2019年常州市七年级数学下期末试题(及答案)
2019-2020年江苏省常州市七年级下期末联考数学试题含答案解析

常州市教育学会学业水平监测2018.6七年级数学试题一、选择题(本大题共8小题)1.下列计算中,正确的是( )A. B. C. D.2.下列图形中,由,能得到的是( )A. B.C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是( )A. 6B. 7C. 8D. 96.下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是( )A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是( )A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.四、解答题(本大题共5小题)21.如图,已知点E在AB上,CE平分,求证:.22.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵23.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.24.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.25.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A 种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。
2018—2019学年第二学期七年级数学期末检测试题1江苏版苏科版七下含答案解析

2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x83.如图,与是同位角的为A.B.C.D.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣106.下列各式能用平方差公式计算的是A.B.C.D.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.88.已知不等式组有解,则的取值范围是()A.B.C.D.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.12直接写出计算结果:______;________.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.14如图,,,则=____°.15已知代数式与是同类项,则_______,________.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个17已知,,则2x3y+4x2y2+2xy3=_________.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).三、解答题(本大题共8小题,共96分)19计算:;.20解不等式:,并把解集表示在数轴上.21因式分解:(1);(2)25(a+b)2-9(a-b)2 .22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().23解方程组:(1);(2)24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】根据不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等式的方向不变;不等式的两边都乘以(或除以)同一个负数,不等式的方向改变,可得答案.【详解】、不等式的两边同时减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以再减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以,不等式的符号方向改变,即,故本选项正确;、不等式的两边同时除以,不等式仍成立,即,故本选项错误.故选:.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等式的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【来源】江苏省常州市2016-2017学年期末【答案】D【解析】A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.3.如图,与是同位角的为A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的定义得与是同位角,故选:D.【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣10【来源】江苏省常州市2016-2017学年期末【答案】B【解析】根据科学记数法的书写规则,,a只含有一位整数,易得:0.000 0000 76=7.6×10﹣8,故选:B.6.下列各式能用平方差公式计算的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】B【解析】【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;中是相同的项,互为相反项是与,符合平方差公式的要求,故本选项正确;中不存在相反的项,不能用平方差公式计算,故本选项错误;中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:.【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.8【来源】江苏省淮安市淮安区2017-2018学年期末【答案】D【解析】【分析】多边形的内角和可以表示成,依次列方程可求解.设这个多边形边数为,则,解得.故选:.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要回根据公式进行正确运算、变形和数据处理.8.已知不等式组有解,则的取值范围是()A.B.C.D.【来源】江苏省盐城市射阳县2016年期末【答案】C【解析】∵不等式组有解,∴,故选:C点睛:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,把不等式的解集在数轴上表示出来,利用数轴可以直观地表示不等式组的解集.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.【来源】江苏省泗阳县2016-2017学年期末考试【答案】D【解析】试题分析:根据方程组解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案:∵是方程组的解,∵.两个方程相减,得a﹣b=4.考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】C【解析】分析:由、、、、……可知3n的个位数分别是3,9,7,1,…,四个数依次循环,用的指数2019除以4得到的余数是几就与第几个数字的个位数字相同,由此解答即可.详解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2019÷4=504…3,∵的末位数字与33的末位数字相同是7.故选C..点睛:此题考查了尾数特征及规律探究:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】x>-1 ,【解析】分析:不等式移项合并,将x系数化为1,即可求出解集.【解答】解:不等式1-x<2,移项合并得:-x<1,解得:x>-1.故答案为:x>-1点睛:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.请在此填写本题解析!12直接写出计算结果:______;________.【来源】江苏省南京玄武区2016年期末考试【答案】【解析】,.故答案为:,.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.【来源】江苏省南京玄武区2016年期末考试【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【解析】试题分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.考点:命题的改写点评:任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14如图,,,则=____°.【来源】江苏省扬州市江都区2016-2017学年期末【答案】【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.连接AC并延长,标注点E,∵∠DCE=∠D+∠DAC, ∠BCE=∠B+∠BAC, ∠BCE+∠DCE=106°,∠A+∠B=47°, ∴∠BCE+∠DCE=∠D+∠DAB+∠B=106°,∴∠D=106°-47°-47°=12°.故答案为:12.15已知代数式与是同类项,则_______,________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】3 1【解析】分析:根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个【来源】江苏省淮安市淮安区2017-2018学年期末【答案】3【解析】【分析】根据已知边长求第三边的取值范围为:,进而解答即可.【详解】设第三边长为,则,,故取、、.故答案为:.【点睛】本题考查了三角形三边关系定理:三角形两边之和大于第三边,两边之差小于第三边.17已知,,则2x3y+4x2y2+2xy3=_________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】-25【解析】分析:先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.详解:∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2×() ×52=-25.故答案为:-25.点睛:此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图∵和∵列出方程组得,解得,∵的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.三、解答题(本大题共8小题,共96分)19计算:;.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】;.【解析】分析:(1)先根据零指数幂、绝对值的意义、负整数指数幂的意义逐项化简,然后合并同类项即可;(2)第一项根据完全平方公式计算,第二项根据平方差公式计算,然后合并同类项即可. 详解:原式;原式.点睛:本题考查了实数的运算和整式的运算,熟练掌握完全平方公式和平方差公式是解答本题的关键.20解不等式:,并把解集表示在数轴上.