力,属于中档题.【选修4-1:几何证明选讲】22.(10分)(2015秋•广东月考)如图,已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分∠DAB,AD与圆O相交于点E(1)求证:AD⊥CD(2)若AE=3,CD=2,求OC的长.【分析】(1)连接BC.由直线CD与⊙O相切于点C,可得∠DCA=∠B.再利用角平分线的性质可得:△ACD∽△ABC,可得∠ADC=∠ACB,即可证明.(2)利用切割线定理得:DA.由(1)知:AD⊥CD,可得AC,又由(1)知:△ACD∽△ABC,,JK DC.【解答】(1)证明:连接BC.∵直线CD与⊙O相切于点C,∴∠DCA=∠B.∵AC平分∠DAB,∴∠DAC=∠CAB.故△ACD∽△ABC,∴∠ADC=∠ACB.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ADC=90°,即AD⊥CD.(2)解:由切割线定理得:DA×DE=DC2,即DA×(DA﹣3)=4,解得:DA=4.由(1)知:AD⊥CD,∴AC2=AD2+CD2=20,又由(1)知:△ACD∽△ABC,∴,∴AB==5.∴OC==.【点评】本题考查了圆的切线的性质、切割线定理、相似三角形的判定与性质定理,考查了推理能力与计算能力,属于中档题.【选修4-4:坐标系与参数方程】23.(2015秋•广东月考)在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4sinθ(1)直线l的参数方程化为极坐标方程;(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)【分析】(1)直线l的参数方程化为普通方程,将x=ρcosθ,y=ρsinθ代入化为极坐标方程;(2)求出曲线C的化为普通方程,与直线方程联立,求得直角坐标方程,再求直线l与曲线C交点的极坐标.【解答】解:(1)将直线l的参数方程(t为参数),消去参数t,化为普通方程:x﹣y+2=0;…(2分)将x=ρcosθ,y=ρsinθ代入上述方程得:ρcosθ﹣ρsinθ+2=0.…(4分)(2)将曲线C的化为普通方程得:x2+y2﹣4y=0.…(6分)由直线与圆方程联立解得:或…(8分)所以直线l与曲线C交点的极坐标分别为:(2,),(2,).…(10分)【点评】本题考查参数方程与普通方程,极坐标方程与直角坐标方程的互化,考查学生的计算能力,属于中档题.【选修4-5:不等式选讲】24.(2015秋•广东月考)设函数f(x)=|x﹣2|﹣|x+1|﹣1,g=﹣x+a.(1)求不等式f(x)≥0的解集;(2)若方程f(x)=g(x)有三个不同的解,求a的取值范围.【分析】(1)化简函数的解析式,分类讨论求得x的取值范围.(2)分类讨论求得方程f(x)=g(x)的解集,结合x的范围,求得对应的a的范围.【解答】解:(1)函数f(x)=|x﹣2|﹣|x+1|﹣1=,当x≥2时,f(x)=﹣4,不合题意;当﹣1≤x<2时,f(x)=﹣2x≥0,解得﹣1≤x≤0;当x<﹣1时,f(x)=2>0,符合题意.综上,f(x)≥0的解集为(﹣∞,0].(2)当x≥2时,方程f(x)=g(x),即﹣4=﹣x+a,解得:x=a+4;当﹣1≤x<2 时,方程f(x)=g(x),即﹣2x=﹣x+a,解得:x=﹣a;当x<﹣1时,方程f(x)=g(x),即2=﹣x+a,解得:x=a﹣2.使方程方程f(x)=g(x)有三个不同的解,则,解得:﹣2<a<1.所以a的取值范围是(﹣2,1).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求方程的解,体现了转化、分类讨论的数学思想,属于中档题.。
广东省2020届高三第二次六校联考文科数学-试题与答案

2020届高三六校联盟第二次联考试题文科数学命题学校 中山纪念中学 命题人:曾祥海 审题人:周 胜一、选择题:本题12小题,每小题5分,共60分。
1.设全集U 是实数集R ,{}{}2=log 1,13M x x N x x >=<<,则(C UM )N = ( )A .{}23x x << B .{}3x x < C .{}12x x <≤ D .{}2x x ≤ 2.复数z 满足23i i z +=(其中i 是虚数单位),则z 的虚部为 ( ) A .2B .3-C .3D .2-3.在ABC ∆中,AB =1AC =,30B ∠=,则A ∠= ( ) A .60︒B .︒︒9030或C .60120︒︒或D .︒904.设平面向量()2,1a =-,(),2b λ=,若a 与b 的夹角为锐角,则λ的取值范围是( ) A .()(),44,1-∞--B .()1,22,2⎛⎫-+∞ ⎪⎝⎭C .()1,+∞D .(),1-∞5.若0a >,0b >,则“8a b +≤”是“16ab ≤”的 ( ). A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件6.设3log 0.4a =,2log 3b =,则 ( ) A .0ab >且0a b +> B .0ab <且0a b +> C .0ab >且0a b +<D .0ab <且0a b +<7.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x ->-,则实数x 的取值范围是 ( )A .()1,-+∞B .()1-∞-,C .()14-,D .()1-∞,8.设等差数列{}n a 前n 项和为n S ,若452a S +=,714S =,则10a = ( ) A .18 B .16C .14D .129.某几何体的三视图如图所示,则该几何体的体积为( )A .76πB .43πC .2πD .136π10.函数2()1sin 1xf x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是 ( )A .B .C .D .11.己知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足PA m PB =,当m 取最大值时,点P 恰好在以B A 、为焦点的双曲线上,则双曲线的离心率为 ( )A 1B .12 C .12D 1 12.若存在唯一的正整数0x ,使得不等式20x xax a e-->恒成立,则实数a 的取值范围是 ( )A .240,3e ⎛⎫ ⎪⎝⎭B .241,3e e ⎛⎫⎪⎝⎭C .10,e ⎛⎫ ⎪⎝⎭D .241,3e e ⎡⎫⎪⎢⎣⎭二、填空题,本题4个小题,每小题5分,共20分。
广东省六校2024届高三上学期第二次联考数学试题及答案

东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第二次六校联考试题数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合},02|{},1log |{22≤--=<∈=x x x B x Z x A 则=B A ()A.},{10B.}{1 C.}{1,0,1- D.}2101{,,,-2.已知21)sin(=+πα,则=+)2cos(πα()A.21B.21-C.23 D.23-3.“1>x 且1>y ”是“1>xy 且2>+y x ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,B A 、两点在河的同侧,且B A 、两点均不可到达.现需测B A 、两点间的距离,测量者在河对岸选定两点D C 、,测得km CD 23=,同时在D C 、两点分别测得CDB ADB ∠=∠︒=30,,45,60︒=∠︒=∠ACB ACD 则B A 、两点间的距离为()A.23B.43C.36 D.466.已知函数)2cos(sin )6cos(4)(x x x x f ωπωω-++=,其中0>ω.