2019届中考数学复习专项二解答题专项五、简单的几何证明练习.docx
初三几何证明练习题和答案

初三几何证明练习题和答案几何证明是初中数学中的重要内容,通过练习不同类型的几何证明题,可以帮助学生理解并掌握几何证明的基本方法与技巧。
本文将为大家提供一些初三几何证明的练习题和答案,希望对同学们的学习有所帮助。
1. 题目:已知ABCD是平行四边形,证明∠ABC + ∠ADC = 180°。
证明:解:连接AC,根据平行四边形的性质可知∠ADC = ∠ACB,所以要证明∠ABC + ∠ADC = 180°,只需证明∠ABC + ∠ACB = 180°。
由角的内外(对顶、同旁)定理可知∠ACB + ∠ABC = 180°,即∠ABC + ∠ACB = 180°。
所以,∠ABC + ∠ADC = 180°得证。
2. 题目:已知直角三角形ABC中,∠ACB = 90°,AC = 5cm,BC= 12cm,证明AB = 13cm。
证明:解:根据勾股定理可得AB² = AC² + BC²。
代入已知条件,即可得AB² = 5² + 12² = 25 + 144 = 169。
开方可得AB = 13cm。
所以,AB = 13cm得证。
3. 题目:已知直角三角形ABC中,∠ACB = 90°,AC = BC,证明∠ABC = 45°。
证明:解:连接AB,根据等腰直角三角形的性质可知∠ACB = ∠CAB。
所以,∠ABC = 180° - ∠ACB - ∠CAB = 180° - ∠ACB - ∠ACB = 180° - 2∠ACB。
由于∠ACB = 90°,代入得∠ABC = 180° - 2 × 90° = 0°。
所以,∠ABC = 0°,即∠ABC = 45°得证。
4. 题目:已知ABCD是一个平行四边形,E为AD的中点,证明BE平分∠CBD。
初三几何证明练习题含答案

初三几何证明题经典题一1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA=15°;求证:△PBC是正三角形.初二3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题二1、已知:△ABC中,H为垂心各边高线的交点,O为外心,且OM⊥BC于M.1求证:AH=2OM;2若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF 的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题三1、如图,四边形ABCD 为正方形,DE ∥AC,AE =AC,AE 与CD 相交于F . 求证:CE =CF .证明:连接BD 交AC 于O;过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30° ∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC,且CE =CA,直线EC 交DA 延长线于F . 求证:AE =AF .证明:连接BD,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC,又EG ⊥AC∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG =OD =21BD=21AC=21CE ∴∠GCE=30° ∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP,CF 平分∠DCE . 求证:PA =PF .初二证明:过点F 作FG ⊥CE 于G,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF ∵AP ⊥FP∴∠APB+∠FPG=90° ∵∠APB+∠BAP=90° ∴∠FPG=∠BAP 又∠FGP=∠PBA ∴△FGP ∽△PBA ∴FG :PB=PG :AB4、如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC,BC =AD .初三证明:过点E 作EK ∥BD,分别交AC 、AF 于M 、K,取EF 的中点H, 连接OH 、MH 、EC设AB=x ,BP=y ,CG=zz :y=x-y+z :x化简得x-y ·y =x-y ·z ∵x-y ≠0 ∴y=z 即BP=FG ∴△ABP ≌△PGF∴∠CAE=∠CEA=21∠GCE=15° 在△AFC 中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE=180°-135°-30°=15°∵EH=FH∴OH ⊥EF,∴∠PHO=90° 又PC ⊥OC,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO又EK ∥BD,∴∠HPO=∠HEK ∴∠HCM=∠HEM ∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题四1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =求∠APB 的度数.初二解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .初二∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD 又AO=CO∴四边形ABCD 的对角证明:过点P 作AD 的平行线,过点A 作PD 的平行线, 两平行线相交于点E,连接BE ∵PE ∥AD,AE ∥PD ∴ADPE 是平行四边形 ∴PE=AD,又ABCD 是平行四边形 ∴AD=BC ∴PE=BC又PE ∥AD,AD ∥BC ∴PE ∥BC∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .初三 证明:在BD 上去一点E,使∠BCE=∠ACD ∵错误!=错误!∴∠CAD=∠CBD ∴△BEC ∽△ADC ∴ACBCAD BE∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD∵错误!=错误!,∴∠BAC=∠BDC △BAC ∽△EDC又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB∴CDACDE AB∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .初二证明:过点D 作DG ⊥AE 于G,作DH ⊥FC 于H,连接DF 、∴S △ADE =错误!AE ·DG,S △FDC =错误!FC ·DH 又S △ADE =S △FDC =错误!S □ABCD ∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题五1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC,求证:3≤L <2. 证明:1将△BPC 绕B 点顺时针旋转60°的△BEF,连接PE,∵BP=BE,∠PBE=60° ∴△PBE 是正三角形; ∴PE=PB 又EF=PC ∴L=PA+PB+PC=PA+PE+EF当PA 、PE 、EF 在一条直线上的时候,L=PA+PE+EF 的值最小如图在△ABF 中,∠ABP=120°∴AF=3BGB∴L=PA+PB+PC ≤32过点P 作BC 的平行线分别交AB 、AC 于D 、G 则△ADG 是正三角形 ∴∠ADP=∠AGP,AG=DG ∵∠APD >∠AGP ∴∠APD >∠ADP∴AD >PA …………………………① 又BD+PD >PB ……………………② CG+PG >PC ……………………③①+②+③得AD+BD+CG+PD+PG >PA+PB+PC ∴AB+CG+DG=AB+CG+AG=AB+AC >PA+PB+PC=L ∵AB=AC=1∴L <2 由12可知:3≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.解:将△BCP 绕点B 顺时针旋转60°得△BEF,连接PE, 则△BPE 是正三角形 ∴PE=PB∴PA +PB +PC=PA+PE+EF∴要使PA +PB +PC 最小,则PA 、PE 、EF 应该在一条直线上如图此时AF=PA+PE+EF过点F 作FG ⊥AB 的延长线于G则∠GBF=180°-∠ABF=180°-150°=30° ∴GF=错误!,BG=23∴AF=22AG GF +=2212321⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛=32+∴PA +PB +PC 的最小值是32+3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a,求正方形的边长. 证明:将△ABP 绕点B 顺时针旋转90°得△BCQ,连接PQ 则△BPQ 是等腰直角三角形, ∴PQ=2PB=2×2a=22a 又QC=AP=a∴QP 2+QC 2=22a 2+a 2=9a 2=PC 2∴△PQC 是直角三角形 ∴∠BQC=135°∵BC 2=BQ 2+CQ 2-2BQ ·CQ ·cos ∠BQC=PB 2+PA 2-2PB ·PAcos135°=4a 2+a 2-2×2a ×a ×-22解得BC=a 225+∴正方形的边长为a 225+4、如图,△ABC 中,∠ABC =∠ACB =80°,D 、E 分别是AB 、AC 上的点,∠DCA =30°,∠EBA =20°,求∠BED 的度数.解:在AB 上取一点F,使∠BCF=60°,CF 交BE 于G,连接EF 、DG ∵∠ABC=80°,∠ABE=20°,∴∠EBC=60°,又∠BCG=60° ∴△BCG 是正三角形∴BG=BC∵∠ACB=80°,∠BCG=60°∴∠FCA=20°∴∠EBA=∠FCA 又∵∠A=∠A,AB=AC ∴△ABE ≌ACF ∴AE=AF ∴∠AFE=∠AEF=错误!180°-∠A=80°又∵∠ABC=80°=∠AFE ∴EF ∥BC ∴∠EFG=∠BCG=60° ∴△EFG 是等边三角形∴EF=EG,∠FEG=∠EGF=∠EFG=60°∵ACB=80°,∠DCA=30°∴∠BCD=50°∴∠BDC=180°-∠BCD-∠ABC=180°-50°-80°=50° ∴∠BCD=∠BDC ∴BC=BD 前已证BG=BC ∴BD=BG ∠BGD=∠BDG=错误!180°-∠ABE=80°∴∠FGD=180°-∠BGD-∠EGF=180°-80°-60°=40° 又∠DFG=180°-∠AFE-∠EFG=180°-80°-60°=40°∴∠FGD=∠DFG ∴DF=DG 又EF=EG,DE=DE ∴△EFD ≌△EGD ∴∠BED=∠FED=错误!∠FEG=错误!×60°=30°5、如图,△ABC 内接于⊙O,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D,过点D 作⊙O 的切线PD 交CA 的延长线于点P,过点A 作AE ⊥CD 于点E,过点B 作BF ⊥CD 于点F,若AC=6,BC=8,求线段PD 的长; 解:∵∠ACD=∠BCD ∴错误!=错误!∴AD=BD ∵AB 为⊙O 的直径∴∠ADB=90° ∴△ABD 是等腰直角三角形∵∠ACB=90°,AC=6,BC=8 ∴AB=10∴AD=AB ·cos ∠DAB=10×22=52 又AE ⊥CD,∠ACD=45°∴△ACE 是等腰直角三角形∴CE=AE=AC ·cos ∠CAE=6×22=32 在△ADE 中,DE 2=AD 2-AE 2∴DE 2=32232522=)()(-∴DE=24 ∴CD=CE+DE=32+24=27∵∠PDA=∠PCD,∠P=∠P ∴△PDA ∽△PCD ∴752725====CD AD PD PA PC PD ∴PC=57PD,PA=75PD ∵PC=PA+AC ∴57PD=75PD+6解得PD=435 1证明:过点G 作GH ⊥AB 于H,连接OE ∵EG ⊥CO,EF ⊥AB ∴∠EGO=90°,∠EFO=90°∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB,CD ⊥AB ∴GH ∥CD ∴CD COHG GO =∴CDCOFG EO =∵EO=CO ∴CD=GF2证明:作正三角形ADM,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA,MP=BP 同理∠CPD=∠MPD,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60°∵MP=BP,MP=CP ∴BP=CP ∴△BPC 是正三角形3证明:连接AC,取AC 的中点G,连接NG 、MG ∵CN=DN,CG=DG ∴GN ∥AD,GN=21AD ∴∠DEN=∠GNM ∵AM=BM,AG=CG ∴GM ∥BC,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F1证明:1延长AD 交圆于F,连接BF,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵错误!=错误! ∴∠F=∠ACB 又AD ⊥BC,BE ⊥AC ∴∠BHD+∠DBH=90°∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2GH+DH=2GD 又AD ⊥BC,OM ⊥BC,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM 2连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由1知AH=2OM ∴AH=BO=AO2证明:作点E 关于AG 的对称点F,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF ∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG,PQ ⊥AG ∴EF ∥PQ ∴∠PAF=∠AFE ∵AF=AE ∴∠AFE=∠AEF∴∠AEF=∠PAF∵∠PAF+∠QAF=180°∴∠FCQ=∠QAF∴F、C、A、Q四点共圆∴∠AFQ=∠ACQ又∠AEP=∠ACQ∴∠AFQ=∠AEP在△AEP和△AFQ中∠AFQ=∠AEPAF=AE∠QAF=∠PAE∴△AEP≌△AFQ∴AP=AQ。