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】x≤﹣2【解析】【试题分析】不等式的两边同时乘以6,去分母得:;去括号得:移项得:系数化为1得:解集在数轴上表示见解析.【试题解析】去分母得:;去括号得:移项及合并得:系数化为1得:不等式的解集为x≥-2,在数轴上表示如图所示:21因式分解:(1);(2)25(a+b)2-9(a-b)2 .【来源】江苏省兴化市2017-2018学年期末【答案】(1) 6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab·2bc-6ab·1=6ab(2bc-1);(2)原式=[5(a+b)]2-[3(a-b)]2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().【来源】江苏省盐城市射阳县2016年期末【答案】已知,2,ECD ,角平分线的性质或定义,已知,∠1=∠ ECD ,两直线平行,内错角相等,等量代换【解析】试题分析:由角平分线定义和平行线的性质及等量代换即可证明.试题解析:证明:∵CE平分∠ACD (已知),∴∠2 =∠ECD (角平分线的性质或定义),∵AB∥CD(已知),∴∠1= ∠ECD (两直线平行,内错角相等),∴∠1=∠2(等量代换).23解方程组:(1);(2)【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2)【解析】试题分析:(1)方程组利用加减消元法求出解即可(2)先①+③得x与y的方程④,然后将②④联立求出x和y的值,最后将x和y的值代入①中求出z即可;试题解析:(1),①7得,③②2得,④③④得,,∴,将代入方程①,解得.∴原方程组的解为.(2)①+③得,,②2得,⑤,+⑤得,将代入方程②,解得,将,代入方程①,解得,∴原方程组的解为.24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位【来源】江苏省扬州市高邮市2017-2018学年期末【答案】(1)作图见解析,(2)平行;相等;(3)15【解析】【分析】直接利用平移的性质分别得出对应点位置进而得出答案;利用平移的性质得出线段、的位置与数量关系;利用三角形面积求法进而得出答案.【详解】解:如图所示:,即为所求;线段、的位置关系为平行,线段、的数量关系为:相等.故答案为:平行,相等;平移过程中,线段AB扫过部分的面积为:.故答案为:15.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.【来源】江苏省南京玄武区2016年期末考试【答案】火车速度20m/s, 长度200m【解析】试题分析: 设火车的车身长为x米,速度是ym/s,根据行程问题的数量关系路程=速度×时间建立方程组求出其解即可.试题解析:设火车的车身长为x米,速度是ym/s,根据题意可得:,解得,答:火车的车身长为200米,速度是20m/s.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2),过程见解析;(3)【解析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出+,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可(3)试题分析:试题解析:(1),∵、分别是和的角平分线,∴∴.(2)在△中,+,,(3)点睛:本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。
★试卷3套精选★常州市某名校中学2019届七年级下学期期末考试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( )A .2a =,5b =B .3a =,2b =C .3a =-,2b =D .2a =,5b =-【答案】D【解析】利用加减消元法判断即可.【详解】利用①×a+②×b 消去x ,则5a+2b=0故a 、b 的值可能是a=2,b=-5,故选:D .【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.下列事件中,最适合使用普查方式收集数据的是( )A .了解扬州人民对建设高铁的意见B .了解本班同学的课外阅读情况C .了解同批次LED 灯泡的使用寿命D .了解扬州市八年级学生的视力情况【答案】B【解析】试题分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A 、了解扬州人民对建设高铁的意见,人数众多,应采用抽样调查;B 、了解本班同学的课外阅读情况,人数较少,应采用全面调查;C 、了解同批次LED 灯泡的使用寿命,具有破坏性,应采用抽样调查;D 、了解扬州市八年级学生的视力情况,人数众多,应采用抽样调查;故选B .考点:全面调查与抽样调查.3.如图,同位角是( )A .∠1和∠2B .∠3和∠4C .∠2和∠4D .∠1和∠4【答案】D 【解析】试题解析:根据同位角的定义可知:图中∠1和∠4是同位角,故选D .点睛:同位角定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.4.已知方程组42x y x y m -=⎧⎨+=⎩中的 x ,y 互为相反数,则m 的值为( ) A .2B .﹣2C .0D .4 【答案】A【解析】∵x 与y 互为相反数,∴x+y=0,y=-x ,又∵42x y x y m-=⎧⎨+=⎩, ∴x=m ,x-(-x)=4,∴m=x=2.故选A.5.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm【答案】B【解析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】A. 1+2<4,故不能组成三角形,错误;B. 4+6>8,故能组成三角形,正确;C. 5+6<12,故不能组成三角形,错误;D. 2+3=5,故不能组成三角形,错误.故选B.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形三边关系.6.如图所示,三架飞机,,P Q R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1),30秒后,飞机P 飞到'3(4)P ,位置,则飞机,Q R 的位置''Q R 、分别为( )A .()(2)'3'41Q R ,,, B .(),'23'2)1(Q R ,, C .(),'22'4)1(Q R ,, D .(),'33'3)1(Q R ,, 【答案】A【解析】由点(1,1)P -到(4,3)P '知,编队需向右平移5个单位、向上平移2个单位,据此可得.【详解】解:由点(1,1)P -到(4,3)P '知,编队需向右平移5个单位、向上平移2个单位,∴点(3,1)Q -的对应点Q '坐标为(2,3),点(1,1)R --的对应点(4,1)R ',故选:A .【点睛】本题考查了坐标与图形变化—平移,熟练掌握在平面直角坐标系确定点的坐标是解题的关键. 7.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A .B .C .D .【答案】C【解析】根据对顶角相等可知∠2=∠1=70°,再根据两直线平行,同旁内角互补求解即可.【详解】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD ∥BE ,∴∠B=180°-∠1=180°-70°=110°.故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.如图直线a∥b,若∠1=70°,则∠2为()A.120°B.110°C.70°或110°D.70°【答案】D【解析】根据平行线的性质得出∠1=∠2=70°.【详解】∵a∥b,∴∠1=∠2,∵∠1=70°,∴∠2=70°,故选D.【点睛】本题考查了平行线的性质,能根据平行线的性质得出∠1+∠2=180°是解此题的关键.9.如图,把一张长方形纸片ABCD沿EF折叠后,ED与BC交点为G,D、C分别在M、N的位置上,若∠2-∠1=40°,则∠EFC的度数为()A.115°B.125°C.135°D.145°【答案】B【解析】根据平行线的性质可得∠1与∠2之和,又因为∠2-∠1=40°,解二元一次方程组可得∠1与∠2的度数,根据平角求得∠DEM的度数,利用折叠的性质可得∠DEF的度数,最后根据两直线平行,同旁内角互补求得∠EFC即可.【详解】∵四边形ABCD是长方形∴AD∥BC∴∠1+∠2=180°又∵∠2-∠1=40°解得;∠1=70°,∠2=110°∴∠DEM=110°由折叠可知:∠DEF=12∠DEM=55°∵∠DEF+∠EFC=180°∴∠EFC=125°故选;B【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质定理是关键.另需注意,折叠问题中,折叠过去的对应角、对应线段都相等.10.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④【答案】C【解析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题题11.如图,∠1=∠2,∠3=100°,则∠4= ______ .【答案】80°【解析】由∠1=∠2,根据“内错角相等,两直线平行”得到AD ∥BC ,再根据平行线的性质得到∠3+∠4=180°,即∠4=180°-∠3,把∠3=100°代入计算即可.【详解】解:如图,∵∠1=∠2,∴AD ∥BC ,∴∠3+∠4=180°,而∠3=100°,∴∠4=180°-100°=80°.故答案为80°.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同旁内角互补.12.已知()()2321x x ax bx c -+=++,那么a b c +-=__________. 【答案】6【解析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a ,b ,c 的值,代入原式计算即可求出值.【详解】已知等式整理得:2232x x ax bx c +-=++,可得3a =,1b =,2c =-则3126a b c +-=++=,故答案为:6【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b)1,所以a 1+1ab +b 1=(a +b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系. 14.不等式5(2)62x x -≤+的正整数解共有_____个.【答案】1【解析】先解不等式,再找不等式的正整数解即可.【详解】去括号得,1x-10≤6+2x ,移项得,1x-2x≤6+10,合并同类项得,3x≤16,系数化为1得,x≤163, ∴正整数解有:1,4,3,2,1,共1个数.故答案为1.【点睛】本题考查了正确求不等式的正整数解,求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 15.