若函数)(x f 在5,66ππ⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为()A.310 B.21 C.23 D.2多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知ABC ∆中角B A ,的对边分别为,,b a 则可作为“b a >”的充要条件的是()A.B A sin sin >B.B A cos cos <C.BA tan tan >D.BA 2sin 2sin >11.已知函数()lg 2f x x kx =--,给出下列四个结论中正确结论为()A.若0k =,则()f x 有两个零点B.0k ∃<,使得()f x 有一个零点C.0k ∃<,使得()f x 有三个零点D.0k ∃>,使得()f x 有三个零点13.已知)(x f 定义域为]1,1[-,值域为]1,0[,且0)()(=--x f x f ,写出一个满足条件的)(x f 的解析式是14.已知函数22,0,0)(sin()(πϕπωϕω<<->>+=A x A x f 的部分图象如图所示,则函数)(x f 的解析式为______四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题10分)已知ABC ∆中角C B A ,,的对边分别为,,,c b a 满足.cos 3cos cos C C abB a c =+(1)求C sin 的值;(2)若23,2=+=c b a ,求ABC ∆的面积.18.(本小题12分)如图为一块边长为2km 的等边三角形地块ABC ,现对这块地进行改造,计划从BC 的中点D 出发引出两条成60︒角的线段DE 和DF (60,EDF ∠=︒F E ,分别在边AC AB ,上),与AB 和AC 围成四边形区域AEDF ,在该区域内种上花草进行绿化改造,设BDE α∠=.(1)当︒=60α时,求花草绿化区域AEDF 的面积;(2)求花草绿化区域AEDF 的面积()S α的取值范围.已知函数()2ln xf x ea x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时()22lnf x a a a≥+.21.(本小题12分)已知函数()ln(1)xf x e x =+(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设)(')(x f x g =,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()().f s t f s f t +>+22.(本小题12分)已知函数()axf x xe =.(1)求()f x 在[]0,2上的最大值;(2)已知()f x 在1x =处的切线与x 轴平行,若存在12,x x R ∈,12x x <,使得()()12f x f x =,证明:21x x ee >.东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第二次六校联考试题标准答案及评分标准一、单项选择题二、多项选择题123456789101112B A A D D ACCABBCDABDACD三、填空题:(每小题5分,共20分)13.]1,1[|,|)(-∈=x x x f 或者]1,1[,2cos)(-∈=x xx f π或者21)(x x f -=或者...14.)62sin(2)(π+=x x f 15.2,1416.()2,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭四、解答题17.【解析】(1)解法一:c cos B+bcosC =3a cos C .由正弦定理CcB b A a sin sin sin ==得sin C cos B +sin B cos C =3sin A cos C ,....2分所以sin(B +C )=3sin A cos C ,..........3分由于A +B +C =π,所以sin(B +C )=sin(π-A )=sin A ,则sin A =3sin A cos C .因为0<A <π,所以sin A ≠0,cos C =13...........4分因为0<C <π,所以sin C =1-cos 2C =223...........5分解法二:因为c cos B+bcosC =3a cos C .所以由余弦定理得c ×a 2+c 2-b 22ac =(3a -b )×a 2+b 2-c 22ab,化简得a 2+b 2-c 2=23ab ,所以cos C =a 2+b 2-c 22ab =23ab 2ab =13.因为0<C <π,所以sin C =1-cos 2C =223.(2)由余弦定理c 2=a 2+b 2-2ab cos C ,.......7分及23,2=+=c b a ,cos C =13,得a 2+b 2-23ab =18,即(a -b )2+43ab =18.所以ab =12.......8分所以△ABC 的面积S =12ab sin C =12×12×223=4 2........10分18.【解析】(1)当60α= 时,//DE AC ,//DF AB∴四边形AEDF 为平行四边形,则BDE ∆和CDF ∆均为边长为1km 的等边三角形又)2122sin 602ABC S km ∆=⨯⨯⨯= ,)2111sin 602BDE CDF S S km∆∆==⨯⨯=∴)22km -=................3分(2)方法一:由题意知:3090α<< ,BD=CD=1()())1sin 602ABC BDE CDF S S S S BE CF BE CF α∆∆∆∴=--=-+=+ ......4分在BDE ∆中,120BED α∠=- ,由正弦定理得:()sin sin 120BE αα=-............5分在CDF ∆中,120CDF α∠=︒-,CFD α∠=由正弦定理得:()sin 120sin CF αα-=.............6分()()()()22sin 120sin sin 120sin sin sin 120sin 120sin BE CF αααααααα-+-∴+=+=-- ....................7分令21tan 23sin sin 21cos 23sin )120sin(+=+=-︒=ααααααt 3090α<< ⎪⎭⎫⎝⎛∈∴+∞∈∴2,21),33(tan t α.................10分)(1t f t t CF BE =+=+()上单调递增.,在上单调递减;在21)(1,21)(11)('2t f t f t t f ⎪⎭⎫⎝⎛∴-= )25,2[)(∈∴t f 即52,2BE CF ⎡⎫+∈⎪⎢⎣⎭())sin 60BDE CDF S S CF BE CFα∆∆∴-+=+)BE CF +∈⎦即花草地块面积()S α的取值范围为⎝⎦..................12分方法二:由已知得++,++,BED B EDF FDC απαπ∠∠=∠∠=又,3B EDF π∠=∠=所以BED FDC ∴∠=∠,在BED ∆和CDF ∆中有:60,B C BED FDC︒∠=∠=∠=∠,BED CDF ∴∆∆ ,得CFBDDC BE =又D 是BC 的中点,11DC BD BE FC ∴==∴⋅=,且当E 在点A 时,12CF =,所以122CF <<,所以111211()222224S BE CF BE CF =⨯⨯⨯⨯-⨯⨯⨯=+,设CF x =,1BE x=,且122x <<,令1y x x =+,则()()2222+11111x x x y x x x '--=-==,112x ∴<<时,10,y y x x '<=+在112⎛⎫ ⎪⎝⎭,单调递减,12x <<时,10,y y x x '>=+在(1,2)上单调递增,1x ∴=时,1y x x =+有最小值2,当12x =或2x =时,152y x x =+=,所以面积S 的取值范围是82⎛ ⎝⎦.19.【解析】(1)()3()cos()sin()sin sin cos cos sin 2f x x A x x A x A x π=+⋅-=-..........2分2sin cos sin cos sin x x A A x=-()sin 21cos 211sin cos cos cos 22222x x A A A x A -=⨯-⨯=-+-,...........4分故()max111cos 224f x A =-+=,故1cos 2A =.