2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.[解析] (1)过A 作DC 的垂线AM 交DC 于M,则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒. 所以3BF k ==所以1sin 33k BFE k ∠==.2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.[解析] (1)∵四边形ABCD 是平行四边形,∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE =21AB ,CF =21CD . ∴AE =CF∴△ADE ≌△CBF .(2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形.EBFCDA∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD ,∴四边形 AGBD 是平行四边形. ∵四边形 BEDF 是菱形, ∴DE =BE . ∵AE =BE ,∴AE =BE =DE .∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB =90°. ∴四边形AGBD 是矩形3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.[解析](1)BM =FN .证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF . 又∵∠BOM =∠FON , ∴ △OBM ≌△OFN . ∴ BM =FN .(2) BM =FN 仍然成立.(3) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF . ∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN . ∴ BM =FN .图13-2图13-3图13-1 A ( E )4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
【精品】2019中考数学几何证明专题试卷精选汇编(有解析答案)

几何证明东城区19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC 于点F . 求证:AE =AF .19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分 ∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分 西城区19.如图,AD 平分BAC ∠,BD AD ⊥于点D ,AB 的中点为E ,AE AC <. (1)求证:DE AC ∥.(2)点F 在线段AC 上运动,当AF AE =时,图中与ADF △全等的三角形是__________.ECBA【解析】(1)证明:∵AD 平分BAC ∠, ∴12∠=∠, ∵BD AD ⊥于点D , ∴90ADB ∠=︒, ∴ABD △为直角三角形. ∵AB 的中点为E , ∴2AB AE =,2ABDE =, ∴DE AE =, ∴13∠=∠, ∴23∠=∠, ∴DE AC ∥. (2)ADE △.321ECBA海淀区19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠.FE DCB A19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴12CD AB BD ==. ∴ABC DCB ∠=∠. …………… ∵DC EF ∥,∴CBF DCB ∠=∠.∴CBF ABC ∠=∠. ∴BC 平分ABF ∠. 丰台区19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .F E CBA19.证明:连接AD .∵AB =BC ,D 是BC 边上的中点,∴∠BAD =∠CAD . ………………………3分 ∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF . ………………………5分 (其他证法相应给分) 石景山区19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.O H FE DCB A(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分朝阳区19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.19. 证明:∵AC =BC ,CE 为△ACB 的中线,AB CEF∴∠CAB=∠B,CE⊥AB. ……………………………………………2分∴∠CAB+∠ACE=90°. ………………………………………………3分∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°. ……………………………………………………4分∴∠DAB=∠ACE. ………………………………………………………5分燕山区19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。
2019中考数学几何证明专题试卷精选汇编(有解析答案)

1几何证明东城区19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC 于点F . 求证:AE =AF .19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分 ∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分 西城区19.如图,AD 平分BAC ∠,BD AD ⊥于点D ,AB 的中点为E ,AE AC <. (1)求证:DE AC ∥.(2)点F 在线段AC 上运动,当AF AE =时,图中与ADF △全等的三角形是__________.2 EDCBA【解析】(1)证明:∵AD 平分BAC ∠, ∴12∠=∠, ∵BD AD ⊥于点D , ∴90ADB ∠=︒, ∴ABD △为直角三角形. ∵AB 的中点为E , ∴2AB AE =,2ABDE =, ∴DE AE =, ∴13∠=∠, ∴23∠=∠, ∴DE AC ∥. (2)ADE △.321EDCBA海淀区19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠.3FE DCB A19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴12CD AB BD ==. ∴ABC DCB ∠=∠. …………… ∵DC EF ∥,∴CBF DCB ∠=∠.∴CBF ABC ∠=∠. ∴BC 平分ABF ∠. 丰台区19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .F DE CBA19.证明:连接AD .∵AB =BC ,D 是BC 边上的中点,∴∠BAD =∠CAD . ………………………3分 ∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,ABCE DF4 ∴DE =DF . ………………………5分 (其他证法相应给分) 石景山区19.问题将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.O H GFE DCB A(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分朝阳区19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.19. 证明:∵AC =BC ,CE 为△ACB 的中线,∴∠CAB =∠B ,CE ⊥AB . ……………………………………………2分 ∴∠CAB +∠ACE =90°. ………………………………………………3分 ∵AD 为△ACB 的高线, ∴∠D =90°.∴∠DAB +∠B =90°. ……………………………………………………4分∴∠DAB=∠ACE. ………………………………………………………5分燕山区19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。
安徽省2019年中考二轮复习题型六:几何图形的证明及计算(含答案)

题型六几何图形的证明及计算类型一与全等三角形有关的证明及计算1.如图,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N 为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;第1题图2.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长线交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.第2题图3.如图①,在△ABC中,∠ACB=90°,AC=BC,E为AC边上的一点,F为AB边上一点,连接CF,交BE于点D,且∠ACF=∠CBE,CG平分∠ACB交BD于点G.(1)求证:CF=BG;(2)如图②,延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=33,BG=6,求AC的长.图①图②第3题图4.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)求证:∠CAE=∠CBD;(2)如图②,F是BD的中点,连接CF交AE于点M,求证:AE⊥CF;(3)如图③,F,G分别是BD,AE的中点,连接GF,若AC=2 2 ,CE=1,求△CGF 的面积.第4题图5.如图①,在正方形ABCD中,O是对角线AC上一点,点E在BC的延长线上,且OE=OB,OE交CD于点F.(1)求证:△OBC≌△ODC;(2)求证:∠DOE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=52°,求∠DOE的度数.第5题图6.已知:如图①,等腰直角△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC =DC.(1)求证:BE=AD;(2)如图②,若将△ECD绕点C按逆时针方向旋转一个锐角,①延长BE交AD于点F,交AC于点O.求证:BF⊥AD;②如图③,取BE的中点M,AD的中点N,连接MN,NC,求∠MNC的度数.第6题图类型二与相似三角形有关的证明及计算1.如图①,已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的点,过点Q作AC的垂线交线段AB(如图①)或线段AB的延长线(如图②)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.第1题图2. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点,连接DE 、CE .(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =5,AB =7,求ACAF的值.第2题图3. 如图①,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 上,∠EDF =∠B. (1)求证:DE ·CD =DF ·BE ;(2)如图②,若D 为BC 中点,连接EF ,A D. ①求证:DE 平分∠BEF ;②若四边形AEDF 为菱形,求∠BAC 的度数及AEAB的值.第3题图4. 