关于x 、y 的二元一次方程组3234x y a x y a+=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________. 【答案】a <-1. 【解析】试题解析:32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >1,得2136788a a ++-+>1, 解得,a <-1.考点:1解一元一次不等式;1.解二元一次方程组.16.二元一次方程2x+3y =25的正整数解有_____组.【答案】4.【解析】先用x 的代数式表示y ,得y =253x -+,再根据x 、y 均为正整数且-2x+25是3的倍数展开讨论即可求解.【详解】解:方程变形得:y =253x -+,当x=2时,y=7;x=5时,y=5;x=8时,y=3;x=11时,y=1,则方程的正整数解有4组,故答案为:4.【点睛】二元一次方程有无数组解,但它的正整数解是有限的,此类题目一般是用其中一个未知数表示另一个未知数,然后根据x、y为正整数展开讨论,即可求解.17.若二元一次方程组3355x yx y+=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩,则a b-=__________.【答案】1【解析】把x、y的值代入方程组,再将两式相加即可求出a−b的值.【详解】解:将x ay b=⎧⎨=⎩代入方程组3355x yx y+=⎧⎨-=⎩,得:3355a ba b+=⎧⎨-=⎩①②,①+②得:4a−4b=8,则a−b=1,故答案为:1.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a−b的值,本题属于基础题型.三、解答题18.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.【解析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥1.答:则至少每年平均增加1万平方米.19.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.【答案】(1)∠ECD =36°;(2)BC=1.【解析】试题分析:(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以BC=EC=1.试题解析:解:(1)∵DE垂直平分AC,∠A=36°∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B =∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.(2)∵AB=AC,∠A=36°,∴∠B=(180°-36°)÷2=72°.∵∠BEC=∠A+∠ECA=72°,∴CE=CB,∴BC=EC=1.20.春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.详解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:852*******x y x y +⎧⎨+⎩==, 解得:2012x y ⎧⎨⎩==, 答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A 型放大镜m 个,根据题意可得:20a+12×(75-a )≤1180,解得:x≤35,答:最多可以购买35个A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.21.解不等式组3(2)821152x x x x --≤⎧⎪--⎨>⎪⎩,并将它的解集在数轴上表示出来. 【答案】13x -≤<,数轴见解析【解析】分别求出两个不等式的解集,然后得到不等式组的解集,再表示在数轴上即可.【详解】解:解不等式3(2)8x x --≤,得1x ≥-,解不等式21152x x -->,得3x <. ∴不等式组的解集是:13x -≤<,不等式的解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组,以及用数轴表示不等式的解集,解题的关键是掌握解一元一次不等式的方法.22.已知方程713x y a x y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数,求a 的取值范围. 【答案】﹣2<a ≤1.【解析】本题可对一元二次方程运用加减消元法解出x 、y 关于a 的式子,然后根据x ≤0和y >0可分别解出a 的值,即可求得a 的取值范围.【详解】解方程组:713x y a x y a +=--⎧⎨-=+⎩,得,324x a y a =-⎧⎨=--⎩. ∵00x y ≤⎧⎨<⎩, ∴30240a a -≤⎧⎨--<⎩, 解得:﹣2<a ≤1.【点睛】本题考查了二元一次方程的解法和一元一次不等式的性质.根据运算可将x 、y 化为关于a 的式子,然后计算出a 的取值范围.23.如图示,点B 在AE 上,∠CBE=∠DBE,要使ΔABC ≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)【答案】根据ASA 可以添加∠CAE=∠DAE .【解析】根据ASA 可以添加∠CAE=∠DAE .【详解】添加一个条件是∠CAE=∠DAE.(答案不唯一)理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE ,∴∠ABC=∠ABD ,在△ABC 和△ABD 中,CAE DAE AB ABABC ABD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ABD(ASA),24.已知:∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .试说明DE 平分∠BDC .【答案】详见解析【解析】先证△BED≌△AEC,可得到DE=CE,∠BDE=∠C,即可得∠EDC=∠C,所以∠EDC=∠BDE,,即得证【详解】证明:∵∠1=∠2,∴∠1+∠AED=∠AED+∠2,即∠BED=∠AEC,在△BED和△AEC中,∠B=∠A,∠BED=∠AEC,BE=AE∴△BED≌△AEC,∴DE=CE,∠BDE=∠C,∵DE=CE,∴∠EDC=∠C,∴∠EDC=∠BDE,∴DE平分∠BDC.【点睛】本题主要考查全等三角形的证明与性质以及等角代换,关键在于充分掌握全等三角形的证明与性质25.将4个数a、b、c、d 排成两行两列,两边各加一条竖直线记成a bc d,定义a bc d=ad﹣bc.(1)若231x->0,则x的取值范围是;(2)若x、y 同时满足231x-=7,121yx=1,求x、y的值;(3)若关于x的不等式组2232xmxx⎧⎪+⎨⎪⎩<<的解集为x<2,求m的取值范围.【答案】(1)x>6;(1)13xy;(3)m≥﹣1.【解析】(1)>0,x﹣6>0,解得:x>6,故答案为x>6;(1分)(1)∵=7, =1,∴,解得:;(5分)(3)由题意知:3x﹣1(x+1)<m,即x<4+m,则不等式组化为,∵该不等式组的解集为x<1,∴4+m≥1,解得:m≥﹣1.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .﹣a <﹣bD .2a >3b【答案】D【解析】试题分析:由不等式的性质得a >b ,a+2>b+2,﹣a <﹣b .故选D .考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.2.下列条件中不能判定AB ∥CD 的是( )A .∠1=∠4B .∠2=∠3C .∠5=∠BD .∠BAD+∠D =180°【答案】B 【解析】解:A .∵∠1=∠4,∴AB ∥CD (内错角相等,两直线平行),故本选项错误;B .∵∠2=∠3,∴AD ∥BC (内错角相等,两直线平行),判定的不是AB ∥CD ,故本选项正确; C .∵∠5=∠B ,∴AB ∥CD (同位角相等,两直线平行),故本选项错误;D .∵∠BAD +∠D=180°,∴AB ∥CD (同旁内角互补,两直线平行),故本选项错误.故选B .3.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( ) A .10组B .9组C .8组D .7组 【答案】A【解析】在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A .【点睛】此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.4.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解. 【详解】解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.故选:B.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5.关于x 的不等式组0321x a x -≤⎧⎨+>-⎩的整数解共有4个,则a 的取值范围( ) A .3a =B .23a <<C .23a ≤<D .23a <≤【答案】C【解析】分别求出每一个不等式的解集,根据不等式组的整数解的个数可得答案.【详解】解不等式x-a≤0得x≤a ,解不等式3+2x >-1得x >-2,∵不等式组的整数解共有4个,∴这4个整数解为-1、0、1、2,则2≤a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .10m -≤≤D .10m -<< 【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m -1<-1,解得10m -≤<,故选A.7.以下描述中,能确定具体位置的是( )A .万达电影院2排B .距薛城高铁站2千米C .北偏东30℃D .东经106℃,北纬31℃【答案】D【解析】平面内表示物体的位置常用的方式:一是用一个有序数对,二是用方向角和距离,根据这两种方式逐项分析即可.【详解】A. 万达电影院2排由多个座位,故不能确定具体位置;B. 在以薛城高铁站为圆心,以2千米为半径的圆上的点,都满足距薛城高铁站2千米,故不能确定具体位置;C. 北偏东30℃的方向有无数个点,故不能确定具体位置;D. 东经106℃,北纬31℃,能确定具体位置;故选D.【点睛】本题考查了确定物体的位置,是数学在生活中应用,熟练掌握平面内物体的表示方法是解答本题的关键,解答本题可以做到在生活中理解数学的意义.8.如图,将含有30°的直角三角板的直角顶点放在两条相互平行线的一条上,若138∠=,则2∠的度数是( )A .22°B .28°C .32°D .38°【答案】A 【解析】延长AB 交CF 于点E ,先利用直角三角形两锐角互余求出ABC ∠的度数,然后根据三角形外角的性质求出BEC ∠ 的度数,再利用两直线平行,内错角相等即可得出答案.【详解】如图,延长AB 交CF 于点E90,30ACB BAC ∠=︒∠=︒ ,9060ABC BAC ∴∠=︒-∠=︒ .138∠=︒ ,122BEC ABC ∴∠=∠-∠=︒.