因为()0,A π∈,故3A π=...............5分(2)1111()cos cos 2cos 22323234f x x x πππ⎛⎫⎛⎫=-+-=--⎪ ⎪⎝⎭⎝⎭,故1()2(())cos 243g x f x x π⎛⎫=+=- ⎪⎝⎭,令()s g x =,,33x ππ⎡⎤∈-⎢⎥⎣⎦,则()g x 的图象如图所示:可得[]1,1s ∈-,............6分方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解又[]1,1s ∈-,下面考虑2410s ms -+=在[]1,1-上的解的情况.若2160m ∆=-=,则4m =-或4m =(舍)当4m =-时,方程的解为12s =-,此时1cos 232x π⎛⎫-=- ⎪⎝⎭仅有一解,故方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有一个解,舍...........8分若2160m ∆=->,则4m <-或4m >,此时2410s ms -+=在R 有两个不同的实数根)(,2121s s s s <,当4m <-时,则120,0s s <<,要使得方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,则1210,10s s -≤<-≤<.令()241h s s ms =-+,则()()41010800m h m h <-⎧⎪-≥⎪⎪⎨-<<⎪⎪>⎪⎩,解得54m -≤<-............12分综上,m 的取值范围为:[)5,4--.20.【解析】(1)()f x 的定义域为()0,,+∞()22(0)xaf x e x x'=->.....1分当a ≤0时,()()0f x f x ''>,没有零点;......2分.当0a >时,因为2xe 单调递增,ax-单调递增,所以()f x '在()0,+∞单调递增,...3分当b 满足0<b<4a 且b<14时,即若41,1<≥b a 时,0424241(')('<-≤-=<e a e f b f;若414,10<<<<a b a 时,042424(')('2<-<-=<e e a f b f a;则()0f b '<...5分另法:0→x 时),0( ,022>-∞→-→a xa e x所以-∞→→)(',0x f x 且)('x f 在)0(∞+,上是连续的,所以必存在b 使得()0f b '<,又()0f a '>即有0)(')('<b f a f ,故当0a >时()f x '存在唯一零点.……6分(2)当0a >时由(1),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0...........7分故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x ......8分由于=)('0x f 02020x ae x -=,............9分所以()0002221212a f x ax a n a a n x a a=++≥+......11分故当0a >时,()221f x a a na≥+.……12分21.【解析】(1)因为)1ln()(x e x f x+=,所以0)0(=f ,即切点坐标为)0,0(,..1分又11)1[ln()(xx e x f x+++=',∴切线斜率1)0(='=f k ∴切线方程为x y =.....3分(2)令]11)1[ln()()(xx e x f x g x+++='=则])1(112)1[ln()(2x x x e x g x+-+++='.......................4分令2)1(112)1ln()(x x x x h +-+++=,则0)1(1)1(2)1(211)(3232>++=+++-+='x x x x x x h ,∴)(x h 在),0[+∞上单调递增,.........6分∴01)0()(>=≥h x h ∴0)(>'x g 在),0[+∞上恒成立∴)(x g 在),0[+∞上单调递增..7分(3)解:待证不等式等价于)0()()()(f t f s f t s f ->-+,令)0,()()()(>-+=t x x f t x f x m ,只需证)0()(m x m >..........8分∵)1ln()1ln()()()(x e t x ex f t x f x m x tx +-++=-+=+)()(1)1ln(1)1ln()(x g t x g xe x e t x e t x e x m x x t x tx -+=+-+-+++++='++.........10分由(2)知]11)1[ln()()(xx e x f x g x+++='=在),0[+∞上单调递增,∴)()(x g t x g >+...........11分∴0)(>'x m ∴)(x m 在),0(+∞上单调递增,又因为0,>t x ∴)0()(m x m >,所以命题得证.....12分22.【解析】(1)()()()1ax ax f x xe ax e ''==+,.............1分当0a ≥时,则10ax +≥对任意[]0,2x ∈恒成立,即()0f x '≥恒成立.所以()f x 在[]0,2x ∈单调递增.则()f x 的最大值为()()2max 22a f x f e ==;.........2分当0a <时,令10ax +=,即1x a=-当()10,2a -∈,即12a <-时,当10,x a ⎡⎫∈-⎪⎢⎣⎭时()0f x ¢>,()f x 在10,a ⎡⎫-⎪⎢⎣⎭上单调递增.当1,2x a ⎛⎤∈- ⎥⎝⎦时()0f x '<,()f x 在1,2a ⎛⎤- ⎥⎝⎦上单调递减,()max 11f x f a ea ⎛⎫=-=-⎪⎝∴ ⎭.3分当[)12,a -∈+∞即102a -≤<时,10ax +≥对任意[]0,2x ∈恒成立,即()0f x '≥恒成立,所以()f x 在[]0,2x ∈单调递增.则()f x 的最大值为()()2max 22a f x f e ==;........4分综上所述:当12a ≥-时()()2max 22a f x f e ==;当12a <-时()max11f a ea f x ⎛⎫=-=- ⎪⎝⎭...5分(2)因为()f x 在1x =处的切线与x 轴平行,所以()()110a f a e '=+=,则1a =-,即()()1x f x x e -'=-.当1x <时,()0f x ¢>,则()f x 在(),1∞-上单调递增当1x >时,()0f x '<,则()f x 在()1,+∞上单调递减.又因为0x <时有()0f x <;0x >时有()0f x >,根据图象可知,若()()12f x f x =,则有1201x x <<<;......7分要证21x x e e >,只需证211ln x x >-;...............8分又因为101x <<,所以11ln 1x ->;因为()f x 在()1,+∞上单调递减,从而只需证明()()()1211ln f x f x f x =<-,只需证()()()1111ln 1ln 11111ln 1ln 1ln x x x x x x e e x e eex ---<--==.只需证()1111ln 1,01x e x x -+<<<.......................10分设()()()1ln ,0,1th t e t t -=+∈,则()11tte h t t--'=.由()f x 的单调性可知,()()11f t f e≤=.则1t te e -≤,即110t te --≥.所以()0h t '>,即()h t 在()0,1t ∈上单调递增.所以()()11h t h <=.从而不等式21x x e e >得证............12分。
2020年广东高三二模数学试卷(文科)

故选 .