如图①,△ABC 中,点D 在线段AB 上,点E 在线段CB 延长线上,且BE =CD ,EP ∥AC 交直线CD 的延长线于点P ,交直线AB 的延长线于点F ,∠ADP =∠AC B.(1)图①中是否存在与AC 相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;(2)若将“点D 在线段AB 上,点E 在线段CB 延长线上”改为“点D 在线段BA 延长线上,点E 在线段BC 延长线上”,其他条件不变(如图②).当∠ABC =90°,∠BAC =60°,AB =2时,求线段PE 的长.第4题图5. 如图①,△ABC 中,BC >AC ,CD 平分∠ACB 交AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交CD 于H .(1)若∠EFC =∠A ,求证:CE ·CD =CH ·BC ;(2)如图②,若BH 平分∠ABC ,CE =CF ,BF =3,AE =2,求EF 的长; (3)如图③,若CE ≠CF ,∠CEF =∠B ,∠ACB =60°,CH =5,CE =4 3 ,求ACBC的值.第5题图类型三与全等和相似三角形有关的证明及计算1.如图,等边△ABC边长是8,过点C的直线l∥AB,点D为BC上一点(不与点B,C重合),将一个60°角的顶点放在D处,它的边始终过点A,另一边与直线l交于点E,DE 交AC于点F.(1)若BD=6,求CF的长;(2)若点D是BC的中点,判定△ADE的形状,并给出证明;(3)若点D不是BC的中点,则(2)中的结论成立吗?如果成立,请给予证明,如果不成立,请说明理由.第1题图2.如图①,在△ABC中,AC=BC,∠ACB=90°,点D、P分别为AC、AB的中点,连接BD、CP,CP交BD于点E,点F在AB上且∠ACF=∠CB D.(1)求证:CF=BE;(2)如图②,过点A作AG⊥AB交BD的延长线于点G.①若CF=6,求DG的长;②设CF 交BD 于点H ,求HECH的值.第2题图3. 如图①,已知D 是△ABC 的边BC 上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BE =CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于点G .(1)若∠BAC =90°,求证:△ABC 为等腰直角三角形; (2)如图②,若∠BAC ≠90°,AF =2DF . ①求证:FM AN =EM DN ;②求AN ∶FM 的值.图① 图②第3题图4. (2018六安市模拟)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图①,连接AI 并延长交BC 于点D ,若AB =AC =3,BC =2,求ID 的长; (2)如图②,过点I 作直线交AB 于点M ,交AC 于点N . ①若MN ⊥AI ,求证:MI 2=BM ·CN ;②如图③,AI 的延长线交BC 于点D ,若∠BAC =60°,AI =4,求1AM +AN1的值.5.如图①,在△ABC中,∠ACB=90°,AC=BC,顶点C恰好在直线l上,过A、B 分别作AD⊥l,BE⊥l,垂足分别为D、E.(1)求证:DE=AD+BE;(2)如图②,在△ABC中,当AC=kBC,其他条件不变,猜想DE与AD、BE的关系,并证明你的结论;(3)如图③,在Rt△ABC中,AC=4,BC=12,∠ACB=90°,点D是AC的中点,点E在BC上,过点E作EF⊥DE交AB于点F,若恰好EF=2DE,求CE的长.第5题图6.如图①,在等腰Rt△ABC中,∠ACB=90°,AC=BC, D为AB的中点,连接CD,将一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)若CE=CF,求证:△DCE≌△DCF;(2)如图②,在∠EDF绕点D旋转的过程中:①探究线段AB与CE、CF之间的数量关系,并证明;②若AB=42,CE=2CF,求DN的长.第6题图参考答案类型一与全等三角形有关的证明及计算1. (1)证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,∠BAM=∠CAM,∴∠CAM+∠ACM=90°,∵AC⊥BD,∴∠MBE+∠ACM=90°,∴∠BAN=∠CAM=∠MBE,∵MB=MN,∴∠MNB=∠MBN,∵∠MNB=∠ABN+∠BAN,∠MBN=∠MBE+∠NBE,∴∠ABN+∠BAN=∠MBE+∠NBE,∴∠ABN =∠NBE ,即BN 平分∠ABE ;(2)解:连接DN ,∵点M 为BC 中点,MB =MN ,∴MB =MN =12BC , ∵四边形DNBC 为平行四边形,∴BN =CD ,BN ∥CD ,∴∠DBN =∠BDC ,由(1)知∠ABN =∠DBN ,∴∠ABN =∠BDC ,∵AB =BD =1,∴△ABN ≌△BDC ,∴AN =BC ,∴AM =AN +MN =32BC , 由(1)中条件可知AM ⊥BC ,即∠AMB =90°,∴AM 2+MB 2=AB 2,即(32BC )2+(12BC )2=1, 解得BC =105.第1题解图2. (1)证明:∵等腰三角形ABC 中,AB =AC ,∴∠ABD =∠ACD ,∵AE =AD ,∴∠ADE =∠AED ,∵∠BAD +∠ABD =∠ADE +∠EDC ,∠EDC +∠ACD =∠AED ,∴∠BAD =2∠EDC ,∵∠ABF =2∠EDC ,∴∠BAD =∠ABF ,∴△ABF 是等腰三角形;(2)解:AN =12BM .证明:如解图,延长CA 至点H ,使AG =AH ,连接BH ,∵点N 是BG 的中点,点A 是HG 的中点,∴AN =12BH , ∵(1)中已证明∠BAD =∠ABF ,且∠DAC =∠CBG ,∴∠CAB =∠CBA ,∴CA =CB又∵AB =AC ,∴△ABC 是等边三角形,∠BAC =∠BCA =60°,∴∠BAH =∠BCM ,∵GM =AB ,AB =AC ,∴AC =GM ,∴CM =AG ,∴AH =CM ,在△BAH 和△BCM 中,⎩⎪⎨⎪⎧AB =BC ∠BAH =∠BCM AH =CM,∴△BAH ≌△BCM (SAS),∴BH =BM ,∴AN =12BM .第2题解图3. (1)证明:∵∠ACB =90°,AC =BC ,∴∠A =45°,∵CG 平分∠ACB ,∴∠ACG =∠BCG =45°,∴∠A =∠BCG ,在△BCG 和△CAF 中,⎩⎪⎨⎪⎧∠A =∠BCG AC =BC ∠ACF =∠CBE,∴△BCG ≌△CAF (ASA),∴CF =BG ;(2)证明:∵PC ∥AG ,∴∠PCA =∠CAG ,∵AC =BC ,∠ACG =∠BCG ,CG =CG ,∴△ACG ≌△BCG (SAS ),∴∠CAG =∠CBE ,∵∠PCG =∠PCA +∠ACG =∠CAG +45°=∠CBE +45°,∠PGC =∠GCB +∠CBE =∠CBE +45°,∴∠PCG =∠PGC ,∴PC =PG ,∵PB =BG +PG ,BG =CF ,∴PB =CP +CF ;(3)解:如解图,过E 作EM ⊥AG ,交AG 于M ,∵S △AEG =12AG ·EM =33, 由(2)得:△ACG ≌△BCG ,∴BG =AG =6,∴ 12×6×EM =33, 解得EM =3,设∠FCH =x °,则∠GAC =2x °,∴∠ACF =∠EBC =∠GAC =2x °,∵∠ACH =45°,∴2x +x =45,解得x =15,∴∠ACF =∠GAC =30°,在Rt △AEM 中,AE =2EM =23,AM =(23)2-(3)2=3,∴M 是AG 的中点,∴AE =EG =23,第3题解图∴BE =BG +EG =6+23,在Rt △ECB 中,∠EBC =30°,∴CE =12BE =3+3, ∴AC =AE +EC =23+3+3=33+3.4. (1)证明:在△ACE 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACE =∠BCD CE =CD,∴△ACE ≌△BCD ,∴∠CAE =∠CBD ;(2)证明:在Rt △BCD 中,点F 是BD 的中点,∴CF =BF ,∴∠BCF =∠CBF ,由(1)知,∠CAE =∠CBD ,∴∠BCF =∠CAE ,∴∠CAE +∠ACF =∠BCF +∠ACF =∠BCA =90°,∴∠AMC =90°,∴AE ⊥CF ;(3)解:∵AC =2 2 ,∴BC =AC =2 2 ,∵CE =1,∴CD =CE =1,在Rt △BCD 中,根据勾股定理得,BD =CD 2+BC 2=3 ,∵点F 是BD 中点,∴CF =DF =12BD =32, 同理:EG =12AE =32, 如解图,连接EF ,过点F 作FH ⊥BC 于点H ,∵∠ACB =90°,点F 是BD 的中点,∴FH =12CD =12, ∴S △CEF =12CE ·FH =12×1×12=14, 由(2)知,AE ⊥CF ,第4题解图∴S △CEF =12CF ·ME =12×32ME =34ME , ∴ 34ME =14, ∴ME =13, ∴GM =EG -ME =32-13=76, ∴S △CFG =12CF ·GM =12×32×76=78. 5. (1)证明:∵AC 是正方形ABCD 的对角线,∴BC =DC ,∠BCA =∠DCA ,在△OBC 和△ODC 中,⎩⎪⎨⎪⎧BC =DC ∠BCO =∠DCO CO =CO, ∴△OBC ≌△ODC (SAS);(2)证明:由(1)知,△OBC ≌△ODC ,∴∠CBO =∠CDO ,∵OE =OB ,∴∠CBO =∠E ,∴∠CDO =∠E ,∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E ,即∠DOE =∠DCE ,∵AB ∥CD ,∴∠DCE =∠ABC ,∴∠DOE =∠ABC ;(3)解:∵AC 是菱形ABCD 的对角线,∴BC =DC ,∠BCA =∠DCA ,在△BCO 和△DCO 中,⎩⎪⎨⎪⎧BC =DC ∠BCO =∠DCO CO =CO,∴△BCO ≌△DCO (SAS),∴∠CBO =∠CDO ,∵OE =OB ,∴∠CBO =∠E ,∴∠CDO =∠E ,∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E ,即∠DOE =∠DCE ,∵AB ∥CD ,∴∠DCE =∠ABC ,∴∠DOE =∠ABC =52°.6. (1)证明:在△BEC 和△ACD 中,⎩⎪⎨⎪⎧BC =AC ∠ACB =∠ECD EC =DC,∴△BEC ≌△ADC (SAS),∴BE =AD ;(2)①证明:∵∠ACB =∠ECD =90°,∴∠ACB -∠ACE =∠ECD -∠ACE ,即∠BCE =∠ACD ,在△BEC 和△ADC 中,⎩⎪⎨⎪⎧BC =AC ∠BCE =∠ACD EC =DC, ∴△BEC ≌△ADC (SAS),∴∠CBE =∠CAD ,在△BCO 和△AFO 中,∠CBE =∠CAD ,∠BOC =∠AOF ,∴∠AFB =∠ACB =90°,∴BF ⊥AD ;②解:如解图,连接MC ,∵∠ACB =∠ECD =90°,∴∠BCE =∠ACD ,又∵AC =BC ,EC =DC ,∴△BEC ≌△ADC ,∴∠CBE =∠CAD ,AD =BE ,∵M 是BE 的中点,N 是AD 的中点,∴BM =AN ,在△BMC 和△ANC 中,⎩⎪⎨⎪⎧BM =AN ∠CBE =∠CAD BC =AC, ∴△BMC ≌△ANC (SAS),∴CM =CN ,∠BCM =∠ACN ,∴∠ACN +∠MCA =∠BCM +∠MCA ,∴∠MCN =∠ACB =90°,∴△MCN 是等腰直角三角形,∴∠MNC =45°.第6题解图类型二 与相似三角形有关的证明及计算1. (1)证明:∵PQ ⊥AQ ,∴∠AQP =90°=∠ABC .在△AQP 与△ABC 中,∵∠AQP =∠ABC ,∠QAP =∠BAC ,∴△AQP ∽△ABC ;(2)解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得AC =5.①当点P 在线段AB 上时,如题图①所示.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC ,∴P A AC =PQ BC ,即3-PB 5=BP 4, 解得PB =43, ∴AP =AB -PB =3-43=53; ②当点P 在线段AB 的延长线上时,如题图②所示.∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 2. (1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB .又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD AC =AC AB, ∴AC 2=AB ·AD ;(2)证明:∵E 为AB 的中点,∠ACB =90°,∴CE =12AB =AE , ∴∠EAC =∠ECA ,∵∠DAC =∠CAB ,∴∠DAC =∠ECA .