//GH EF ,222BEC ∴∠=∠=︒.故选:A .【点睛】本题主要考查直角三角形两锐角互余,三角形外角的性质和平行线的性质,掌握直角三角形两锐角互余,三角形外角的性质和平行线的性质是解题的关键.9.若多边形的内角和大于 900°,则该多边形的边数最小为( )A .9B .8C .7D .6【答案】B【解析】根据多边形的内角和公式(n ﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n ,根据题意得(n ﹣2)×120°>900°,解得n >1.该多边形的边数最小为2.故选:B .【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.10.若40.40=6.356,则0.404=( )A .0.006356B .0.6356C .63.56D .635.6 【答案】B【解析】解:∵40.40=6.356,∴0.404=0.1.故选B .点睛:本题考查了算术平方根,用到的知识点是被开方数向左移动两位,则它的算术平方根向左移动一位.二、填空题题11.如图,梯子的各条横档互相平行,若1220∠=∠+︒,则3∠=__________.【答案】100︒【解析】根据平行线的性质进行计算即可得到答案.【详解】由题意可知AB CD ∥,所以根据平行线的性质可知13∠=∠,因为1220∠=∠+︒,所以3220∠=∠+︒,而3+2=180∠∠︒,则可得3180-320∠=︒∠+︒,故3100∠=︒.【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.12.若2m a =,3n a =,则m n a +=____.【答案】6【解析】∵m nm n a a a +⋅=,2m a =,3n a =,∴m n a +=2×3=6.故填6.13.如图,AB ∥CD ,试再添一个条件,使∠1=∠2成立,_____、_____、_____(要求给出三个以上答案)【答案】CF//BE ∠E=∠F ∠FCB=∠EBC【解析】此题是条件探索题,结合已知条件和要满足的结论进行分析. 【详解】//AB CD ,∴BCD CBA ∠=∠,要使12∠=∠成立,则根据等式的性质,可以直接添加的条件是FCB EBC ∠=∠,再根据平行线的性质和判定,亦可添加//CF BE 或E F ∠=∠.故答案为:(1)//CF BE ;(2)E F ∠=∠;(3)FCB EBC ∠=∠.【点睛】考查了平行线的性质,此类题要首先根据已知条件进行推理,再结合结论和所学过的性质进行推导.14.下列各式①3027b a ;②22y x x y -+;③22y x x y ++;④2m m;⑤233x x +-中分子与分母没有公因式的分式是__.(填序号)【答案】③⑤【解析】①∵30b 27a =310b 39a⨯⨯, ∴分子与分母有公因式3; ②∵()()22x y x y y x x y x y+--=-++∴分子与分母有公因式x+y ; ③22y x x y++的分子与分母没有公因式;④∵2m m m m m⨯=∴分子与分母有公因式m ; ⑤233x x +-的分子与分母没有公因式. ∴③和⑤的分子与分母没有公因式,故答案为③和⑤.15.若2x =3,4y =5,则2x+2y =_______.【答案】15【解析】解:45y =,225y ∴=222223515x y x y +∴=⋅=⨯=故答案为:15164,34-,-3,最小的数是__________ 【答案】-3【解析】正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,据此解答即可.【详解】根据正负数比较大小方法,可得> 34->-3, 所以各数中最小的数是−3.故答案为:-3【点睛】此题考查正、负数大小的比较,难度不大17.已知不等式组1x x a >⎧⎨<⎩无解,则a 的取值范围是_____. 【答案】a≤1【解析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【详解】解:∵不等式组{x 1x a ><无解,∴a 的取值范围是a≤1.故答案为a≤1.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题18.作图题:(不要求写作法)如图,在 10×10 的方格纸中,有一个格点四边形 ABCD (即四边形的顶点都在格点上)。
2019年江苏省七年级下学期期末考试数学试卷(含答案)

2019年江苏省七年级下学期期末考试试卷数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版七下全册。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的三边长分别为2、x 、2,则x 可能是 A .5B .1C .6D .42.下列各数中,能使不等式x –3>0成立的是 A .5B .–3C .3D .23.下列运算正确的是 A .a 5–a 3=a 2B .a 6÷a 2=a 3C .(–2a )3=–8a 3D .2a –2=212a 4.下列语句中是命题的有①如果两个角都等于70°,那么这两个角是对顶角;②三角形内角和等于180°;③画线段AB =3cm . A .0个B .1个C .2个D .3个5.方程组331x y x y -=⎧⎨-=⎩的解是A .14x y =⎧⎨=-⎩B .14x y =-⎧⎨=-⎩C .14x y =-⎧⎨=⎩D .14x y =⎧⎨=⎩6.如图,已知∠BOF =120°,则∠A +∠B +∠C +∠D +∠E +∠F 为多少度A .360°B .720°C .540°D .240°第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为__________. 8.命题“锐角与钝角互为补角”的逆命题是__________. 9.已知a –b =3,ab =–2,则a 2b –ab 2的值为__________. 10.已知:5x m +7-2y 2n -1=4是二元一次方程,则mn =__________.11.如果二次三项式224x x m ++是一个完全平方式,那么m =__________.12.若21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程2mx ny +=-的一个解,则62m n -+的值为__________.13.已知P =m 2–m ,Q =m –1(m 为任意实数),则P 、Q 的大小关系为__________. 14.在△ABC 中,∠C =50°,按图中虚线将∠C 剪去后,∠1+∠2等于__________度.15.如图,将ABC △沿BC 方向平移1个单位得到DEF △,若ABC △的周长等于8,则四边形ABFD的周长等于__________.16.如图,在四边形ABCD 中,AB ∥CD ,∠BAD 、∠ADC 的平分线AE 、DF 分别与线段BC 相交于点E 、F ,∠DFC =30°,AE 与DF 相交于点G ,则∠AEC =__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)x 3•x 5–(2x 4)2+x 10÷x 2;(2)20182019144⨯(-).18.(本小题满分7分)解不等式组:62442133x x x x ->-⎧⎪⎨≥-⎪⎩,并把解集在数轴上表示出来.19.(本小题满分8分)先化简,再求值:()()()222222084x y x y xy x yxy -++-÷,其中x =–1,y =1.20.(本小题满分8分)在四边形ABCD 中,相对的两个内角互补,且满足567A B C ∠∠∠=︰︰︰︰,求四个内角的度数分别是多少. 21.(本小题满分8分)完成下面的证明:如图,FG ∥CD ,∠1=∠3,∠B =50°,求∠BDE 的度数. 解:∵FG ∥CD (已知),∴∠2=__________. 又∵∠1=∠3,∴∠3=∠2(等量代换), ∴BC ∥__________,∴∠B +∠BDE =180°(__________). 又∵∠B =50°,∴∠BDE =__________.22.(本小题满分8分)在解方程组51542ax y x by +=⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的a ,得到的解为31x y =-⎧⎨=-⎩,乙看错了方程组中的b ,得到的解为54x y =⎧⎨=⎩. (1)求原方程组中a ,b 的值各是多少;(2)求出原方程组的正确解.23.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的高,点E 在BC 上,AE 是∠BAC 的平分线,BE =AE ,∠B =40°.(1)求∠EAD 的度数;(2)求∠C 的度数.24.(本小题满分8分)如图,CD 是△ABC 的高,点E 、F 、G 分别在BC 、AB 、AC 上,且EF ⊥AB .(1)在△ABC中,AC=4,BC=5,写出AB的取值范围;(2)若DG∥BC,试判断∠1、∠2的数量关系,并说明理由.25.(本小题满分9分)某造纸厂为了保护环境,准备购买A,B两种型号的污水处理设备共6台,用于同时治理不同成分的污水,若购买A型号2台,B型号3台需54万元,购买A型号4台、B型号2台需68万元.(1)求A型号、B型号污水处理设备的单价;(2)经核实,一台A型号设备一个月可处理污水220吨,一台B型号设备一个月可处理污水180吨,如果该企业每月的污水处理量不低于1150吨,问共有几种购买方案?请你为该企业设计一种最省钱的购买方案并求此时的购买费用.26.(本小题满分8分)尝试探究并解答:(1)为了求代数式x2+2x+3的值,我们必须知道x的值,若x=1,则这个代数式的值为__________;若x=2,则这个代数式的值为__________,可见,这个代数式的值因x的取值不同而__________(填“变化”或“不变”).尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)本学期我们学习了形如a2+2ab+b2及a2–2ab+b2的式子,我们把这样的多项式叫做“完全平方式”.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以解决代数式的最大(或最小)值问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因为(x+1)2≥0,所以(x+1)2+2≥2,所以这个代数式x2+2x+3有最小值是2,这时相应的x的值是__________.(3)猜想:①4x2–12x+13的最小值是__________;②–x2–2x+3有__________值(填“最大”或“最小”).27.(本小题满分9分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
常州市初一下学期数学期末试卷带答案

7.以下列各组线段为边,能组成三角形的是()
A.1cm,2cm,4cmB.2cm,3cm,5cm
C.5cm,6cm,12cmD.4cm,6cm,8cm
8.下列各式中,计算结果为x2﹣1的是( )