12. B 解析:
若 若 ∴
,则 ,则
, .
,
,由
得
,
,与函数 有唯一零点矛盾;
,
,当且仅当
时,两式同时取等,
,当且仅当
时取等,
10
∴函数 有唯一零点;
若
,则
,令
,
,
①当
时,
,∴ 在 上单调递增,
即
在 上单调递增,又
,
∴
时,
, 单调递减;
时,
, 单调递增,
又
,∴函数 有唯一零点;
②当
,则
存在解,设其在
图表数据填写下面列联表(单位:件),并判断是否有 的把握认为“产品质量高与新设备有关”.
非优质品
优质品
合计
新设备产品
旧设备产品
合计
附:
,其中
.
( 3 ) 已知每件产品的纯利润 (单位:元)与产品质量指标值 的关系式为
,若
每台新设备每天可以生产 收回设备成本.
件产品,买一台新设备需要 万元,请估计至少需要生产多少天方可以
∴ 在 上单调递增.
又∵
,
∴
.
22.( 1 )
.
(2) .
解析:
( 1 )由
,
得
,
∴
,
∵
,
.
∴直线 的直角坐标方程为
,
即
.
( 2 )依题意可知曲线 的参数方程为:
设
,
则点 到直线 的距离为:
,
( 为参数),
17
,
∵
,
∴当
时,
,
依题意得
2020年广东省广州市高考数学二模试卷(文科)(含答案解析)

2020年广东省广州市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若集合,,则A. B. C. D.2.已知i为虚数单位,若,则A. 2B.C. 1D.3.已知角的项点与坐标原点重合,始边与x轴的非负半轴重合,若点在角的终边上,则A. 2B.C.D.4.若实数x,y满足,则的最小值是A. 2B.C. 4D. 65.已知函数,若,则A. 0B.C. 2D.6.若函数的部分图象如图所示,则下列叙述正确的是A. 是函数图象的一个对称中心B. 函数的图象关于直线对称C. 函数在区间上单调递增D. 函数的图象可由 2x的图象向左平移个单位得到7.周髀算经中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r,正方形的边长为,若在圆内随机取点,得到点取自阴影部分的概率是p,则圆周率的值为A. B. C. D.8.在三棱柱中,E是棱AB的中点,动点F是侧面包括边界上一点,若平面,则动点F的轨迹是A. 线段B. 圆弧C. 椭圆的一部分D. 抛物线的一部分9.已知函数,则的解集为A. B. C. D.10.的内角A,B,C的对边分别为a,b,c,已知,,,则cos C的值为A. B. C. D.11.若关于x的不等式恒成立,则a的最小整数值是A. 0B. 1C. 2D. 312.过双曲线C:右焦点作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若,则双曲线C的渐近线方程为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量,,若与共线,则实数k的值为______.14.已知等比数列是单调递增数列,为的前n项和,若,,则______.15.斜率为的直线l过抛物线C:的焦点F,若l与圆M:相切,则______.16.正四棱锥的底面边长为2,侧棱长为,过点A作一个与侧棱PC垂直的平面,则平面被此正四棱锥所截的截面面积为______,平面将此正四棱锥分成的两部分体积的比值为______.三、解答题(本大题共7小题,共82.0分)17.已知数列的前n项和为,且.求数列的通项公式;设,求数列的前n项和.18.如图,在三棱柱中,侧面为菱形,,.求证:;若,,三棱锥的体积为1,且点A在侧面上的投影为点O,求三棱锥的表面积.19.全民健身旨在全面提高国民体质和健康水平,倡导全民做到每天参加一次以上的健身活动,学会两种以上健身方法,每年进行一次体质测定.为响应全民健身号召,某单位在职工体测后就某项健康指数百分制随机抽取了30名职工的体测数据作为样本进行调查,具体数据如茎叶图所示,其中有1名女职工的健康指数的数据模糊不清用x表示,已知这30名职工的健康指数的平均数为.根据茎叶图,求样本中男职工健康指数的众数和中位数;根据茎叶图,按男女用分层抽样从这30名职工中随机抽取5人,再从抽取的5人中随机抽取2人,求抽取的2人都是男职工的概率;经计算,样本中男职工健康指数的平均数为81,女职工现有数据即剔除健康指数的平均数为69,方差为190,求样本中所有女职工的健康指数的平均数和方差结果精确到.20.已知椭圆C:过点,且离心率为.求椭圆C的方程;若斜率为的直线1与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过点,求k的取值范围.21.已知函数,记的导函数为.若是上的单调递增函数,求实数a的取值范围;若,试判断函数的极值点个数,并说明理由.22.在直角坐标系xOy中,曲线的参数方程为为参数,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.写出曲线和的直角坐标方程;已知P为曲线上的动点,过点P作曲线的切线,切点为A,求的最大值.23.已知函数的最大值为M,正实数a,b满足.求的最小值;求证:.-------- 答案与解析 --------1.答案:B解析:解:集合,,.故选:B.求出集合A,利用交集定义能求出.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:B解析:解:,,故故选:B.由已知条件,结合复数的运算可得,由模长公式可得答案.本题考查复数的模的求解,涉及复数的代数形式的乘除运算,属基础题.3.答案:C解析:解:点在角的终边上,,故选:C.直接利用任意角的三角函数,求解即可.本题考查任意角的三角函数的定义,基本知识的考查.4.答案:B解析:解:实数x,y满足,边表示的可行域如图:化简为,是直线的截距,故当过点A时,截距取得最大值,此时z有最小值,由解得故目标函数的最小值为;故选:B.作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.5.答案:C解析:解:根据题意,函数,则,,则有;故选:C.根据题意,由函数的解析式求出与的表达式,进而计算可得答案.本题考查函数值的计算,涉及函数奇偶性的性质,属于基础题.6.答案:A解析:解:由图可知,,函数经过点,,,即,,,.函数.令,则,当时,对称中心为,即A正确;令,则,不存在k使其对称轴为,即B错误;令,则,当时,单调递增区间为,即C错误;的图象向左平移个单位得到,即D错误.故选:A.先由图象可知,再把点代入函数解析式,结合,可求得,从而确定函数的解析式为然后根据正弦函数的中心对称、轴对称和单调性以及平移变换法则逐一判断每个选项即可.本题考查利用图象求三角函数的解析式、正弦函数的图象与性质,考查学生的数形结合能力、推理论证能力和运算能力,属于基础题.7.答案:A解析:解:圆形钱币的半径为rcm,面积为;正方形边长为acm,面积为.在圆形内随机取一点,此点取自黑色部分的概率是,则.故选:A.计算圆形钱币的面积和正方形的面积,求出对应面积比得p,则可求.本题考查了几何概型的概率计算问题,是基础题.8.