∴AD ∥CE ;(3)解:∵CE ∥AD ,∴∠DAF =∠ECF ,又∵∠DF A =∠EFC ,∴△AFD ∽△CFE ,∴AD CE =AF CF, ∵CE =12AB , ∴CE =12×7=72, ∵AD =5,∴572=AF CF,∴CFAF=710,∴AF+CFAF=1+CFAF=1710,即ACAF=1710.3. (1)证明:∵△ABC中,AB=AC,∴∠B=∠C,∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△CFD∽△BDE,∴DEDF=BECD,即DE·CD=DF·BE;(2)①证明:由(1)证得△BDE∽△CFD,∴BECD=DEDF,∵D为BC中点,∴BD=CD,∴BEBD=DEDF,∵∠B=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②解:∵四边形AEDF为菱形,∴∠AEF=∠DEF,由(2)知,∠BED=∠DEF,∵∠AEF+∠DEF+∠BED=180°,∴∠AEF=60°,∵AE=AF,∴∠BAC=60°.∵AB=AC,∴△ABC是等边三角形,∴∠B=60°,又∵∠BED=∠AEF=60°,∴△BED 是等边三角形,∴BE =DE ,∵AE =DE ,∴AE =BE =12AB , ∴AE AB =12. 4. 解:(1)AC =BF .证明如下:∵∠ADP =∠ACD +∠A ,∠ACB =∠ACD +∠BCD ,∠ADP =∠ACB , ∴∠BCD =∠A ,又∵∠CBD =∠ABC ,∴△CBD ∽△ABC ,∴ CD AC =BC BA,① ∵FE ∥AC ,∴∠CAB =∠EFB ,又∵∠ABC =∠FBE ,∴△ABC ∽△FBE ,∴ BC BA =BE BF,② 由①②可得CD AC =BE BF, ∵BE =CD ,∴BF =AC ;(2)∵∠ABC =90°,∠BAC =60°,∴∠ACB =30°=∠ADP ,∴∠BCD =60°,∠ACD =60°-30°=30°,∵PE ∥AC ,∴∠E =∠ACB =30°,∠CPE =∠ACD =30°,∴CP =CE ,∵BE =CD ,∴BE -CE =CD -CP ,∴BC =DP ,∵∠ABC =90°,∠D =30°,∴BC =12CD ,∴DP =12CD ,即P 为CD 的中点, 又∵PF ∥AC ,∴F 是AD 的中点,∴FP 是△ADC 的中位线,∴FP =12AC , ∵∠ABC =90°,∠ACB =30°,∴AB =12AC , ∴FP =AB =2,∵DP =CP =BC ,CP =CE ,∴BC =CE ,即C 为BE 的中点,又∵EF ∥AC ,∴A 为FB 的中点,∴AC 是△BEF 的中位线,∴EF =2AC =4AB =8,∴PE =EF -FP =8-2=6.5. (1)证明:∵∠EFC +∠FEC +∠ECF =180°,∠A +∠B +∠ACB =180°,又∵∠EFC =∠A ,∠ECF =∠ACB ,∴∠CEF =∠B ,∵∠ECH =∠DCB ,∴△ECH ∽△BCD ,∴EC BC =CH CD, ∴CE ·CD =CH ·BC ;(2)解:如解图①,连接AH .∵BH 、CH 分别是∠ABC 和∠ACB 的平分线,∴AH 是∠BAC 的平分线,∴∠BHC =180°-12(∠ABC +∠ACB )=180°-12(180°-∠BAC )=90°+12∠BAC =90°+∠HAE ,∵CE =CF ,∠HCE =∠HCF ,∴CH ⊥EF ,HF =HE ,∴∠CHF =90°,∵∠BHC =∠BHF +∠CHF =∠BHF +90°,∴∠HAE =∠BHF ,∵CE =CF ,∴∠CFE =∠CEF ,∴∠AEH =∠BFH ,∴△AEH ∽△HFB ,∴ AE HF =EH FB, ∴FH ·EH =6,∴HE =HF =6,∴EF =26;第5题解图①(3)解:如解图②,作HM ⊥AC 于M ,HN ⊥BC 于N .设HF =x ,FN =y .∵∠HCM =∠HCN =30°,HC =5,∴HM =HN =52, CM =CN =532, ∵CE =4 3 ,∴EM =332, ∴EH =EM 2+HM 2=13 , ∵S △HCF ∶S △HCE =FH ∶EH =FC ∶EC ,∴x ∶13=(y + 532)∶43, 又∵x 2=y 2+(52)2 , 解得y =5314或332, ∵当y =332时,CF =CN +NF =43, 又∵CE ≠CF ,∴y ≠332,即FN =5314,∴CF =2037, ∵∠CEF =∠B ,∠ECF =∠ACB ,∴△ECF ∽△BCA ,∴ EC BC =CF AC , ∴ AC BC =CF EC =203743=57.第5题解图②类型三 与全等和相似三角形有关的证明及计算1. 解:(1)∵△ABC 是等边三角形,∴∠B =∠FCD =60°,∵∠BAD =180°-60°-∠ADB ,∠FDC =180°-∠ADE -∠ADB =180°-60°-∠ADB , ∴∠BAD =∠FDC ,∴△ABD ∽△DCF ,∴AB DC =BD CF, ∴CF =DC ·BD AB =(8-6)×68=32; (2)△ADE 是等边三角形.证明:若D 点是BC 边中点,则AD ⊥BC ,∴∠CDE =∠ADC -∠ADE =90°-60°=30°,又∵l ∥AB ,∴∠DCE =180°-∠ABC =180°-60°=120°,∴∠CED =180°-∠DCE -∠CDE =180°-120°-30°=30°,即∠CDE =∠CED ,∴CE =CD .在△ACD 和△ACE 中,⎩⎪⎨⎪⎧AC =AC ∠ACD =∠ACE =60°DC =EC,∴△ACD ≌△ACE (SAS),∴AD =AE ,又∵∠ADE =60°,∴△ADE 是等边三角形;(3)(2)中结论仍然成立.证明:如解图,过点D 作DG ∥l 交AC 于点G ,则△GDC ∽△ABC , ∴△GDC 是等边三角形,∴DG =DC ,∠GDC =∠DGC =60°,∵∠ADE =60°,∴∠ADE =∠GDC ,∴∠ADG =∠EDC ,又∵∠AGD =180°-60°=120°,∠DCE =180°-∠ABC =120°,∴∠AGD =∠DCE ,在△ADG 和△EDC 中,⎩⎪⎨⎪⎧∠ADG =∠EDC DG =DC ∠AGD =∠DCE,∴△ADG ≌△EDC (ASA),∴AD =DE ,又∵∠ADE =60°,∴△ADE 是等边三角形.2. (1)证明:∵P 为AB 的中点,AC =BC ,∠ACB =90°,∴∠BCE =12∠ACB =12×90°=45°,∠A =45°, ∴∠A =∠BCE ,在△ACF 和△CBE 中⎩⎪⎨⎪⎧∠A =∠BCE AC =BC ∠ACF =∠CBD,∴△ACF ≌△CBE (ASA),∴CF =BE ;第1题解图(2)解:①由(1)得CF =BE ,∴BE =CF =6,∵AC =BC ,CE 平分∠ACB ,P 为AB 的中点,∴CP ⊥AB ,∵AG ⊥AB ,∴CE ∥AG ,∴∠GAD =∠ECD ,又∵∠ADG =∠CDE ,∴△ADG ∽△CDE ,∵点D 是AC 的中点,∴AD =CD ,即相似比k =1,∴△ADG ≌△CDE ,∴DG =DE =12GE , ∵CE ∥AG 且P 为AB 中点,∴GE =BE =6,∴DG =3;②设EP =a ,由(2)① 得EP ∥AG ,∴AG =2a ,又由上题得△ADG ≌△CDE ,∴CE =AG =2a ,∴CP =CE +EP =3a ,∵等腰直角△ABC 中 CP ⊥AB ,∴BP =CP =3a ,由题得∠ACP =∠CBP =45°,∵∠ACF =∠CBD ,∴∠ACP -∠ACF =∠CBP -∠CBD ,即∠HCE =∠PBE ,∵∠CEH =∠PEB ,∴∠CHE =180°-∠CEH -∠HCE ,∠BPE =180°-∠PBE -∠PEB , ∴∠CHE =∠BPE =90°,∴△CHE 是直角三角形,∴△CHE ∽△BPE ,∴HE CH =PE BP =a 3a =13.3. (1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BED 和Rt △CFD 中,⎩⎪⎨⎪⎧BD =CD BE =CF , ∴Rt △BED ≌Rt △CFD (HL),∴∠B =∠C ,∵∠BAC =90°,∴△ABC 为等腰直角三角形;(2)①证明:如解图,连接AD 、EF ,相交于点O ,∵由(1)可得Rt △BED ≌Rt △CFD ,∴∠B =∠C ,DE =DF ,∴AB =AC ,∵BE =CF ,∴AE =AF ,∴AD ⊥EF ,又∵∠NEM =∠MGN =90°,∴∠GME +∠ENG =∠DNG +∠ENG =180°,∴∠EMF =∠DNA ,又∵∠AEO +∠EAO =90°,∠EAO +∠NDA =90°,∴∠AEO =∠NDA ,∴△FME ∽△AND ,∴FM AN =EM DN;第3题解图②解:设AF =2k ,DF =k ,在Rt △ADF 中,AD =(2k )2+k 2=5k ,由①可得∠B =∠C ,DE =DF ,∴AD 垂直平分EF ,则OF =12EF , ∵DF ⊥AC ,∴S △ADF =12×5k ·OF =12×2k ×k , ∴OF =255k ,EF =455k , ∴AD EF =54, 又∵△FME ∽△AND ,∴AN FM =AD EF =54, 即AN ∶FM =5∶4.4. (1)解:如解图①中,作IE ⊥AB 于E .设ID =x ,∵AB =AC =3,AI 平分∠BAC ,∴AD ⊥BC ,BD =CD =1,在Rt △ABD 中,AD =AB 2-BD 2=32-12=2 2 ,在△BEI 和△BDI 中,⎩⎪⎨⎪⎧∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ,∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2,在Rt △AEI 中,∵AE 2+EI 2=AI 2,∴22+x 2=(22-x )2 ,∴x =22,∴ID =22;第4题解图(2)①证明:如解图②,连接BI 、CI .∵I 是内心,∴∠MAI =∠NAI ,∵AI ⊥MN ,∴∠AIM=∠AIN=90°,又∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°-α-β,∵∠ABC=180°-2α-2β,∴∠MBI=90°-α-β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴BMNI=MINC,∴NI·MI=BM·CN,∵NI=MI,∴MI2=BM·CN;②解:如解图③,过点N作NG∥AD交MA的延长线于G. ∵NG∥AD,∴∠ANG=∠DAN,∠AGN=∠BAD,∵∠BAC=60°,∴∠BAD=∠DAN=30°,∴∠ANG=∠AGN=30°,∴AN=AG,NG=3AN,∵AI∥NG,∴∠MIA=∠MNG,∠MAI=∠MGN,∴△AMI∽△GMN,∴AMMG=AING,∴AMAM+AN=43AN,∴AM+ANAM=3AN4,∴1AM+1AN=34.第4题解图③5. (1)证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,BE ⊥DE ,∴∠DAC +∠DCA =90°,∠ADC =∠BEC ,∴∠DAC =∠ECB ,在△ADC 和△CEB 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ∠DAC =∠ECB AC =CB,∴△ADC ≌△CEB (AAS),∴AD =CE ,CD =BE ,∴DE =CE +DC =AD +BE ;(2)解:DE =kBE +1kAD . 证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,∴∠DAC +∠DCA =90°,∴∠DAC =∠ECB ,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴△ADC ∽△CEB ,∴AD CE =DC BE =AC BC=k , ∴DC =kBE ,CE =1kAD , ∴DE =DC +CE =kBE +1kAD ; (3)解:如解图,过点F 作FG ⊥BC 于点G ,∵AC =4,D 是AC 的中点,∴CD =2,∵EF =2DE ,易证△DCE ∽△EGF ,FG =2CE ,EG =2DC =4,设CE =x ,则BG =BC -CG =12-4-x =8-x ,∵FG ⊥BC ,AC ⊥BC ,∴∠ACB =∠FGB =90°,∵∠B =∠B ,∴△FGB ∽△ACB ,∴FG AC =BG BC ,即2x 4=8-x 12, 解得x =87, 即CE 的长为87.第5题解图6. (1)证明:∵∠ACB =90°,AC =BC ,D 为AB 的中点,∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°, ∴∠DCE =∠DCF =135°,在△DCE 与△DCF 中,⎩⎪⎨⎪⎧CE =CF ∠DCE =∠DCF CD =CD,∴△DCE ≌△DCF (SAS);(2) ①解:AB 2=4CE ·CF .证明:∵∠DCF =∠DCE =135°,∴∠CDF +∠F =180°-135°=45°,∵∠CDF +∠CDE =45°,∴∠F =∠CDE ,∴△CDF ∽△CED ,∴CD CE =CF CD, 即CD 2=CE ·CF ,∵∠ACB =90°,AC =BC ,CD 平分∠ACB ,∴CD =AD =BD =12AB , ∴(12AB )2=CE ·CF ,.. ∴AB 2=4CE ·CF ;②解:如解图,过D 作DG ⊥BC 于G , 由①得AB 2=4CE ·CF ,∵AB =42,CE =2CF ,∴CE =4,CF =2,∵DG ⊥BC 于G ,由题得∠B =45°,BD =12AB =2 2 ∴△DGB 是等腰直角三角形,∴BG =DG =22·sin 45°=2,∵DG ⊥BC ,AC ⊥BC ,∴DG ∥AC 即DG ∥CE ,∴∠ECN =∠DGN又∵∠ENC =∠DNG∴△CEN ∽△GDN ,∴CE DG =CN NG =42=2, 又∵D 点为AB 中点,DG ∥AC , ∴CG =BG =2,∴NG =13CG =23, 在Rt △DGN 中,DN =DG 2+NG 2=22+(23)2=2103.第6题解图。