A. B.
C. D.
9.如图,已知直线 ∥ , , ,则 ()
一、选择题
1.B
解析:B
【分析】
先判断三边长是否能构成三角形,再判断是否是等腰三角形.
【详解】
上述选项中,A、C、D不能构成三角形,错误
B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确
故选:B.
【点睛】
本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.
(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.
27.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.
28.因式分解:
(1) ;
(2) .
【参考答案】***试卷处理标记,请不要删除
…… ……
(1)请直接写出(a+b)4=__________;
(2)利用上面的规律计算:
①24+4×23+6×22+4×2+1=__________;
②36-6×35+15×34-20×33+15×32-6×3+1=________.
24.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.
【北师大版】七年级下册数学《期末考试题》(含答案解析)

2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
常州市名校2019-2020学年七年级第二学期期末统考数学试题含解析

常州市名校2019-2020学年七年级第二学期期末统考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个答案正确)1.如(y+a )与(y-7)的乘积中不含y 的一次项,则a 的值为( )A .7B .-7C .0D .14【答案】A【解析】试题分析:根据多项式的乘法计算法则可得:原式=()2a 7y 7a y +--,根据不含y 的一次项可知:a -7=0,则a=7,故选A .2.已知图中的两个三角形全等,则α∠的度数是( )A .72︒B .60︒C .58︒D .50︒【答案】D【解析】【分析】 根据全等三角形对应角相等解答即可.【详解】∵两个三角形全等,∴∠α=50°.故选:D .【点睛】此题考查全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.3.已知关于x 的不等式40x a -≤的非负整数解是012、、,则a 的取值范围是( ) A .34a ≤<B .812a ≤≤C .812a ≤<D .34a ≤≤【答案】C【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【详解】解:解不等式4x-a≤0得到:x≤a4,∵非负整数解是0,1,2,∴2≤a4<3,解得8≤a<1.故选择:C. 【点睛】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定a4的范围是解题的关键.解不等式时要根据不等式的基本性质.4.在﹣3,0,1四个数中,是无理数的是()A.﹣3 B C.0 D.1【答案】B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:﹣3,0,1是有理数,是无理数,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.方程ax-4y=x-1是关于x,y的二元一次方程,则a的取值范围为( )A.a≠0B.a≠-1C.a≠1D.a≠2【答案】C【解析】【分析】将方程整理得(a-1)x-4y=-1.因为此方程为关于x,y的二元一次方程,所以a-1≠0,所以a≠1.解:方程合并同类项后得(a-1)x=4y-1根据题意a-1≠0 ,即a≠1时这个方程才是关于x、y的二元一次方程,故选C.【点睛】本题考查二元一次方程的定义,掌握成立条件是解题关键.6.下列长度的三条线段能组成三角形的是()A.1.5cm,2cm,2.5cm B.2cm,5cm,8cmC.1cm,3cm,4cm D.5cm,3cm,1cm【答案】A【解析】A. 1.5+2>2.5,根据三角形的三边关系,能组成三角形,符合题意;B. 2+5<8,根据三角形的三边关系,不能够组成三角形,不符合题意;C. 1+3=4,根据三角形的三边关系,不能组成三角形,不符合题意;D. 1+3<5,根据三角形的三边关系,不能够组成三角形,不符合题意.故选A.7.下列计算结果正确的是()A.2a·3a=6a B.6a÷3a=3a C.(a-b)=2a-2b D.32a+23a=55a【答案】B【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】a2·a3=a5,故选项A错误,a6÷a3=a3,故选项B正确,(a-b)2=a2-2ab+b2,故选项C错误,3a2+2a3不能合并,故选项D错误,故选B.【点睛】本题考查同底数幂的乘除法、幂的乘方与积的乘方、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.8.三张同样的卡片上正面分别有数字5、6、7,背面朝上放在桌子上,小明从中任意抽取一张作为百位,A .13 B .16 C .19 D .23【答案】A【解析】【分析】根据题意可知当抽取5作为百位时组成的三位数小于600,故可求解.【详解】依题意可知:当抽取5作为百位时组成的三位数小于600,故任意抽取5作为百位的概率是13故选A .【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式的运用.9.若实数a ,b 满足关系式21a b -=和23a b +=,则点(),a b 有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】把两式相加消去b,求出a 的值,再求得b 的值即可求解.【详解】两式相加得2a=4解得a=2.∴221b -=解得b=±1,∴(),a b 可以为(2,-1)或(2,1)故选B.【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.10.若多项式2x bx c ++因式分解后的一个因式是()1x +,则b c -的值是()A .1-B .1C .0D .2-【答案】B根据多项式x 2+bx +c 因式分解后的一个因式是(x +1),即可得到当x +1=0,即x =−1时,x 2+bx +c =0,即1−b +c =0,即可得到b−c 的值.【详解】解:1x +为2x bx c ++因式分解后的一个因式.∴当10x +=,即1x =-时,20x bx c ++=,即2(1)(1)0b c -+⋅-+=,1b c ∴-+=-,1b c ∴-=.故选:B .【点睛】本题主要考查了因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题11.比较大小:12__________0.1.(填“>”“<”或“=”) 【答案】>【解析】【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵1112-0.5=-=2222,-2>2,∴22->2.故12>2.1. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等. 12.将一个小球在如图所示的地撰上自由滚动,最终停在黑色方砖上的概率为_____.【答案】12. 【解析】【分析】 根据几何概率的求法:最终没有停在黑色方砖上的概率即停在白色方砖上的概率就是白色区域面积与总面积的比值.【详解】观察这个图可知:白色区域与黑色区域面积相等,各占12,故其概率等于12. 故答案为:12 【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13.如图,在ABC ∆中,//EF BC ,ACG ∠是ABC ∆的外角,BAC ∠的平分线交BC 于点D ,若1150∠=︒,2110∠=︒,则3∠=_______.【答案】70°.【解析】【分析】先求∠1、∠2的邻补角的度数,再根据三角形的内角和可求得∠DAC 的度数,亦即∠BAD 的度数,再用三角形的内角和可求得∠B 的度数,最后根据两直线平行,同位角相等即得结果.【详解】解:∵1150∠=︒,∴∠ACB=30°,∴∠DAC=180°-∠2-∠ACG=180°-110°-30°=40°,∴∠BAD=∠DAC=40°,∵2110∠=︒,∴∠ADB=70°,在△ABD 中,∠B=180°-∠BAD -∠ADB=180°―70°―40°=70°,∵EF ∥BC ,∴∠3=∠B=70°.故答案为70°.【点睛】本题考查了三角形的内角和、角平分线和三角形外角的概念以及平行线的性质,属于基础题型,熟练掌握三角形的内角和和平行线的性质是求解的关键.14.已知()2x-y 310x y +++-=,则y x 的值为_________【答案】12 【解析】【分析】根据非负数性质,求得x 、y 的值,然后代入所求求值即可.【详解】∵()2x-y 30,10x y ≥+-≥+,()2x-y 310x y +++-=∴3010x y x y -+=⎧⎨+-=⎩, 解得12x y =-⎧⎨=⎩∴y x =2-1=12. 故答案为:12 【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..15.如图,BD 平分ABC ∠,DE AB ⊥于E ,DF BC ⊥于F ,6,8AB BC ==. 若21ABC S ∆=,则DE =____________.【解析】【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF ,然后根据三角形的面积公式列式计算即可得解.【详解】∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∵AB=6,BC=8,∴S △ABC =12AB•DE+12BC•DF=12×6DE+12×8DE=21, 即1DE+4DE=21,解得DE=1.