答案:A解析:解:分别取AC,,的中点N,F,M,连接ME,MF,NE,EF,因为E为AB的中点,可得且,,,所以N,E,M,F共面,所以可得,,而,,所以面面,而面MN ,所以面,所以要使平面,则动点F的轨迹为线段FN.故选:A.分别取AC,,的中点N,F,M,连接ME,MF,NE,EF,可得N,E,M,F共面,且可得使平面,所以F在线段FN上.本题考查线面平行的证法及求点的轨迹的方法,属于中档题.9.答案:C解析:解:函数,则,当时,不等式,即,求得.当时,不等式,即,求得.综上可得,不等式的解集为,故选:C.由题意利用函数的单调性,分类讨论求得x的范围.本题主要考查二次函数、对数函数的单调性应用,指数、对数不等式的解法,属于中档题.10.答案:D解析:解:,,,由正弦定理,可得,可得,,由正弦定理可得,可得,可得,,可得,,C为锐角,解得.故选:D.由已知利用二倍角的正弦函数公式,正弦定理可得,利用两角和的正弦函数公式,正弦定理化简已知等式可得,进而根据余弦定理即可求解cos C的值.本题主要考查了二倍角的正弦函数公式,正弦定理,两角和的正弦函数公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.11.答案:B解析:解:若关于x的不等式恒成立,问题等价于在恒成立,令,则,令,,则,故在递减,不妨设的根是,则,则时,,递增,时,,递减,,,,,,,a的最小整数值是1,故选:B.问题等价于在恒成立,令,求出的最大值,求出a的范围即可.本题考查了利用导数研究函数的单调性极值最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于常规题.12.答案:C解析:解:如图,不妨设一条渐近线方程为,则所在直线的斜率为,直线:.联立,解得设,由,得,解得代入,得,整理得:.双曲线C的渐近线方程为.故选:C.由题意画出图形,不妨设一条渐近线方程为,求得直线:与已知渐近线方程联立求得P的坐标,再由向量等式求得A的坐标,代入双曲线方程整理即可求得双曲线C的渐近线方程.本题考查双曲线的简单性质,考查向量在解决圆锥曲线问题中的应用,考查计算能力,是中档题.13.答案:2解析:解:根据题意,向量,,若与共线,则有,解可得;故答案为:2.根据题意,由向量共线的坐标表示公式可得,解可得k的值,即可得答案.本题考查向量共线的坐标表示,注意向量共线的坐标表示公式,属于基础题.14.答案:30解析:解:设等比数列的公比为q,,,,化为:,解得或.等比数列是单调递增数列,..则.故答案为:30.设等比数列的公比为q,由,,可得:,及其等比数列是单调递增数列,解得再利用求和公式即可得出.本题考查了等比数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于基础题.15.答案:12解析:解:斜率为的直线l过抛物线C:的焦点,直线l的方程:,若l与圆M:相切,可得:,解得,故答案为:12.求出直线方程,利用圆心到直线的距离等于半径,求解即可.本题考查抛物线的简单性质以及直线与圆的位置关系的综合应用,考查计算能力,是中档题.16.答案:或解析:解:如图,在正四棱锥中,由底面边长为2,侧棱长为,可得为正三角形,取PC的中点G,得,且.设过AG与PC垂直的平面交PB于E,交PD于F,连接EF,则,,可得≌,得,,在与中,由,,,得..在等腰三角形PBC中,由,,得,则在中,得.同理,则,得到.;则.又,平面将此正四棱锥分成的上下两部分体积的比为.故答案为:;或.由已知得为正三角形,取PC的中点G,得,且然后证明,且求得AG与EF的长度,可得截面四边形的面积;再求出四棱锥的体积与原正四棱锥的体积,则平面将此正四棱锥分成的两部分体积的比值可求.本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,训练了多面体体积的求法,考查计算能力,是中档题.17.答案:解:由题知:当时,有;当时,由,可得,由得,又时也适合,故;由知,,,由可得:,所以.解析:由时求得,当时,由,可得,由得,再检验当时是否适合,求得;由求得,再利用错位相减法求其前n项和即可.本题主要考查数列通项公式的求法及错位相减法求数列的和,属于基础题.18.答案:证明:侧面为菱形,,又,O为的中点,,而,平面ABO,得;解:点A在侧面上的投影为点O,即平面,在菱形中,,为等边三角形,又,设,则,,则,即.在平面中,过O作,连接AE,可得,则.,同理可得.则三棱锥的表面积为.解析:由侧面为菱形,得,再由,O为的中点,得,利用直线与平面垂直的判定可得平面ABO,从而得到;点A在侧面上的投影为点O,即平面,设,由三棱锥的体积为1求解a,再求解三角形可得三棱锥的表面积.本题考查多面体体积及表面积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.19.答案:解:根据茎叶图,计算样本中男职工健康指数的众数是76,中位数是;根据茎叶图,按男女用分层抽样从这30名职工中随机抽取5人,男职工抽人,记为a、b、c,女职工2人,记为D、E,从这5人中随机抽取2人,所有的基本事件是ab、ac、aD、aE、bc、bD、bE、cD、cE、DE共10种,抽取的2人都是男职工的事件为ab、ac、bc,故所求的概率为;由题意知,,解得;所以样本中所有女职工的健康指数平均数为,方差为.解析:根据茎叶图中数据,计算样本中男职工健康指数的众数和中位数;根据分层抽样原理求出抽取的男、女职工人数,用列举法求出基本事件数,计算所求的概率值;根据题意求出x的值,再计算健康指数的平均数和方差.本题利用茎叶图考查了统计与概率的计算问题,是中档题.20.答案:解:因为椭圆C过点,且离心率为.所以解得,,,所以椭圆C的方程为:.设直线l的方程:,,联立直线l与椭圆C的方程得,,,,,即,所以线段MN中点,所以线段MN的垂直平分线的方程为,又因为线段MN的垂直平分线过点,所以,即,所以,代入式得,,解得或,所以k的取值范围为.解析:根据题意得解得a,b,c,进而写出椭圆的方程.设直线l的方程:,,联立直线l与椭圆C的方程得关于x的一元二次方程,由韦达定理可得,,,,即,得到线段MN中点,写出线段MN的垂直平分线的方程为,将点代入,得,代入式得k的取值范围为.本题考查椭圆的标准方程,直线与椭圆的相交问题,属于中档题.21.答案:解:,,因为是上的单调递增函数,恒成立,因为,故时,恒成立,且导数为0时不连续.故即为所求.由知,,当时,,此时函数单调递增,无极值点;当时,则,,而由三角函数的性质可知,,,此时函数单调递增,无极值点;当时,,则,此时函数单调递增,无极值点;当时,令,则,函数单调递减,又,存在唯一的,使得,且当时,,单调递增,当时,,单调递减,故是函数的极大值点,综上所述,函数在上有且仅有唯一的极大值点,无极小值点.解析:只需在恒成立,借助于三角函数的有界性,问题可解决.分,四种情形分别研究的单调性,进而得出结论.本题考查利用导数研究函数的单调性,极值点,考查分类讨论思想及运算求解能力,属于难题.22.答案:解:由为参数,消去参数,可得.曲线的直角坐标方程为;由,得,即,即.曲线的直角坐标方程为;为曲线上的动点,设,则P与圆的圆心的距离.