安徽省2019年中考数学二轮复习题型六:几何图形的证明及计算(含答案)

题型六几何图形的证明及计算类型一与全等三角形有关的证明及计算1.如图,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;第1题图2.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长线交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.第2题图3.如图①,在△ABC中,∠ACB=90°,AC=BC,E为AC边上的一点,F为AB边上一点,连接CF,交BE于点D,且∠ACF=∠CBE,CG平分∠ACB交BD于点G.(1)求证:CF=BG;(2)如图②,延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP +CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=33,BG=6,求AC的长.图①图②第3题图4.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)求证:∠CAE=∠CBD;(2)如图②,F是BD的中点,连接CF交AE于点M,求证:AE⊥CF;(3)如图③,F,G分别是BD,AE的中点,连接GF,若AC=2 2 ,CE=1,求△CGF的面积.第4题图5.如图①,在正方形ABCD中,O是对角线AC上一点,点E在BC的延长线上,且OE=OB,OE交CD于点F.(1)求证:△OBC≌△ODC;(2)求证:∠DOE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=52°,求∠DOE的度数.第5题图6.已知:如图①,等腰直角△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC.(1)求证:BE=AD;(2)如图②,若将△ECD绕点C按逆时针方向旋转一个锐角,①延长BE交AD于点F,交AC于点O.求证:BF⊥AD;②如图③,取BE的中点M,AD的中点N,连接MN,NC,求∠MNC的度数.第6题图类型二与相似三角形有关的证明及计算1.如图①,已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的点,过点Q作AC的垂线交线段AB(如图①)或线段AB的延长线(如图②)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.第1题图2. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点,连接DE 、CE . (1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =5,AB =7,求ACAF的值.第2题图3. 如图①,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 上,∠EDF =∠B. (1)求证:DE ·CD =DF ·BE ;(2)如图②,若D 为BC 中点,连接EF ,A D. ①求证:DE 平分∠BEF ;②若四边形AEDF 为菱形,求∠BAC 的度数及AEAB的值.第3题图4. 如图①,△ABC 中,点D 在线段AB 上,点E 在线段CB 延长线上,且BE =CD ,EP ∥AC 交直线CD 的延长线于点P ,交直线AB 的延长线于点F ,∠ADP =∠AC B.(1)图①中是否存在与AC 相等的线段?若存在,请找出,并加以证明,若不存在,说明理由; (2)若将“点D 在线段AB 上,点E 在线段CB 延长线上”改为“点D 在线段BA 延长线上,点E 在线段BC 延长线上”,其他条件不变(如图②).当∠ABC =90°,∠BAC =60°,AB =2时,求线段PE 的长.第4题图5. 如图①,△ABC 中,BC >AC ,CD 平分∠ACB 交AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交CD 于H .(1)若∠EFC =∠A ,求证:CE ·CD =CH ·BC ;(2)如图②,若BH 平分∠ABC ,CE =CF ,BF =3,AE =2,求EF 的长; (3)如图③,若CE ≠CF ,∠CEF =∠B ,∠ACB =60°,CH =5,CE =4 3 ,求ACBC的值.第5题图类型三与全等和相似三角形有关的证明及计算1.如图,等边△ABC边长是8,过点C的直线l∥AB,点D为BC上一点(不与点B,C重合),将一个60°角的顶点放在D处,它的边始终过点A,另一边与直线l交于点E,DE交AC于点F.(1)若BD=6,求CF的长;(2)若点D是BC的中点,判定△ADE的形状,并给出证明;(3)若点D不是BC的中点,则(2)中的结论成立吗?如果成立,请给予证明,如果不成立,请说明理由.第1题图2.如图①,在△ABC中,AC=BC,∠ACB=90°,点D、P分别为AC、AB的中点,连接BD、CP,CP 交BD于点E,点F在AB上且∠ACF=∠CB D.(1)求证:CF=BE;(2)如图②,过点A 作AG ⊥AB 交BD 的延长线于点G . ①若CF =6,求DG 的长; ②设CF 交BD 于点H ,求HECH的值.第2题图3. 如图①,已知D 是△ABC 的边BC 上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BE =CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于点G .(1)若∠BAC =90°,求证:△ABC 为等腰直角三角形; (2)如图②,若∠BAC ≠90°,AF =2DF . ①求证:FM AN =EM DN ;②求AN ∶FM 的值.图① 图②第3题图4. (2018六安市模拟)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图①,连接AI 并延长交BC 于点D ,若AB =AC =3,BC =2,求ID 的长; (2)如图②,过点I 作直线交AB 于点M ,交AC 于点N .①若MN ⊥AI ,求证:MI 2=BM ·CN ;②如图③,AI 的延长线交BC 于点D ,若∠BAC =60°,AI =4,求1AM +AN1的值.第4题图5. 如图①,在△ABC 中,∠ACB =90°,AC =BC ,顶点C 恰好在直线l 上,过A 、B 分别作AD ⊥l ,BE ⊥l ,垂足分别为D 、E .(1)求证:DE =AD +BE ;(2)如图②,在△ABC 中,当AC =kBC ,其他条件不变,猜想DE 与AD 、BE 的关系,并证明你的结论; (3)如图③,在Rt △ABC 中,AC =4,BC =12,∠ACB =90°,点D 是AC 的中点,点E 在BC 上,过点E 作EF ⊥DE 交AB 于点F ,若恰好EF =2DE ,求CE 的长.图①图②图③第5题图6.如图①,在等腰Rt△ABC中,∠ACB=90°,AC=BC, D为AB的中点,连接CD,将一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)若CE=CF,求证:△DCE≌△DCF;(2)如图②,在∠EDF绕点D旋转的过程中:①探究线段AB与CE、CF之间的数量关系,并证明;②若AB=42,CE=2CF,求DN的长.第6题图类型一与全等三角形有关的证明及计算1. (1)证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,∠BAM=∠CAM,∴∠CAM+∠ACM=90°,∵AC⊥BD,∴∠MBE+∠ACM=90°,∴∠BAN=∠CAM=∠MBE,∵MB=MN,参考答案∵∠MNB =∠ABN +∠BAN ,∠MBN =∠MBE +∠NBE , ∴∠ABN +∠BAN =∠MBE +∠NBE , ∴∠ABN =∠NBE , 即BN 平分∠ABE ;(2)解:连接DN ,∵点M 为BC 中点,MB =MN , ∴MB =MN =12BC ,∵四边形DNBC 为平行四边形, ∴BN =CD ,BN ∥CD , ∴∠DBN =∠BDC ,由(1)知∠ABN =∠DBN , ∴∠ABN =∠BDC , ∵AB =BD =1, ∴△ABN ≌△BDC , ∴AN =BC ,∴AM =AN +MN =32BC ,由(1)中条件可知AM ⊥BC ,即∠AMB =90°, ∴AM 2+MB 2=AB 2,即(32BC )2+(12BC )2=1,解得BC =105.第1题解图2. (1)证明:∵等腰三角形ABC 中,AB =AC ,∴∠ABD =∠ACD , ∵AE =AD ,∴∠ADE =∠AED ,∵∠BAD +∠ABD =∠ADE +∠EDC ,∠EDC +∠ACD =∠AED , ∴∠BAD =2∠EDC , ∵∠ABF =2∠EDC , ∴∠BAD =∠ABF ,∴△ABF 是等腰三角形;(2)解:AN =12BM .证明:如解图,延长CA 至点H ,使AG =AH ,连接BH , ∵点N 是BG 的中点,点A 是HG 的中点, ∴AN =12BH ,又∵AB =AC ,∴△ABC 是等边三角形, ∠BAC =∠BCA =60°, ∴∠BAH =∠BCM , ∵GM =AB ,AB =AC , ∴AC =GM , ∴CM =AG , ∴AH =CM ,在△BAH 和△BCM 中, ⎩⎪⎨⎪⎧AB =BC ∠BAH =∠BCM AH =CM, ∴△BAH ≌△BCM (SAS), ∴BH =BM , ∴AN =12BM .第2题解图3. (1)证明:∵∠ACB =90°,AC =BC ,∴∠A =45°,∵CG 平分∠ACB ,∴∠ACG =∠BCG =45°, ∴∠A =∠BCG ,在△BCG 和△CAF 中,⎩⎪⎨⎪⎧∠A =∠BCG AC =BC ∠ACF =∠CBE, ∴△BCG ≌△CAF (ASA), ∴CF =BG ;(2)证明:∵PC ∥AG , ∴∠PCA =∠CAG ,∵AC =BC ,∠ACG =∠BCG ,CG =CG , ∴△ACG ≌△BCG (SAS ), ∴∠CAG =∠CBE ,∵PB =BG +PG ,BG =CF , ∴PB =CP +CF ;(3)解:如解图,过E 作EM ⊥AG ,交AG 于M , ∵S △AEG =12AG ·EM =33,由(2)得:△ACG ≌△BCG , ∴BG =AG =6, ∴ 12×6×EM =33, 解得EM =3, 设∠FCH =x °,则∠GAC =2x °, ∴∠ACF =∠EBC =∠GAC =2x °, ∵∠ACH =45°, ∴2x +x =45, 解得x =15,∴∠ACF =∠GAC =30°, 在Rt △AEM 中,AE =2EM =23, AM =(23)2-(3)2=3, ∴M 是AG 的中点,∴AE =EG =23,∴BE =BG +EG =6+23, 在Rt △ECB 中,∠EBC =30°, ∴CE =12BE =3+3,∴AC =AE +EC =23+3+3=33+3. 