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.16.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在'D ,'C 的位置.若66EFB ∠=,则'AED ∠的度数为______.【答案】48°【解析】【分析】先根据平行线的性质得出DEF ∠的度数,再根据翻折变换的性质得出D EF ∠'的度数,根据平角的定义即可得出结论.【详解】//AD BC ,66EFB ∠=︒,∴66DEF ∠=︒,又DEF D EF ∠=∠',∴66D EF ∠='︒,∴18026648AED ∠=︒-⨯︒='︒.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.若4x2+(a﹣1)xy+9y2是完全平方式,则a=_____.【答案】13或﹣1【解析】【分析】根据完全平方公式得出(a﹣1)xy=±2×2x×3y,即可解答【详解】∵4x2+(a﹣1)xy+9y2=(2x)2+(a﹣1)xy+(3y)2,∴(a﹣1)xy=±2×2x×3y,解得a﹣1=±12,∴a=13,a=﹣1.故答案为13或﹣1.【点睛】此题考查完全平方公式,解题关键在于利用完全平方公式求出(a﹣1)xy=±2×2x×3y三、解答题18.已知AB∥CD,点E为平面内一点,BE⊥CE于E,(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF交DF于点G,作ED平分∠BEF交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.【答案】(1)∠DCE=90°+∠ABE;(2)见解析;(3)∠BEG=105°.【解析】【分析】(1)结论:∠DCE=90°+∠ABE.如图1中,从BE交DC的延长线于H.利用三角形的外角的性质即可证明;(2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;(3)如图3中,设∠GEF=α,∠EDF=β.想办法构建方程求出α即可解决问题;【详解】理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠DCE=∠H+∠CEH=90°+∠H,∴∠DCE=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.【点睛】本题考查平行线的性质、垂线的性质、三角形的内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.19.在中,,点,分别是边,上的点,点是一动点.记为,为,为.(1)若点在线段上,且,如图1,则_____________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.【答案】(1);(2);(3)【解析】【分析】(1)根据邻补角的性质可得∠1+∠2+∠PDC+∠PEC=360°,根据四边形的内角和等于360°可得∠PDC +∠PEC+∠C+∠α=360°,然后可得∠1+∠2=∠C+∠α;(2)仿照(1)的解法,即可得到∠α,∠1,∠2之间的关系;(3)根据三角形的外角性质计算即可.【详解】(1)∵∠1+∠PDC=180°,∠2+∠PEC=180°,∴∠1+∠2+∠PDC+∠PEC=360°,∵四边形CDPE的内角和是360°,∴∠PDC+∠PEC+∠C+∠α=360°,∴∠1+∠2=∠C+∠α=90°+50°=140°,故答案为:140°;(2)理由:∵∴又∵四边形的内角和是∴∴(3)由三角形的外角性质可知,∠3=∠2+∠α,∴∠1=90°+∠3=90°+∠2+∠α.【点睛】本题考查的是三角形的外角性质、三角形内角和定理、四边形的内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.20.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【答案】(1)点P的坐标为(0,3);(2)点P的坐标为(﹣9,0);(3)点P的坐标为(﹣3,2);(4)点P的坐标为(﹣3,2).【解析】【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标为0求得m的值,代入点P的坐标即可求解;(3)让纵坐标-横坐标=5得m的值,代入点P的坐标即可求解;(4)让纵坐标为2求得m的值,代入点P的坐标即可求解.【详解】(1)∵点P(3m-6,m+1)在y轴上,∴3m-6=0,解得:m=2,∴m+1=1+2+1=3-,∴点P的坐标为:(0,3);(2)∵点P(3m-6,m+1)在x轴上,∴m+1=0,解得:m=-1,∴3m-6=3×(-1)-6=-9,∴P点坐标为:(-9,0).(3)∵点P (3m-6,m+1)的点P 的纵坐标比横坐标大5,∴m+1-(3m-6)=5, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P 点坐标为:(-3,2).(4) ∵点P (3m-6,m+1)在过点A (-1,2),并且与x 轴平行的直线上,∴m+1=2, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P 点坐标为:(-3,2).21.计算:(1)()()3222223a b a b a b -+⋅- (2)()()22a b c a b c +--+(3)已知6510x y -=,求()()()222232x y x y x y y ⎡⎤-+---⎦÷⎣-的值. 【答案】 (1) 6317a b ;(2)22244a b bc c -+-;(3)10【解析】【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方差公式,以及完全平方公式化简即可得到结果;(3)原式中括号中利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把已知等式代入计算即可求出值.【详解】解:(1)原式6324229a b a b a b =-+⋅636318a b a b =-+=6317a b(2)原式()()22a b c a b c ⎡⎤⎡⎤⎣⎦=---⎣+⎦22(2)a b c =--()22244a b bc c =--+22244a b bc c =-+-(3)原式()2222441292x y x xy y y ⎡⎤=---+÷⎣⎦ ()212102xy y y =-÷65x y =-6510x y -=,∴原式10=【点睛】此题考查了整式的混合运算,以及整式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,点A E F C 、、、在一直线上,,,DE BF DE BF AE CF ==∥.试说明AB CD ∥的理由.【答案】详见解析【解析】【分析】利用SAS 证明AFB CED △≌△,根据全等三角形的性质可得 A C ∠=∠,继而根据平行线的判定可得答案.【详解】DE BF ∥,DEF BFE ∴∠=∠,AE CF =,AF CE ∴=,在AFB △与CED 中,AF CE DEF BFE DE BF =⎧⎪∠=∠⎨⎪=⎩,∴()AFB CED SAS △≌△ , ∴A C ∠=∠,∴AB CD ∥.【点睛】本题考查了全等三角形的判定与性质,熟练掌握相关定理是解题的关键.23.如图,已知ABC △中,AB AC =,O 是ABC △内一点,且OB OC =,试说明AO BC ⊥的理由.【答案】详见解析【解析】【分析】先证明AOB AOC △≌△,再利用全等三角形的性质得到BAO CAO ∠=∠,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在AOB 与AOC △中,AB AC OB OCAO AO (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴(...)AOB AOC S S S △≌△∴BAO CAO ∠=∠(全等三角形的对应角相等)∵AB AC =(已知)∴AO BC ⊥(等腰三角形的三线合一)【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.24.如图,在方格纸内将水平向右平移4个单位得到△.(1)画出△; (2)画出边上的中线和高线;(利用网格点和直尺画图) (3)的面积为 .【答案】 (1)见解析; (2) 见解析;(3) 4.【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)先取AB的中点D,再连接CD即可;过点C作CD⊥AB交AB的延长线于点E,CE即为所求;(3)利用割补法计算△ABC的面积.【详解】(1)如图所示:(2)如图所示;(3)S△BCD=20-5-1-10=4.25.如图,在数轴上,点A、B分别表示数1、﹣2x+5,(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边B.线段AB上C.点B的右边【答案】(1)x<2;(2)B.【解析】【分析】(1)根据数轴上A与B的位置列出不等式,求出解集即可确定出x的范围;(2)根据x的范围判断即可.【详解】解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB 上,故选B【点睛】此题考查了解一元一次不等式以及数轴,熟练掌握不等式的性质是解本题的关键.。
2019-2020学年江苏省常州市七年级(下)期末数学试卷 (解析版)