要使的最大值,则d最大,当时,d有最大值为.的最大值为.解析:由为参数,消去参数,可得曲线的直角坐标方程.由,得,结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程;由P为曲线上的动点,设,则P与圆的圆心的距离利用二次函数求最值,再由勾股定理求的最大值.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与圆位置关系的应用,考查计算能力,是中档题.23.答案:解:函数,当时,取得最大值2,即,正实数a,b满足,由柯西不等式可得,化为,当时,取得最小值;证明:因为,a,,要证,即证,即证,即证,当时,,所以,由,可得;当时,;当时,,所以,因为,所以,综上所述,成立,即.解析:由绝对值的性质和绝对值的几何意义,可得的最大值,即有M的值,再由柯西不等式,即可得到所求最小值;应用分析法证明,考虑两边取自然对数,结合因式分解和不等式的性质、对数的性质,即可得证.本题考查绝对值不等式的性质和应用,考查不等式的证明,注意应用柯西不等式和分析法证明,考查化简运算能力、推理能力,属于中档题.。
2020年广东广州高三二模数学试卷(文科)

平面
,
因为
,设
,
所以
,
因为
,即
,解得
在
中,
,
所以
,
同理
,
在
中,
,
所以
,
在等腰
中,
,
,
所以 边上的高
,
所以 同理 则三棱锥 所以三棱锥 故答案为:
,
,
的表面积为
的表面积为
.
.
, ,
19.( 1 )众数为 ,中位数为81$$.
15
(2) .
(3)
.
解析:
( 1 )由茎叶图可知,样本中男职工健康指数的众数为 ,
23. 已知函数
的最大值为 ,正实数 , 满足
.
(1) 求
的最小值.
5
( 2 ) 求证:
.
【答案】 1. B
解析:
由题意得
,
,
∴
∴
.
故选 .
2. B
解析:
∵
,
∴
,
∴
.
故选 .
3. C
解析:
由题知角 的顶点与坐标原点重合,始边与 轴的非负半轴重合,若点
标,
由图可知
,
在角 的终边上,如图坐
()
6
故选 .
恒成立,则 的最小整数值是( ).
12. 过双曲线 : 曲线交于点 ,若 A. B. C. D.
(
,
)右焦点 作双曲线一条渐近线的垂线,垂足为 ,与双
,则双曲线 的渐近线方程为( ).
二、填空题(本大题共4小题,每小题5分,共20分)
13. 已知向量
,
广东省六校2024届高三第二次联考语文试题及答案

2024届高三第二次六校联考高三年级语文学科试题注意事项:1.作答前,考生务必将自己的姓名、考场号、座位号填写在试卷的规定位置上。
2.作答时,务必将答案写在答题卡上,写在试卷及草稿纸上无效。
3.考试结束后,将答题卡、试卷、草稿纸一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
①在公共生活中的“说理”是一种理性交流、表达看法、解释主张,并对别人可能有说服作用的话语形式。
说服就是运用语言来对具体的他人作劝说、解释、说明,以期对他们有所影响。
伊索寓言中有一则《太阳与风》的故事:太阳与风进行比赛,看谁能使穿着外套的行人脱掉外套。
风刮了又刮,但刮得越凶,那个行人就把外套裹得越紧。
然后太阳出来了,照在行人的身上,行人感到身体出汗了,就把外套脱了下来。
这个故事可以用作“说服强于强制”的寓言。
希腊哲学家芝诺对说服有相似的说法,他称说服是一只摊开的手掌,而不是一个攥紧的拳头。
说服是欢迎他人加入对话,不是企图限制他们有自己的看法,更不是威胁他们不准有自己的看法。
②说理通过说明和协商,而不是暴力或战争来解决人间可能出现的矛盾和冲突,并形成一种可以称之为“讲理”的文明秩序。
所有的战争和混乱都是在没有协商,无理可讲的情况下发生的;说理使得人类能够用摊开的手掌,而不是攥紧的拳头来相互交往,人类才得以进入文明社会。
然而,当下互联网中的说理常常被当作是攥紧拳头,而非摊开手掌的话语行为。
这样的“说理”便成为“占领话语阵地”、“口诛笔伐”、“论战”和向对方报以“投枪”和“匕首”。
这种“说理”观念令无数人深受其害而浑然不知。
③说理是发表意见,但“发表意见”并不就是说理。
任何表达看法的陈述,包括骂和谩骂,都可以说是“发表意见”,但并不是说理。
说理的“发表意见”必须包括两个部分:一个是“结论”(也称主张或看法),另一个是“理由”,结论是由理由来支持的。
当然,有理由支持的结论未必都确实或可靠,因此需要评估理由是否真的能充分支持主张。
2025届广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学高三第二次联考数学试卷含解析

2025届广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学高三第二次联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( ) A .0 B .1 C .673 D .6742.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( )A .2B .4C .D .3.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( ) A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++= 4.若ABC ∆的内角A 满足2sin 23A =-,则sin cos A A -的值为( )A B . C D .5-35.已知向量(,1),(3,2)a m b m ==-,则3m =是//a b 的( ) A .充分不必要条件 B .必要不充分条件C .既不充分也不必要条件D .充要条件 6.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若EF ,分别是棱1BB CC,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .210B .2613 C .1313 D .13107.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( )A .134- B .54 C .5 D .1548.集合{}|212P x N x =∈-<-<的子集的个数是( )A .2B .3C .4D .89.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .210.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A .83B .163C .43 D .811.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( )A .43i +B .43i -C .43i -+D .43i --12.已知函数()3sin ,f x x a x x R =+∈,若()12f -=,则()1f 的值等于( )A .2B .2-C .1a +D .1a -二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届广东六校高三第二次联考试题文科数学一、选择题:本题12小题,每小题5分,共60分。