4. (1)证明:在△ACE 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACE =∠BCD CE =CD, ∴△ACE ≌△BCD , ∴∠CAE =∠CBD ;(2)证明:在Rt △BCD 中,点F 是BD 的中点, ∴CF =BF ,∴∠BCF =∠CBF ,由(1)知,∠CAE =∠CBD , ∴∠BCF =∠CAE ,∴∠CAE +∠ACF =∠BCF +∠ACF =∠BCA =90°, ∴∠AMC =90°, ∴AE ⊥CF ;(3)解:∵AC =2 2 , ∴BC =AC =2 2 , 第3题解图∴CD =CE =1,在Rt △BCD 中,根据勾股定理得,BD =CD 2+BC 2=3 , ∵点F 是BD 中点, ∴CF =DF =12BD =32 ,同理:EG =12AE =32,如解图,连接EF ,过点F 作FH ⊥BC 于点H ,∵∠ACB =90°,点F 是BD 的中点, ∴FH =12CD =12,∴S △CEF =12CE ·FH =12×1×12=14,由(2)知,AE ⊥CF ,∴S △CEF =12CF ·ME =12×32ME =34ME ,∴ 34ME =14, ∴ME =13,∴GM =EG -ME =32-13=76 ,∴S △CFG =12CF ·GM =12×32×76=78.5. (1)证明:∵AC 是正方形ABCD 的对角线,∴BC =DC ,∠BCA =∠DCA , 在△OBC 和△ODC 中,⎩⎪⎨⎪⎧BC =DC ∠BCO =∠DCO CO =CO, ∴△OBC ≌△ODC (SAS);(2)证明:由(1)知,△OBC ≌△ODC , ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC , ∴180°-∠DFO -∠CDO =180°-∠EFC -∠E ,即∠DOE =∠DCE , ∵AB ∥CD ,∴∠DCE =∠ABC , ∴∠DOE =∠ABC ;(3)解:∵AC 是菱形ABCD 的对角线, ∴BC =DC ,∠BCA =∠DCA , 在△BCO 和△DCO 中,第4题解图⎩⎪CO =CO∴△BCO ≌△DCO (SAS), ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC , ∴180°-∠DFO -∠CDO =180°-∠EFC -∠E , 即∠DOE =∠DCE , ∵AB ∥CD ,∴∠DCE =∠ABC , ∴∠DOE =∠ABC =52°. 6. (1)证明:在△BEC 和△ACD 中,⎩⎪⎨⎪⎧BC =AC ∠ACB =∠ECD EC =DC, ∴△BEC ≌△ADC (SAS), ∴BE =AD ;(2)①证明:∵∠ACB =∠ECD =90°, ∴∠ACB -∠ACE =∠ECD -∠ACE , 即∠BCE =∠ACD , 在△BEC 和△ADC 中, ⎩⎪⎨⎪⎧BC =AC ∠BCE =∠ACD EC =DC, ∴△BEC ≌△ADC (SAS), ∴∠CBE =∠CAD ,在△BCO 和△AFO 中,∠CBE =∠CAD ,∠BOC =∠AOF , ∴∠AFB =∠ACB =90°, ∴BF ⊥AD ;②解:如解图,连接MC , ∵∠ACB =∠ECD =90°, ∴∠BCE =∠ACD ,又∵AC =BC ,EC =DC , ∴△BEC ≌△ADC ,∴∠CBE =∠CAD ,AD =BE ,∵M 是BE 的中点,N 是AD 的中点, ∴BM =AN ,在△BMC 和△ANC 中,⎩⎪BC =AC∴△BMC ≌△ANC (SAS),∴CM =CN ,∠BCM =∠ACN ,∴∠ACN +∠MCA =∠BCM +∠MCA , ∴∠MCN =∠ACB =90°, ∴△MCN 是等腰直角三角形, ∴∠MNC =45°.第6题解图类型二 与相似三角形有关的证明及计算1. (1)证明:∵PQ ⊥AQ , ∴∠AQP =90°=∠ABC . 在△AQP 与△ABC 中, ∵∠AQP =∠ABC , ∠QAP =∠BAC , ∴△AQP ∽△ABC ;(2)解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得AC =5. ①当点P 在线段AB 上时,如题图①所示. ∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ , 由(1)可知,△AQP ∽△ABC ,∴P A AC =PQBC ,即3-PB 5=BP 4, 解得PB =43,∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时,如题图②所示. ∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ . ∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°, ∴∠AQB =∠A , ∴BQ =AB , ∴AB =BP ,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.∴∠DAC =∠CAB .又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB , ∴AD AC =AC AB, ∴AC 2=AB ·AD ;(2)证明:∵E 为AB 的中点, ∠ACB =90°, ∴CE =12AB =AE ,∴∠EAC =∠ECA , ∵∠DAC =∠CAB , ∴∠DAC =∠ECA . ∴AD ∥CE ;(3)解:∵CE ∥AD , ∴∠DAF =∠ECF , 又∵∠DF A =∠EFC , ∴△AFD ∽△CFE , ∴AD CE =AF CF, ∵CE =12AB ,∴CE =12×7=72,∵AD =5, ∴572=AFCF , ∴CF AF =710, ∴AF +CF AF =1+CF AF =1710, 即AC AF =1710. 3. (1)证明:∵△ABC 中,AB =AC ,∴∠B =∠C ,∵∠B +∠BDE +∠DEB =180°,∠BDE +∠EDF +∠FDC =180°,∠EDF =∠B , ∴∠FDC =∠DEB , ∴△CFD ∽△BDE ,∴DE DF =BE CD, 即DE ·CD =DF ·BE ;(2)①证明:由(1)证得△BDE ∽△CFD , ∴BE CD =DE DF,∴BD =CD , ∴BE BD =DE DF, ∵∠B =∠EDF , ∴△BDE ∽△DFE , ∴∠BED =∠DEF , ∴ED 平分∠BEF ;②解:∵四边形AEDF 为菱形, ∴∠AEF =∠DEF ,由(2)知,∠BED =∠DEF ,∵∠AEF +∠DEF +∠BED =180°, ∴∠AEF =60°, ∵AE =AF , ∴∠BAC =60°. ∵AB =AC ,∴△ABC 是等边三角形, ∴∠B =60°,又∵∠BED =∠AEF =60°, ∴△BED 是等边三角形, ∴BE =DE , ∵AE =DE , ∴AE =BE =12AB ,∴AE AB =12. 4. 解:(1)AC =BF .证明如下:∵∠ADP =∠ACD +∠A ,∠ACB =∠ACD +∠BCD ,∠ADP =∠ACB , ∴∠BCD =∠A ,又∵∠CBD =∠ABC , ∴△CBD ∽△ABC ,∴CD AC =BCBA,① ∵FE ∥AC ,∴∠CAB =∠EFB , 又∵∠ABC =∠FBE , ∴△ABC ∽△FBE , ∴BC BA =BEBF,② 由①②可得CD AC =BEBF,∵BE =CD , ∴BF =AC ;(2)∵∠ABC =90°,∠BAC =60°, ∴∠ACB =30°=∠ADP , ∴∠BCD =60°,∠ACD =60°-30°=30°,∴∠E =∠ACB =30°,∠CPE =∠ACD =30°, ∴CP =CE , ∵BE =CD ,∴BE -CE =CD -CP , ∴BC =DP , ∵∠ABC =90°,∠D =30°, ∴BC =12CD ,∴DP =12CD ,即P 为CD 的中点,又∵PF ∥AC ,∴F 是AD 的中点,∴FP 是△ADC 的中位线, ∴FP =12AC ,∵∠ABC =90°,∠ACB =30°, ∴AB =12AC ,∴FP =AB =2,∵DP =CP =BC ,CP =CE , ∴BC =CE ,即C 为BE 的中点, 又∵EF ∥AC ,∴A 为FB 的中点,∴AC 是△BEF 的中位线, ∴EF =2AC =4AB =8, ∴PE =EF -FP =8-2=6.5. (1)证明:∵∠EFC +∠FEC +∠ECF =180°,∠A +∠B +∠ACB =180°,又∵∠EFC =∠A , ∠ECF =∠ACB , ∴∠CEF =∠B , ∵∠ECH =∠DCB , ∴△ECH ∽△BCD ,∴EC BC =CH CD, ∴CE ·CD =CH ·BC ;(2)解:如解图①,连接AH .∵BH 、CH 分别是∠ABC 和∠ACB 的平分线, ∴AH 是∠BAC 的平分线,∴∠BHC =180°-12(∠ABC +∠ACB )=180°-12(180°-∠BAC )=90°+12∠BAC =90°+∠HAE ,∵CE =CF ,∠HCE =∠HCF ,∴CH ⊥EF ,HF =HE , ∴∠CHF =90°,∵∠BHC =∠BHF +∠CHF =∠BHF +90°, ∴∠HAE =∠BHF ,∴∠CFE =∠CEF , ∴∠AEH =∠BFH , ∴△AEH ∽△HFB , ∴AE HF =EH FB, ∴FH ·EH =6, ∴HE =HF =6, ∴EF =26;第5题解图①(3)解:如解图②,作HM ⊥AC 于M ,HN ⊥BC 于N .设HF =x ,FN =y . ∵∠HCM =∠HCN =30°,HC =5, ∴HM =HN =52 ,CM =CN =532,∵CE =4 3 ,∴EM =332, ∴EH =EM 2+HM 2=13 ,∵S △HCF ∶S △HCE =FH ∶EH =FC ∶EC , ∴x ∶13=(y +532)∶43, 又∵x 2=y 2+(52)2 ,解得y =5314或332,∵当y =332时,CF =CN +NF =43,又∵CE ≠CF ,∴y ≠332,即FN =5314,∴CF =2037,∵∠CEF =∠B ,∠ECF =∠ACB , ∴△ECF ∽△BCA , ∴EC BC =CF AC, ∴ AC BC =CF EC =203743=57.第5题解图②类型三 与全等和相似三角形有关的证明及计算1. 解:(1)∵△ABC 是等边三角形,∴∠B =∠FCD =60°, ∵∠BAD =180°-60°-∠ADB ,∠FDC =180°-∠ADE -∠ADB =180°-60°-∠ADB , ∴∠BAD =∠FDC , ∴△ABD ∽△DCF ,∴AB DC =BD CF, ∴CF =DC ·BD AB =(8-6)×68=32;(2)△ADE 是等边三角形.证明:若D 点是BC 边中点,则AD ⊥BC , ∴∠CDE =∠ADC -∠ADE =90°-60°=30°, 又∵l ∥AB , ∴∠DCE =180°-∠ABC =180°-60°=120°, ∴∠CED =180°-∠DCE -∠CDE =180°-120°-30°=30°, 即∠CDE =∠CED , ∴CE =CD .在△ACD 和△ACE 中, ⎩⎪⎨⎪⎧AC =AC ∠ACD =∠ACE =60°DC =EC, ∴△ACD ≌△ACE (SAS), ∴AD =AE , 又∵∠ADE =60°,∴△ADE 是等边三角形; (3)(2)中结论仍然成立.证明:如解图,过点D 作DG ∥l 交AC 于点G ,则△GDC ∽△ABC , ∴△GDC 是等边三角形,∴DG =DC ,∠GDC =∠DGC =60°, ∵∠ADE =60°, ∴∠ADE =∠GDC , ∴∠ADG =∠EDC , 又∵∠AGD =180°-60°=120°,∠DCE =180°-∠ABC =120°, ∴∠AGD =∠DCE ,⎩⎪⎨⎪⎧∠ADG =∠EDC DG =DC ∠AGD =∠DCE, ∴△ADG ≌△EDC (ASA), ∴AD =DE , 又∵∠ADE =60°,∴△ADE 是等边三角形.2. (1)证明:∵P 为AB 的中点,AC =BC ,∠ACB =90°,∴∠BCE =12∠ACB =12×90°=45°,∠A =45°,∴∠A =∠BCE ,在△ACF 和△CBE 中 ⎩⎪⎨⎪⎧∠A =∠BCE AC =BC ∠ACF =∠CBD, ∴△ACF ≌△CBE (ASA), ∴CF =BE ;(2)解:①由(1)得CF =BE , ∴BE =CF =6,∵AC =BC ,CE 平分∠ACB ,P 为AB 的中点, ∴CP ⊥AB , ∵AG ⊥AB , ∴CE ∥AG ,∴∠GAD =∠ECD , 又∵∠ADG =∠CDE , ∴△ADG ∽△CDE , ∵点D 是AC 的中点,∴AD =CD ,即相似比k =1, ∴△ADG ≌△CDE , ∴DG =DE =12GE ,∵CE ∥AG 且P 为AB 中点, ∴GE =BE =6, ∴DG =3; ②设EP =a ,由(2)① 得EP ∥AG , ∴AG =2a ,又由上题得△ADG ≌△CDE , ∴CE =AG =2a ,∴CP =CE +EP =3a ,∵等腰直角△ABC 中 CP ⊥AB , ∴BP =CP =3a ,由题得∠ACP =∠CBP =45°, 第1题解图∴∠ACP -∠ACF =∠CBP -∠CBD ,即∠HCE =∠PBE , ∵∠CEH =∠PEB , ∴∠CHE =180°-∠CEH -∠HCE ,∠BPE =180°-∠PBE -∠PEB , ∴∠CHE =∠BPE =90°, ∴△CHE 是直角三角形, ∴△CHE ∽△BPE , ∴HE CH =PE BP =a 3a =13. 