2019-2020学年江苏省常州市七年级第二学期期末数学试卷一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a33.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.106.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=.10.因式分解:x2﹣4=.11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为.12.请写出命题“互为相反数的两个数和为零”的逆命题:.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=°.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为.15.已知2x﹣6y+6=0,则2x÷8y=.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=°.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.19.解方程组或不等式组:(1);(2).20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+44x;②当x=2时,x2+44x;③当x=﹣1时,x2+44x;④自己再任意取一些x的值,计算后猜想:x2+44x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.参考答案一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m解:∵0.1mm<1cm<1dm<1m,且经测算数学课本的厚度约为10mm,∴数学课本一张纸的厚度大约是0.1mm.故选:A.2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a3解:A.a3•a=a4,故本选项符合题意;B.(a3)2=a6,故本选项不合题意;C.a+a=2a,故本选项不合题意;D.a6÷a2=a4,故本选项不合题意.故选:A.3.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm解:A、2+2=4,不能组成三角形,故本选项不合题意;B、3+4>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不合题意;D、2+3<6,不能组成三角形,故本选项不合题意.故选:B.4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 解:A、不等式a<b两边都加上5可得a+5<b+5,故本选项不合题意;B、不等式a<b两边都乘以﹣2可得﹣2a>﹣2b,故本选项不合题意;C、不等式a<b两边都减去b可得a﹣b<0,不等式a﹣b<0都乘以﹣1可得b﹣a>0,故本选项不合题意;D、不等式a<b两边都都乘以﹣1可得﹣a>﹣b,不等式﹣a>﹣b两边都加上1可得1﹣a>1﹣b,故本选项符合题意.故选:D.5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.10解:多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选:C.6.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形解:A、平行于同一直线的两条直线平行,正确,是真命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线垂直,故原命题错误,是假命题,符合题意;C、两直线平行,同旁内角互补,正确,是真命题,不符合题意;D、有两个角互余的三角形是直角三角形,正确,是真命题,不符合题意;故选:B.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b解:由题意可得:S2=4×b(a+b)=2b(a+b);S1=(a+b)2﹣S2=(a+b)2﹣(2ab+2b2)=a2+2ab+b2﹣2ab﹣2b2=a2﹣b2;∵S1=S2,∴2b(a+b)=a2﹣b2,∴2b(a+b)=(a﹣b)(a+b),∵a+b>0,∴2b=a﹣b,∴a=3b.故选:D.二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=2x2﹣6xy+2x.解:2x(x﹣3y+1)=2x2﹣6xy+2x.故答案为:2x2﹣6xy+2x.10.因式分解:x2﹣4=(x+2)(x﹣2).解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为1×10﹣7.解:0.0000001=1×10﹣7,故答案为:1×10﹣7.12.请写出命题“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数.解:“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数,故答案为:和为零的两数互为相反数.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=25°.解:∵DE∥OB,∴∠AED=∠AOB=50°,∵点D是∠AOB的平分线OC上的任意一点,∴∠1=∠AOC=×50°=25°.故答案为:25.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为a=5.解:由2x﹣a>﹣3,得x>,∵不等式2x﹣a>﹣3的解集是x>1,∴=1,解得,a=5,故答案为:5.15.已知2x﹣6y+6=0,则2x÷8y=.解:2x﹣6y+6=0,2(x﹣3y)=﹣6,x﹣3y=﹣2,∴2x÷8y=2x÷23y=2x﹣3y=2﹣3=.故答案为:.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=140°.解:过G作GM∥AB,过E作EN∥AB,∵AB∥CD,∴AB∥CD∥GM,EN∥AB∥CD,∴∠BAG=∠AGM,∠MGC=∠DCG,∠BAE=∠AEN,∠DCE=∠NEC,∵∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,∴设∠GAF=x°,∠FAE=2x°,∠EAB=4x°,∠GCF=x°,∠FCE=2x°,∠ECD =4x°,∴∠BAG=7x°,∠GCD=7x°,∠AEN=4x°,∠NEC=4x°,∴∠AGM=7x°,∠MGC=7x°,∠AEC=8x°,∵∠AEC=80°,∴8x=80,∴x=10,∴∠AGC=14x°=140°,故答案为:140.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).解:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2=1﹣8+9=2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a)=a2﹣4ab+4b2﹣(4b2﹣9a2)=a2﹣4ab+4b2﹣4b2+9a2=10a2﹣4ab.18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.解:(1)原式=ab(a﹣1);(2)原式=3mn(4m2﹣1)=3mn(2m+1)(2m﹣1).19.解方程组或不等式组:(1);(2).解:(1),①×2得:2x+4y=0③,③﹣②得:7y=﹣7,解得:y=﹣1,把y=﹣1代入①得:x﹣2=0,解得:x=2,方程组的解为;(2),解不等式①得:x<2,解不等式②得:x>1,不等式组的解集为:1<x<2.20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.解:(1)原式=(a﹣b)2+4ab=52+4=29;(2)原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=1×(25+2)=27.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.解:FG∥BC,理由是:∵CF⊥AB,ED⊥AB,∴DE∥CF,∴∠BED=∠BCF,∵∠BED=∠CFG,∴∠CFG=∠BCF,∴FG∥BC.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?解:(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,则,解得:,答:小明爸爸的药店购进甲种型号口罩300袋,乙种型号口罩400袋;(2)设需购进a袋乙种型号的口罩,根据题意得,(25﹣20)(800﹣a)+(36﹣30)a≥4500.解这个不等式,得a≥500.答:至少需购进500袋乙种型号的口罩.23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+4>4x;②当x=2时,x2+4=4x;③当x=﹣1时,x2+4>4x;④自己再任意取一些x的值,计算后猜想:x2+4≥4x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.解:(1)①当x=1时,x2+4=1+4=5,4x=4,∴x2+4>4x;②当x=2时,x2+4=4+4=8,4x=8,∴x2+4=4x;③当x=﹣1时,x2+4=1+4=5,4x=﹣4,∴x2+4>4x;④再任意取一些x的值,计算后可以得到:x2+4≥4x,故答案为:①>;②=;③>;④≥;(2)x2+4﹣4x=(x﹣2)2,∵(x﹣2)2≥0,∴x2+4≥4x.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是①.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是x ﹣3=0.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.解:(1)解不等式组得﹣1<x<4,解①得:x=1,﹣1<1<4,故①是不等式组的关联方程;解②得:x=﹣,不在﹣1<x<4内,故②不是不等式组的关联方程;解③得:x=4,不在﹣1<x<4内,故③是不不等式组的关联方程;故答案为:①;(2)解不等式组得:<x<因此不等式组的整数解可以为x=3,则该不等式的关联方程为x﹣3=0.故答案为:x﹣3=0.(3)解方程2x﹣1=x+2得,x=3,解方程x+5=2(x+)得,x=4,不等式组,得:,由题意,x=3和x=4是不等式组的解,∴,解得m<﹣10,∴m的取值范围为m<﹣10.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.【解答】【基本模型】证明:∵∠OCD=∠OBC+∠BOC,∠ACD=∠ABC+∠A,∴∠BOC=∠OCD﹣∠OBC,∠A=∠ACD﹣∠ABC,又∵CO平分∠ACD,BO平分∠ABC,∴∠OCD=∠ACD,∠OBC=∠ABC,∴∠OCD﹣∠OBC=(∠ACD﹣∠ABC),∴∠BOC=∠A;【变式应用】解:(1)∠F的大小不变;理由如下:∵PQ⊥MN,∴∠PON=90°,∵OE是∠PON的平分线,∴∠AOB=∠PON=45°,∵∠BAC=∠ABF+∠F,∠BAE=∠ABO+∠AOB,∴∠F=∠BAC﹣∠ABF,∠AOB=∠BAE﹣∠ABO,∵AC、BF分别平分∠BAE、∠ABO,∴∠BAC=∠BAE,∠ABF=∠ABO,∴∠BAC﹣∠ABF=(∠BAE﹣∠ABO),∴∠F=∠AOB=22.5°;(2)AB⊥OE,理由如下:∵FC∥MN,∴∠FBO=∠F=22.5°,∵BF平分∠ABO,∴∠ABO=2∠FBO=45°,∴∠OAB=180°﹣∠AOB﹣∠ABO=90°,∴AB⊥OE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:A
【解析】
.故选A.
3.D
解析:D
【解析】
A.∵a>b,∴a-7>b-7,∴选项A正确;
B.∵a>b,∴6+a>b+6,∴选项B正确;
C.∵a>b,∴ ,∴选项C正确;
D.∵a>b,∴-3a<-3b,∴选项D错误.
故选D.
4.A
解析:A
【解析】
【分析】
先求出不等式组的解集,再在数轴上表示出来即可.
3.已知实数a,b,若a>b,则下列结论错误的是
A.a-7>b-7B.6+a>b+6C. D.-3a>-3b
4.不等式组 的解集在数轴上表示正确的是()
A. B. C. D.
5.计算 的值是()
A.-1B.1C. D.
6.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()
(1)一共有多少名学生参与了本次问卷调查;
(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;
(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.
22.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A.没影响;B.影响不大;C.有影响,建议做无声运动;D.影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.
请根据以上信息解答下列问题:
(1)填空m=________,态度为C所对应的圆心角的度数为________;
(2)补全条形统计图;
(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;
23.某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.
考点:平行线的性质.
8.C
解析:C
【解析】
【分析】
根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.
【详解】
解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;
B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;
2019年常州市七年级数学下期末试题(及答案)
一、选择题
1.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为( )
A.20cmB.22cm
C.24cmD.26cm
2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()
A.100°B.130°C.150°D.80°
解: 与 是对顶角(已知), ()
(已知),得 (等量代换).
_________().
(已知),得 ().
________(等量代换).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:
18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.
参赛者
答对题数
答错题数
得分
A
19
1
112
B
18
2
104
C
17
3
96
D
10
10
40
19.在平面直角坐标系 中,若 在 轴上,则线段 长度为________.
【点睛】
此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.
14.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算
解析:3
【解析】
找到立方等于27的数即可.
解:∵33=27,
∴27的立方根是3,
16.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°
解析:62
【解析】
【分析】
【详解】
∵ , ,
∴∠BOC=90°-28°=62°
∵∠BOC=∠AOD
∴∠AOD=62°.
17.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【
【详解】
∵解不等式①得:x<1,
解不等式②得:x≥-1,
∴不等式组的解集为-1≤x<1,
在数轴上表示为: ,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
5.B
解析:B
【解析】
【分析】
根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.
20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.
三、解答题
21.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:
故选B.
11.A
解析:A
【解析】
【分析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
12.A
解析:A
【解析】
【分析】
解析:④.
【解析】
【分析】
分别求出1-4月音乐手机的销售额,再逐项进行判断即可.
【详解】
1月份的音乐手机销售额是85×23%=19.55(万元)
2月份的音乐手机销售额是80×15%=12(万元)
3月份音乐手机的销售额是60×18%=10.8(万元),
4月份音乐手机的销售额是65×17%=11.05(万元).
其中正确的结论是________(填写序号).
14.27的立方根为.
15.若不等式组 有解,则a的取值范围是_____.
16.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;
17.如图,直线 ,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为______.
①从1月到4月,手机销售总额3-4月份上升,故①错误;
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;
③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;
④今年1-4月中,音乐手机销售额最低的是3月,故④正确.
故答案为:④.
根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.
【详解】
解:因为A(﹣2,1)和B(﹣2,﹣3),
所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).
故选:A.
【点睛】
考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.
二、填空题
13.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额
A.﹣2B.2C.3D.﹣3
11.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是( )
A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)
二、填空题
13.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:
①从1月到4月,手机销售总额连续下降
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降
③音乐手机4月份的销售额比3月份有所下降
④今年1-4月中,音乐手机销售额最低的是3月
A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多
C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多
9.如图,在下列给出的条件中,不能判定AB∥DF的是( )
A.∠A+∠2=180°B.∠1=∠AC.∠1=∠4D.∠A=∠3
10.已知关于x,y的二元一次方程组 的解为 ,则a﹣2b的值是( )
求甲、乙商品每件各多少元?
本次计划采购甲、乙商品共30件,计划资金不超过460元,
最多可采购甲商品多少件?
若要求购买乙商品的数量不超过甲商品数量的 ,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.
24.如图,已知 , ,请用三种不同的方法说明 .