1.设全集U 是实数集R ,{}{}2=log 1,13M x x N x x >=<<,则(C U M )N = ( ) A .{}23x x << B .{}3x x < C .{}12x x <≤ D .{}2x x ≤ 2.复数z 满足23i i z +=(其中i 是虚数单位),则z 的虚部为 ( ) A .2B .3-C .3D .2-3.在ABC ∆中,AB =1AC =,30B ∠=,则A ∠= ( ) A .60︒B .︒︒9030或C .60120︒︒或D .︒904.设平面向量()2,1a =-,(),2b λ=,若a 与b 的夹角为锐角,则λ的取值范围是( ) A .()(),44,1-∞--B .()1,22,2⎛⎫-+∞ ⎪⎝⎭C .()1,+∞D .(),1-∞ 5.若0a >,0b >,则“8a b +≤”是“16ab ≤”的 ( ). A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件6.设3log 0.4a =,2log 3b =,则 ( ) A .0ab >且0a b +> B .0ab <且0a b +> C .0ab >且0a b +<D .0ab <且0a b +<7.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x ->-,则实数x 的取值范围是 ( )A .()1,-+∞B .()1-∞-,C .()14-,D .()1-∞,8.设等差数列{}n a 前n 项和为n S ,若452a S +=,714S =,则10a = ( ) A .18 B .16C .14D .129.某几何体的三视图如图所示,则该几何体的体积为( )A .76πB .43πC .2πD .136π10.函数2()1sin 1xf x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是 ( )A .B .C .D .11.己知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足PA m PB =,当m 取最大值时,点P 恰好在以B A 、为焦点的双曲线上,则双曲线的离心率为( )A 1B .CD 112.若存在唯一的正整数0x ,使得不等式20x xax a e-->恒成立,则实数a 的取值范围是 ( ) A .240,3e ⎛⎫ ⎪⎝⎭B .241,3e e ⎛⎫⎪⎝⎭ C .10,e ⎛⎫ ⎪⎝⎭D .241,3e e ⎡⎫⎪⎢⎣⎭ 二、填空题,本题4个小题,每小题5分,共20分。
13.a 为单位向量,0b ≠,若a b ⊥且32a b -=,则b =________. 14.若tan 24πα⎛⎫-=-⎪⎝⎭,则tan2α=___________. 15.若()()321111322f x f x x x '=-++,则曲线() y f x =在点()(1,)1f 处的切线方程是______________________.16.已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==2ABC π∠=,若该三棱锥体积的最大值为3,则其外接球的体积为________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17至21题为必做题,每小题12分;第22、23题为选做题,每小题10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
(一)必做部分17.(本小题12分)已知函数2()sin )2f x x x x =+-. (1)求函数()f x 的最小值,并写出()f x 取得最小值时自变量x 的取值集合; (2)若[]22x ππ∈-,,求函数()f x 的单调减区间.18.(本小题12分)数列{}n a 的前n 项和记为n S ,19a =,129n n a S +=+,*n ∈N ,11b =,13log n n n b b a +-=.(1)求{}n a 的通项公式; (2)求证:对*n ∈N ,总有1211112nb b b ≤+++<.19.(本小题12分)如图,在四棱锥P ABCD -中,平面ABCD ⊥平面PAD ,//AD BC ,12AB BC AP AD ===,30ADP ∠=︒ 90BAD ∠=︒. (1)证明:PD PB ⊥;(2)设点M 在线段PC 上,且13PM PC =,若MBC ∆的面积为,求四棱锥P ABCD -的体积.20.(本小题12分)在直角坐标系xoy 中,动点P 与定点(1,0)F 的距离和它到定直线4x =的距离之比是12,设动点P 的轨迹为E . (1)求动点P 的轨迹E 的方程;(2)设过F 的直线交轨迹E 的弦为AB ,过原点的直线交轨迹E 的弦为CD ,若//CD AB ,求证:2||||CD AB 为定值.21.(本小题12分)已知函数()ln 1f x x x =++,()22g x x x =+.(1)求函数()()y f x g x =-的极值;(2)若实数m 为整数,且对任意的0x >时,都有()()0f x mg x -≤恒成立,求实数m 的最小值.(二)选做部分(二选一,本小题10分)22.在平面直角坐标系xoy 中,曲线c 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数),在以原点为极点,轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线c 的普通方程和直线l 的倾斜角;(2)设点(0,2)P ,直线l 和曲线c 交于A B 、 两点,求||+||PA PB .23.已知()2221f x x x a =+-+.(1)当3a =-时,求不等式()2f x x x >+的解集;(2)若不等式()0f x ≥的解集为实数集R ,求实数a 的取值范围.2020届高三第二次六校联考文科数学参考答案一、选择题 CDBAB BCCAD AD 二、填空题13 14、34 15、3310x y -+= 16、332π 三、解答题17、解:(1)22()3cos sin cos 2f x x x x x x =++-=22cos 12x x +=cos 222x x + =2cos(2)23x π++ ………………4分当223x k πππ+=+,即()3x k k Z ππ=+∈时,函数()f x 有最小值为0。
…………6分(2)由2223k x k ππππ≤+≤+,得:,63k x k k Z ππππ-+≤≤+∈ ………………8分因为[]22x ππ∈-,,所以,0,,63k x ππ⎡⎤=∈-⎢⎥⎣⎦, 即[]22x ππ∈-,,函数()f x 的单调减区间为[]63ππ-,。