3. (1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°, ∵D 是BC 的中点, ∴BD =CD ,在Rt △BED 和Rt △CFD 中,⎩⎪⎨⎪⎧BD =CD BE =CF , ∴Rt △BED ≌Rt △CFD (HL), ∴∠B =∠C , ∵∠BAC =90°,∴△ABC 为等腰直角三角形;(2)①证明:如解图,连接AD 、EF ,相交于点O , ∵由(1)可得Rt △BED ≌Rt △CFD , ∴∠B =∠C ,DE =DF , ∴AB =AC , ∵BE =CF , ∴AE =AF , ∴AD ⊥EF ,又∵∠NEM =∠MGN =90°,∴∠GME +∠ENG =∠DNG +∠ENG =180°, ∴∠EMF =∠DNA ,又∵∠AEO +∠EAO =90°,∠EAO +∠NDA =90°, ∴∠AEO =∠NDA , ∴△FME ∽△AND , ∴FM AN =EM DN;第3题解图②解:设AF =2k ,DF =k ,在Rt △ADF 中,AD =(2k )2+k 2=5k , 由①可得∠B =∠C ,DE =DF ,∴AD 垂直平分EF ,则OF =12EF ,∵DF ⊥AC ,∴S △ADF =12×5k ·OF =12×2k ×k ,∴OF =255k ,EF =455k ,∴AD EF =54, 又∵△FME ∽△AND , ∴AN FM =AD EF =54, 即AN ∶FM =5∶4.4. (1)解:如解图①中,作IE ⊥AB 于E .设ID =x , ∵AB =AC =3,AI 平分∠BAC , ∴AD ⊥BC ,BD =CD =1,在Rt △ABD 中,AD =AB 2-BD 2=32-12=2 2 , 在△BEI 和△BDI 中, ⎩⎪⎨⎪⎧∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ,∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2, 在Rt △AEI 中,∵AE 2+EI 2=AI 2, ∴22+x 2=(22-x )2 , ∴x =22,∴ID =22;第4题解图(2)①证明:如解图②,连接BI 、CI . ∵I 是内心,∴∠MAI =∠NAI , ∵AI ⊥MN ,∴∠AIM =∠AIN =90°, 又∵AI =AI ,∴△AMI ≌△ANI (ASA), ∴∠AMN =∠ANM , ∴∠BMI =∠CNI ,设∠BAI =∠CAI =α,∠ACI =∠BCI =β,∵∠ABC =180°-2α-2β, ∴∠MBI =90°-α-β, ∴∠MBI =∠NIC , ∴△BMI ∽△INC , ∴BM NI =MI NC, ∴NI ·MI =BM ·CN , ∵NI =MI , ∴MI 2=BM ·CN ;②解:如解图③,过点N 作NG ∥AD 交MA 的延长线于G . ∵NG ∥AD ,∴∠ANG =∠DAN , ∠AGN =∠BAD , ∵∠BAC =60°,∴∠BAD =∠DAN =30°, ∴∠ANG =∠AGN =30°, ∴AN =AG ,NG =3AN , ∵AI ∥NG ,∴∠MIA =∠MNG , ∠MAI =∠MGN , ∴△AMI ∽△GMN , ∴AM MG =AI NG, ∴ AM AM +AN =43AN,∴AM +AN AM =3AN4, ∴1AM +1AN =34.第4题解图③5. (1)证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°, ∵AD ⊥DE ,BE ⊥DE , ∴∠DAC +∠DCA =90°,∠ADC =∠BEC , ∴∠DAC =∠ECB , 在△ADC 和△CEB 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ∠DAC =∠ECB AC =CB, ∴△ADC ≌△CEB (AAS),∴DE =CE +DC =AD +BE ; (2)解:DE =kBE +1k AD .证明:∵∠ACB =90°, ∴∠ACD +∠BCE =90°, ∵AD ⊥DE ,∴∠DAC +∠DCA =90°, ∴∠DAC =∠ECB , ∵AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°, ∴△ADC ∽△CEB , ∴AD CE =DC BE =ACBC=k , ∴DC =kBE ,CE =1k AD ,∴DE =DC +CE =kBE +1kAD ;(3)解:如解图,过点F 作FG ⊥BC 于点G , ∵AC =4,D 是AC 的中点, ∴CD =2,∵EF =2DE ,易证△DCE ∽△EGF ,FG =2CE ,EG =2DC =4, 设CE =x ,则BG =BC -CG =12-4-x =8-x , ∵FG ⊥BC ,AC ⊥BC , ∴∠ACB =∠FGB =90°, ∵∠B =∠B ,∴△FGB ∽△ACB , ∴FG AC =BG BC ,即2x 4=8-x 12, 解得x =87,即CE 的长为87.第5题解图6. (1)证明:∵∠ACB =90°,AC =BC ,D 为AB 的中点,∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°, ∴∠DCE =∠DCF =135°, 在△DCE 与△DCF 中,⎩⎪⎨⎪⎧CE =CF ∠DCE =∠DCF CD =CD,(2) ①解:AB 2=4CE ·CF .证明:∵∠DCF =∠DCE =135°, ∴∠CDF +∠F =180°-135°=45°, ∵∠CDF +∠CDE =45°, ∴∠F =∠CDE , ∴△CDF ∽△CED , ∴CD CE =CF CD, 即CD 2=CE ·CF , ∵∠ACB =90°,AC =BC ,CD 平分∠ACB , ∴CD =AD =BD =12AB ,∴(12AB )2=CE ·CF , ∴AB 2=4CE ·CF ;②解:如解图,过D 作DG ⊥BC 于G , 由①得AB 2=4CE ·CF , ∵AB =42,CE =2CF , ∴CE =4,CF =2, ∵DG ⊥BC 于G ,由题得∠B =45°,BD =12AB =2 2∴△DGB 是等腰直角三角形, ∴BG =DG =22·sin 45°=2, ∵DG ⊥BC ,AC ⊥BC , ∴DG ∥AC 即DG ∥CE , ∴∠ECN =∠DGN 又∵∠ENC =∠DNG ∴△CEN ∽△GDN , ∴CE DG =CN NG =42=2, 又∵D 点为AB 中点,DG ∥AC , ∴CG =BG =2, ∴NG =13CG =23,在Rt △DGN 中, DN =DG 2+NG 2=22+(23)2=2103.第6题解图。
2019届中考数学复习《几何证明与计算》专题训练含答案

2019届初三数学中考复习几何证明与计算专题复习训练题1.如图,在△ABC中,AD⊥BC于点D,BD=AD,DG=DC,点E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.2. 如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.3. 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG;(2)求证:AG2=GE·GF.4. 如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)5. 如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.6. 如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于点H,交CD于点G.(1)求证:BG=DE;(2)若点G为CD的中点,求HGGF的值.7. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.8. 如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.9. 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG;(2)求证:AG2=GE·GF.10. 如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.11. 在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,若AB=32,BC=5,求AC的长;(2)如图②,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.12. 如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.参考答案:1. 解:(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.在△BDG和△ADC中,⎩⎪⎨⎪⎧BD =AD ,∠BDG =∠ADC DG =DC ,,∴△BDG ≌△ADC. ∴BG =AC ,∠BGD =∠C.∵∠ADB=∠ADC=90°, E ,F 分别是BG ,AC 的中点,∴DE =12BG =EG ,DF =12AC =AF.∴DE=DF ,∠EDG =∠EGD,∠FDA =∠FAD.∴∠EDG+∠FDA=90°,∴DE ⊥DF.(2)∵AC=10,∴DE =DF =5,由勾股定理,得EF =DE 2+DF 2=5 2. 2. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC.∴∠D=∠ECF.在△ADE 和△FCE 中,⎩⎪⎨⎪⎧∠D=∠ECF,DE =CE ,∠AED =∠FEC,∴△ADE ≌△FCE(ASA).(2)∵△ADE≌△FCE,∴AD=FC.∵AD=BC ,AB =2BC ,∴AB=FB.∴∠BAF=∠F=36°.∴∠B=180°-2×36°=108°. 3. 证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB.又GD 为公共边,∴△ADG ≌△CDG(SAS),∴AG =CG. (2)∵△ADG≌△CDG,∴∠EAG =∠DCG.∵AB∥CD,∴∠DCG =∠F.∴∠EAG=∠F.∵∠AGE=∠AGE,∴△AGE ∽△FGA.∴AG FG =EG AG.∴AG 2=GE·GF. 4. 解:(1)∵∠C=90°,∠B =30°,∴∠CAB =60°.∵AD 平分∠CAB ,∴∠CAD =12∠CAB=30°.在Rt △ACD 中,∵∠ACD =90°,∠CAD =30°,∴AD =2CD =6. (2)∵DE∥BA 交AC 于点E ,DF ∥CA 交AB 于点F , ∴四边形AEDF 是平行四边形,∠EAD =∠ADF=∠DAF. ∴AF=DF.∴四边形AEDF 是菱形.∴AE=DE =DF =AF. 在Rt △CED 中,∵DE ∥AB ,∴∠CDE =∠B=30°. ∴DE =CDcos30°=2 3.∴四边形AEDF 的周长为8 3.5. 解:(1)证明:∵四边形ABCD 是菱形,∴∠B =∠D,AB =BC =DC =AD.∵点E ,O ,F 分别为AB ,AC ,AD 的中点,∴AE =BE =DF =AF ,OF =12DC ,OE =12BC ,OE ∥BC.在△BCE 和△DCF 中,⎩⎪⎨⎪⎧BE =DF ,∠B =∠D,BC =DC ,∴△BCE ≌△DCF(SAS). (2)当AB⊥BC 时,四边形AEOF 是正方形, 理由如下:由(1)得AE =OE =OF =AF ,∴四边形AEOF 是菱形.∵AB⊥BC,OE∥BC,∴OE⊥AB.∴∠AEO=90°.∴四边形AEOF 是正方形.6. 解:(1)证明:∵BF⊥DE,∴∠GFD =90°.∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE. 在△BCG 与△DCE 中.⎩⎪⎨⎪⎧∠CBG=∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE.(2)设CG =x ,∵G 为CD 的中点,∴GD =CG =x , 由(1)可知△BCG≌△DCE(ASA),∴CG =CE =x.由勾股定理可知DE =BG =5x ,∵sin ∠CDE =CE DE =GFGD ,∴GF=55x.∵AB∥CG,∴△ABH ∽△CGH.∴AB CG =BH GH =21. ∴BH=253x ,GH =53x.∴HG GF =53.7. 解:(1)结论:AG 2=GE 2+GF 2.理由:连接CG.∵四边形ABCD 是正方形,∴点A ,C 关于对角线BD 对称. ∵点G 在BD 上,∴GA=GC.∵GE⊥DC 于点E ,GF⊥BC 于点F , ∴∠GEC=∠ECF=∠CFG=90°.∴四边形EGFC 是矩形.∴CF=GE.在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2.(2)过点B 作BN⊥AG 于点N ,在BN 上取一点M ,使得AM =BM.设AN =x.∵∠AGF=105°,∠FBG =∠FGB=∠ABG=45°, ∴∠AGB =60°,∠GBN =30°,∠ABM =∠MAB=15°.∴∠AMN =30°.∴AM =BM =2x ,MN =3x.在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x +3x)2,解得x =6-24,∴BN =6+24.∴BG=BN cos30°=32+66. 8. 解:(1)∵AD⊥BC,BE ⊥AC ,∴∠BDF =∠ADC=∠BEC=90°,∴∠C +∠DBF=90°,∠C +∠DAC=90°,∴∠DBF =∠DAC,∴△ACD ∽△BFD(2)∵tan ∠ABD =1,∠ADB =90°,∴AD BD =1,∵△ACD ∽△BFD ,∴AC BF =ADBD=1,∴BF =AC =39. 解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB,可证△ADG≌△CDG(SAS),∴AG =CG(2)∵△ADG≌△CDG,∴∠EAG =∠DCG,∵AB ∥CD ,∴∠DCG =∠F,∴∠EAG =∠F,∵∠AGE =∠AGE,∴△AGE ∽△FGA ,∴AG FG =EG AG,∴AG 2=GE·GF10. 解:(1)∵AB=AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =135°,∵∠BCD =90°,∴∠ACD =∠ACB+∠BCD=135°,∴∠ABF =∠ACD,∵CB =CD ,CB =BF ,∴BF =CD ,可证△ABF≌△ACD(SAS),∴AD =AF(2)由(1)知AF =AD ,△ABF ≌△ACD ,∴∠FAB =∠DAC,∵∠BAC =90°,∴∠EAB =∠BAC=90°,∴∠EAF =∠BAD,可证△AEF≌△ABD(SAS),∴BD =EF(3)四边形ABNE 是正方形.理由如下:∵CD=CB ,∠BCD =90°,∴∠CBD =45°,又∵∠ABC=45°,∴∠ABD =∠ABC+∠CBD=90°,由(2)知∠EAB=90°,△AEF ≌△ABD ,∴∠AEF =∠ABD=90°,∴四边形ABNE 是矩形,又∵AE=AB ,∴四边形ABNE 是正方形 11. 解:(1)∵∠ABM=45°,AM ⊥BM ,∴AM =BM =ABcos45°=32×22=3. 则CM =BC -BM =5-3=2,∴AC =AM 2+CM 2=22+32=13.(2)证明:延长EF 到点G ,使得FG =EF ,连接BG.∵DM =MC ,∠BMD =∠AMC ,BM =AM ,∴△BMD≌△AMC(SAS).∴AC =BD.又CE =AC ,∴BD =CE.∵BF =FC ,∠BFG =∠EFC ,FG =FE ,∴△BFG≌△CFE.∴BG=CE ,∠G=∠E.∴BD=CE =BG ,∴∠BDG=∠G=∠E. 12. 解:(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∠B=90°,AD∥BC.∴∠AMB=∠EA F.又∵EF⊥AM,∴∠AFE=90°.∴∠B=∠AFE.∴△ABM∽△EFA. (2)∵∠B=90°,AB =AD =12,BM =5,∴AM =122+52=13.∵F 是AM 的中点,∴AF =12AM =6.5.∵△ABM∽△EFA,∴BM AF =AM AE ,即56.5=13AE.∴AE =16.9,∴DE =AE -AD =4.9.2019-2020学年数学中考模拟试卷一、选择题1.过(﹣3,0),(0,﹣5)的直线与以下直线的交点在第三象限的是()A.x=4 B.x=﹣4 C.y=4 D.y=﹣42.下列计算正确的是()A.a2+a2=a4B.(﹣a3)2=﹣a6C.a3•a2=a6D.a5÷a2=a33.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,△ABC的周长为14,则BC的长为( )A.3B.4C.5D.64.如图,在直角坐标系中,直线AB:y=﹣2x+b,直线y=x与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=kx的图象过点C.当S△CDE=32时,k的值是()A.18B.12C.9D.35.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A.2B.3C.4D.6.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则AD的长为()A .3B .4C .D .87.某天的同一时刻,甲同学测得1m 的测竿在地面上的影长为0.6m ,乙同学测得国旗旗杆在地面上的影长为9.6m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的几何证明满分训练1.(2018 •陕西模拟)已知:正方形ABCD及等边三角形EDC按如图位置放置,连接AE, BE。
求证:AE=BEo第1题图2. (2018 •陕西模拟)如图,点E在AABC的外部,点D在BC边上,DE交AC于点F,若Z C 二ZE, DE二BC, AOAE,求证:DA 平分ZBDEo第2题图3. (2019 •原创题)如图,在SBC中,CD是AB边上的中线,E是CD的中点,过点C作AB 的平行线交AE的延长线于点F,连接BF。
求证:CF二AD。
第3题图4. (2018 •湖北恩施中考)如图,点B, F, C, E在一条直线上,FB二CE, AB/7ED, AX:〃FD, AD交BE于点0。
求证:AD与BE互相平分。
5. (2018 •浙江嘉兴中考)已知:在AABC中… AB=AC, D为AC的中点,DE丄AB, DF丄BC, 垂足分别为E, F,且DE二DF。
求证:AABC是等边三角形,。
第5题图6. (2018 •陕•西模拟)如图,在矩形ABCD屮,F是BC边上一点,AF的延长线交DC的延长线于点G, DE丄AG,垂足为E, HDE二DC,求证:B2AE。
连接BE, DFo求证:四边形BEDF是平行,四边形。
7. (2018 •某工大附中模拟)如图,在AABC中,ZABC=ZBAC=45°,点P在AB ±, AD丄CP,垂足为D, BE垂直于CP的延长线,交CP于点E,求证:CD二BE。
第7题图& (2018 •某高新一中模拟)如图,在ABCD中,0为对角线BD的中点,过点0的直线EF 分别交AD, BC于E, F两点,9. (2018 •湖北黄冈中考)如图,在ABCD中,分别以边BC, CD作等腰三角形BCF,等腰三角形CDE,使BC二BF, CD=DE, ZCBF=ZCDE,连接AF, AE。
(1)求证:AABF^AEDAo(2)延长AB与CF交于点G。
若AF丄AE,求证:BF丄BC。
第9题图10. (2018 •山东聊城中考・)如图,在正方形ABCD中,E是BC边上的一点,连接AE,过点B 作BH丄AE,垂足为H,延长BH交CD于点F,连接AF。
(1)求证:AE=BFo(2)若正方形的边长是5, BE二2,求AF的长。
第10题图11. (2018 •江苏连云港中考)如图,在矩形ABCD中,E是AD的中点,延长CE, BA相交于点F,连接AC, DFo(1)求证:四边形ACDF是平行四边形。
(2)当CF平分ZBCD时,写出BC与CD的数量关系,并说明理由。
第II题图12. (2018 •黑龙江哈尔滨中考)已知:在四边形ABCD中,对角线AC, BD相交于点E,且AC 丄BD,作BF丄CD,垂足为F, BF与AC交于点G, ZBGE二ZADE。
⑴如图①,求证:AD=CDo(2)如图②,BH是ZXABE的屮线,若AE二2DE, DE二EG,在不添加任何辅助线的情况下,请直接写出图②中的四个三角•形,使写出的每个三角形的面积都等于AADE面积的2倍。
第12题图参考答案1•【证明】由正方形MC〃以及等边三角形EDC的性质可知,AD = BC,ED = EC,乙ADC=乙BCD = 90。
,厶EDC二乙ECD = 60。
, ・・.AADE=AADC+乙EDC =150°,乙HCE = Z BCI)+乙ECD =150% ・•・乙ADE二乙BCE。
在厶ADE和厶BCE中,(ED 二EC,J 乙ADE二乙BCE,[AD=BC..・・ A.4/)/s^ A«C^(SAS),/. AE=BE Q2.【证明】在△/1必和厶ADE中,rAC = AE,J乙C二厶E,\CB = EI),・•・△ABCwZUDE(SAS),・•・ AB=AD,厶B=/ADE,・•・AB=乙ADB,・・・厶ADB二乙ADE, ・・・DA平分乙〃〃E。
3•【证明】•・• Ch//AB,.・・乙CFE二乙DAE,乙FCE二乙ADE。
・・•&为CD的中点,・•・CE二DE。
在△ECF和△E/M中,)I3C = EF.第l 乙ACB= ZDFE, ・・・ MBCgHDEM ASA),/. AB = DE Q乂 • AB//DE.:.四边形ABDE 是平行四边形,/. Al)与BE 互相平分。
5.【证明】・・・DELAB.DF 丄BC,垂足分别为E,F,・・・ AAEL)二乙 CFD = 90 ° o・・・D 为AC 的中点,・・・AD = DC°在 RtA4P£ 和 RtACDF 中,jAD 二CD,{L)E = L)b\・・・ RiA/lD£^RtACPF( HL),・・・乙/!二乙C,・・. BA 二BC 。
•・• AB=AC,.\ AB = BC = AC,/\ABC 是等边三角形or 乙 CFE- /_ DAE,J 乙FCE 二乙ADE,[cE = DE,・・・ ZXECF 兰AAS),/. CF=Al).D 第4题答图 AABC= A DEF6•【证明】在矩形ABCD中,AB二CD, BC〃八D,厶B二90。
,DE二CD, ・・・AB = DE,乙BFA =乙EAL)Q/ DE丄Z_AED = 90°乙AED- Z_B O在厶ABF和△〃励中,r 乙BFA = Z_ EAD,J 乙B二乙AED,L IB=DE,・・・ZWFw △〃也(AAS) ,・・・BF二AE。
7.【证明】•・• AABC= ^BAC = 45\・•・/_ACB=90°.AC=HC Q乂 .• HD丄CP,BE丄CP; A/1DC= AE = 90°,・・・ L_ AC〃+ 乙BCL)二90。
,乙CAD+乙A CL)二90。
,・•・乙CAD=/BCE°在厶ADC和中,r乙CAD =乙BCE,J LADC二乙E,[AC = CB,・・・△ADCMCEg AAS) ,.・・CL)=BE Q8.【证明】•・・四边形肋CD是平行四边形,/. AD//BC.・・・乙ADB二乙L)BC,乙DEF =乙BFE。
•・・0是对角线BD的中点,・・OB = OD,・・・△劭心△F〃O(AAS),・•. ED = FB。
X v ED//FB,・•・四边形BEDF是平行四边形。
9•【证明】(1) •・•四边形ABCD是平行四边形,A AB = CL),AD = BC,乙ABC二厶AL)C。
*.* BC — BF, CD — DE, BF—AD ^AB = DE Q &・・・乙/t〃E+zL4〃C+ZE〃C =360o,z^4BF+ 乙ABC+乙CBF = 360% A EDC= Z_ CBF,・•・乙ADE二乙ABF, A4B?^A£7Z4(SAS)O(2)如答图,延氏肋交AD于点H o・・・ AE1AF,.\乙£AF = 90°o第9题答图•・• △ABFq^EDA,・・・乙EAD=/AFB。
・・・乙EAl)+乙FAH = 90。
,・•.乙FAH+AAFB = 90\・・・乙AHF=90°,即FHL AL)O•・• AD//BC..\ FB 丄BC°10.(1)【证明】・・・四边形ABCD是正方形,/. AB = BC,乙ABE二乙BCF = 90°,・・・乙BAE十乙AEB = 90°。
・・・〃〃丄AE,・・・乙BHE = 90。
,.・・乙乙E〃〃二90。
,・・・乙BAE二乙EBH。
在厶ABE和厶BCF中,{乙BAE 二乙CBF,JA/i = BC,I 乙ABE"BCF,・・・ASA) ,・・・=(2)【解】・・・四边形MCD是正方形,A AB=AD = DC = 5 ,乙ADF = 90°o由(1),得厶ABEwUCF,・・.CF=BE = 2「・〃F = 5-2=3。
由勾股定理,得AF= /4/)2+DF r= J— /34O11.(1)[证明】・・・四边形ABCD是矩形,AB//CD^.\ 乙FAE二乙CDEo・・• E是仙的中点,/. AE=DE Q乂・・・乙FEA = /CED,・・・ASA) ,・・・CD = FA O 又・・・CD//AF,・・・四边形ACDF是平行四边形。
(2)【解]BC=2CD Q理由如下:•・・CF平分乙〃C〃,・・・乙DCE = 45。
•・・乙CDE = 90是等腰出角三角形,CD 二DE °•・・E是AD的中点,/. AD = 2DE = 2CD O•・・ AD = BC,・・. HC = 2CD O12.(1)【证明】・・乙BGE二厶ADE,厶BGE二厶CGF,:.厶ADE= ZCGFo・・・AC丄BD,BF丄CD,/.乙A DE 十Z_DAE= Z_CGF+ /_GCF,・•・乙DAE=/GCF,・・ AD二CD。
(2)【解】设DE = a,则AE = 2DE = 2a,EG = DE = a Q・••二*AE ・DE二+ ・2a ・ aua2。
•・・BH是△ABE的中线,••・AH二HE二a。
・・• AD = CD,AC1BD^\ CE=AE = 2a Q・•・ S△仙c=*AC ・DE 二寺・(2a+2a)・a = 2a2 = 2S^ADEo在和中,(乙AED 二厶BEG.、DE = GE,[乙ADE 二乙BGE,・・・△/WEg ASA) ,・・• BE=AE = 2a Q.•・ 5^ 4^ =~^~AE ・ HE = -^- • 2a ・ 2a = 2a2 ,S△咻=*CE • BE = * • 2a - 2a = 2a2 ,S5RHG=*HG・BE 二+・(a+a )・2a = 2a2o综上所述,面积等T /\AI)E面积的2倍的三角形有△ACD, △ABE 仏BCE 仏BHG。