………………12分18、解:(1)由129(1)n n a S n +=+≥.可得129(2)n n a S n -=+≥, 两式相减得12n n n a a a +=-,∴13n n a a +=, 又212927a S =+=,213a a =.故{}n a 是首项为9,公比为3的等比数列,∴1*3,n n a n +=∈N 。
………………5分 (2)113log 31n n n b b n ++-==+当2n ≥时,112211(1)()()()(21)12n n n n n n nb b b b b b b b n ---+=-+-++-+=++-+=又1n =符合上式,*(1),2n n nb n +=∈N . ………………8分∴*12,(1)n n b n n =∈+N . 则121111111112(1)2(1)22311n b b b n n n +++=-+-++-=-++ …………10分 ∵12(1)21n -<+,112(1)2(1)112n --=+… ∴1211112nb b b ≤+++<. ………………12分19、解:(1)平面ABCD ⊥平面PAD BAD=90∠︒,AB ∴⊥平面PAD ,AB PD ∴⊥,在ΔPAD 中,1AP AD 2=,ADP 30∠=︒, ∴由正弦定理可得:APDADADP AP ∠=∠sin sin ,APD 90∠∴=︒,PA PD ⊥∴,又A AB PA =∴ PD ⊥平面PAB ,PD PB ∴⊥. ……………5分(2)取AD 的中点F ,连结PF CF 、,设a AD 2=,则aAP BC AB ===,a PD 3=,则PBPC ==,∴ΔPBC 为等腰三角形,且底边BC,1PM PC 3=,ΔMBC 的面积为3.ΔPBC ∴,1a a 22∴⨯=a 2=, ∴四梭锥P ABCD -的体积为()1124232⨯⨯+⨯=……………12分20、解:(1)设点(),P x y 12=,将两边平方,并简化得22143x y +=, 故轨迹1C 的方程是22143x y +=. ……………4分(2)证明:①当直线AB 的斜率不存在时,易求||3AB =,||CD =则2||4||CD AB =. ……………5分 ②当直线AB 的斜率存在时,设直线AB 的斜率为k ,依题意0k ≠, 则直线AB 的方程为(1)y k x =-,直线CD 的方程为y kx =. 设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得()22223484120k x k x k +-+-=. 则2122834k x x k +=+,212241234k x x k -=+, ……………7分12||AB x x =-=()2212134k k +=+……8分 由22143x y y kx⎧+=⎪⎨⎪=⎩整理得221234x k =+,则34x x -=.34||CD x =-= ……………10分∴()()22222481||344||34121k CD k AB k k ++=⋅=++. 综合①②知:2||4||CD AB =为定值. ……………12分21、解:(1)设()()()2ln 1x f x g x x x x ϕ=-=--+,∴()()()211121x x x x x xϕ--+'=--=, ……………2分 令()0x ϕ'>,则102x <<;()0x ϕ'<,则12x >;∴()x ϕ在10,2⎛⎫ ⎪⎝⎭上单调递增,1,2⎛⎫+∞⎪⎝⎭上单调递减, ∴()11=ln 224x ϕϕ⎛⎫=- ⎪⎝⎭极大,无极小值. ……………4分(2)由()()0f x mg x -≤,即()2ln 120x x m x x ++-+≤在()0,∞+上恒成立,∴2ln 12x x m x x++≥+在()0,∞+上恒成立, ……………5分设()2ln 12x x h x x x ++=+,则()()()()2212ln 2x x x h x x x -++'=+, ……………6分 显然10x +>,()2220x x+>设()()2ln t x x x =-+,则()210t x x ⎛⎫'=-+< ⎪⎝⎭,故()t x 在()0,∞+上单调递减 由()110t =-<,11112ln 2ln 202222t ⎛⎫⎛⎫=-+=->⎪ ⎪⎝⎭⎝⎭, 由零点定理得01,12x ⎛⎫∃∈⎪⎝⎭,使得()00t x =,即002ln 0x x += 且()00,x x ∈时,()0t x >,则()0h x '>,()0,x x ∈+∞时,()0t x <. 则()0h x '<∴()h x 在()00,x 上单调递增,在()0,x +∞上单调递减 ∴()()0002max 00ln 12x x h x h x x x ++==+, 又由002ln 0x x +=,01,12x ⎛⎫∈⎪⎝⎭,则()0002000ln 111,1222x x h x x x x ++⎛⎫==∈ ⎪+⎝⎭ ∴由()m h x ≥恒成立,且m 为整数,可得m 的最小值为1. ……………12分22、解:(1)3cos ,sin ,x y αα=⎧⎨=⎩消去参数α得2219x y +=,即c 的普通方程为2219xy +=. ……………2分由sin 4πρθ⎛⎫-= ⎪⎝⎭,得sin cos 2ρθρθ-=,(*)将cos sin x y ρθρθ=⎧⎨=⎩,代入(*),化简得+2y x =,所以直线l 的倾斜角为4π. ……………5分 (2)由(1),知点(0,2)P 在直线l 上,可设直线l 的参数方程为cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t为参数),即222x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入2219x y +=并化简,得25270t ++=,245271080∆=-⨯⨯=>,设A ,B 两点对应的参数分别为1t ,2t,则120t t +=<,122705t t =>, 所以10t <,20t <,所以()1212||||PA PB t t t t +=+=-+=………10分23、解:(1)当3a =-时,()22213f x x x =+--,当0x ≤时,由()2f x x x >+,得220x x -->,解得:1x <-,或2x >,所以1x <-.当102x <≤时 ,由 ()2f x x x >+得 2320x x -->,解得:x <x >所以x φ∈, 当12x >时,由()2f x x x >+ , 得240x x +->,解得:x <,或x >.所以x > 综上 当3α=-时,()2f x x x >+的解集为. ⎪⎩⎪⎨⎧⎭⎬⎫+->-<21711|x x x 或 ………5分(2)()0f x ≥的解集为实数集2221R a x x ⇔≥---,当12x≥时,22221221x x x x---=--+21312222x⎛⎫=-++≤-⎪⎝⎭,当12x<时,22221221x x x x---=-+-21112222x⎛⎫=---<-⎪⎝⎭,2226x x∴---的最大值为12 -.∴实数a的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭. ……………10分。