2017-2018学年高一物理力学专题提升专题02追击相遇问题
高一物理追击和相遇专题(含详解)

追及和相遇问题专题研究一、追及和相遇问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解决追及和相遇问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四.典型例题分析:【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀速驶过。
(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以6m/s 的速度匀速前进。
于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是否相撞。
【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。
高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.(8分)如图所示,质点甲以8m/s的速度从O点沿Ox轴正方向运动,质点乙从点Q(0m,60m)处开始做匀速直线运动,要使甲、乙在开始运动后l0s在x轴上的P点相遇,求乙的速度.【答案】大小为10m/s,方向偏向x轴正方向与y轴负方向成53°角。
【解析】质点甲在10s内的位移为 2分因此甲、乙相遇的P点坐标为(80m,0)由图中几何关系可知,在这10s内乙的位移为 2分则乙的速度为 2分方向偏向x轴正方向与y轴负方向成53°角。
2分【考点】运动的合成。
2.一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?【答案】(1)75m (2)12s【解析】(1)警车在追赶货车的过程中,当两车速度相等时,它们间的距离最大,设警车发动后经过时间两车的速度相等.则此时所以两车间的最大距离(2),当警车刚达到最大速度时,运动时间因为,故此时警车尚未赶上货车,且此时两车距离警车达到最大速度后做匀速运动,设再经过Δt时间追赶上货车,则所以警车发动后要经过才能追上货车.【考点】追击相遇3.(12分)某人离公共汽车尾部20m,以速度v向汽车匀速跑过去,与此同时,汽车以1m/s2的加速度从静止启动,作匀加速直线运动。
试问,此人的速度v分别为下列数值时,能否追上汽车?如果能,要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=6m/s;(2)v=7m/s.【答案】(1)2m;(2)4s末追上车【解析】设人出发点为初位置,则人与车的位移分别为x人=vt,x车=x+at2要追上汽车,则要求Δx=x车-x人=0(1)当v=6m/s代入上式可得Δx=t2-6t+20=0∵Δ=62-4××20<0∴Δx不能为零,不能追上,且Δx=(t-6)2+2,当t=6s时,Δx最小为2m。
高一物理追及相遇问题

高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.汽车甲沿着平直的公路以速度做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速为0的匀加速运动去追赶甲车.根据上述的已知条件: ()A.可求出乙车从开始起动到追上甲车时所用的时间.B.可求出乙车追上甲车时乙车所走的路程.C.可求出乙车追上甲车时乙车的速度.D.不能求出上述三者中任何一个.【答案】C【解析】甲匀速直线运动有,乙车匀加速有,而且乙车平均速度等于,所以有乙车追上甲车时有,从而可以计算乙车追上甲车时乙车的速度选项C对。
但是不知道乙车的加速度所以无法计算时间和路程选项ABD错【考点】追击相遇问题2.(本题10分)在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在距离停车线多远处汽车追上自行车?追到时汽车的速度是多大?【答案】(1)10s 25m (2)100m 10m/s【解析】(1) 在汽车速度没有达到自行车速度之前,两者的距离是越来越大,当两者速度相等时,两车相距最远,当汽车速度大于自行车速度时,两者距离逐渐减小.设从停车线启动到相距最远所用时间为t,汽车做初速度为0的匀加速直线运动,所以代入数据解得:最远距离(2)汽车追上自行车时,它们相对于停车线的位移相等,设汽车追上自行车所用时间为t′,此时即解得:此时距停车线距离此时汽车速度为:【考点】本题考查追及相遇问题,同时考查匀变速直线运动规律的综合应用.3.甲车以加速度1m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,则乙车追上甲车所用的时间为()A.2s B.3s C.4s D.6s【答案】A【解析】由题意可知,两车机遇时的运动位移相等,运动时间,由运动公式得,,代入数据解得:,故只有A正确。
【考点】追及相遇问题4.如图所示,一辆长为12 m的客车沿平直公路以8.0 m/s的速度匀速向北行驶,一辆长为10 m的货车由静止开始以2.0 m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180 m,则两车错车所用的时间为A.0.4 s B.0.6 sC.0.8 s D.1.2 s【答案】C时两车开始错车,则有其中,【解析】设货车启动后经过时间t1,在数值上有解之可得,设货车从开始运动到两车错车结束所用时间为t2其中,解得故两车错车时间故选C【考点】考查了追击相遇问题点评:本题属于相遇问题,关键抓住位移关系,运用运动学公式灵活求解.5.某汽车以10 m/s的速度匀速前进,若驾驶员立即刹车,汽车做匀减速运动,经过40 s汽车停止运动.该汽车以10 m/s的速度匀速前进时,突然驾驶员发现正前方60 m处有一辆自行车正以4 m/s的速度与汽车同方向匀速行驶,驾驶员立即刹车做匀减速运动,试求:(1)汽车做匀减速运动的加速度大小a;;(2)汽车做匀减速运动过程中所行驶的距离S1(3)通过计算说明汽车与自行车是否会发生相撞.【答案】(1)(2)(3),所以会发生相撞【解析】(1)由:得:(2)由运动学公式得:(3)当汽车速度减为:时,经历时间:此过程中:汽车前进的位移:自行车前进的位移:由于:所以会发生相撞【考点】追及问题点评:分析追及问题时,一定要注意抓住一个条件、两个关系:①一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.②两个关系是时间关系和位移关系.时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯。
(完整)高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系:t A t B t0(2)位移关系:x A x B x0(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时, 有最大距离;⑵速度大者减速追赶速度小者, 追上前在两个物体速度相等时, 有最小距离. 即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v1= v2时,两者距离最大;v1>v2 时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?答案:(1)2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx ,则恰能追上,全程只相遇一次;③若满足x1> x2+ Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追及相遇问题笔记

高中物理追及相遇问题笔记追及相遇问题是高中物理中一个常见的问题类型,在研究运动与速度之间的关系时十分重要。
这种问题的解决方法基于物理原理,通过分析速度以及相对距离等因素来求解。
追及相遇问题例题一:小明和小红在一个300米的跑道上相向而行,小明的速度是 4 m/s,小红的速度是6 m/s。
求小明和小红相遇需要多长时间。
解答:设小明从与小红相遇点开始计时,时间为t秒。
则小明在t秒内行驶的距离为4t米,小红在t秒内行驶的距离为6t米。
由于他们相向而行,所以他们的相对速度是10 m/s(即6 m/s - 4 m/s)。
根据速度等于路程除以时间的公式,我们可以得到以下等式:10 m/s = (4t + 6t) / t解方程可得 t = 10/10 = 1因此,小明和小红需要1秒的时间才能相遇。
追及相遇问题例题二:一个小车以30 m/s的速度向东行驶,另一个小车以20 m/s的速度向西行驶,两车之间的距离为1000米。
求两车相遇需要的时间。
解答:设两车相遇的时间为t秒。
由于两车相向而行,所以他们的相对速度是50 m/s(即30 m/s + 20 m/s)。
同样地,我们可以通过以下公式求解:50 m/s = (30t + 20t) / t解方程可得 t = 1000/50 = 20因此,两车需要20秒的时间才能相遇。
追及相遇问题例题三:小明骑自行车以10 km/h的速度向北行驶,小红以8 km/h的速度向东行驶。
两者的初始距离为5 km,求小明和小红相遇需要的时间。
解答:设两者相遇的时间为t小时。
小明在t小时内行驶的距离为10t km,小红在t小时内行驶的距离为8t km。
由于小明和小红垂直相向而行,所以他们相对速度的大小为\sqrt{10^2 + 8^2} km/h ≈ 13 km/h。
同样地,我们可以通过以下公式求解:13 km/h = (10t + 8t) / t解方程可得 t = 5/13因此,小明和小红需要约0.38小时(约23分钟)的时间才能相遇。
高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1. A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同一位置时 ()A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同【答案】BCD【解析】设A的加速度为a,B的速度为v,经过时间t,A、B再次位于同一位置,由题意可得,,故此时A的速度,所以A错误;C正确;由题意知A、B在t时间内位移相同,根据平均速度的定义式,可知A与B在这段时间内的平均速度相等,所以B正确;D正确。
【考点】本题考查追击相遇问题,意在考查学生的分析能力。
2.甲乙两车在一平直道路上同向运动,其v-t图象如右图所示,图中△OPQ和△OQT的面积分别为x1和x2(x2>x1),初始时,甲车在乙车前方x处 ( )A.若x0=x1+x2,两车能相遇B.若x0<x1,两车相遇2次C.若x0=x1,两车相遇1次D.若x0=x2,两车相遇1次【答案】BC【解析】由图线可知:在T时间内,甲车前进了,乙车前进了;A、若,即,两车不会相遇。
若,满足,因此两车不会相遇;错误B、若,即,在T时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇2次;正确CD、若,即两车只能相遇一次;C正确故选BC【考点】追及问题点评:研究v-t图象时要注意观察:一点,注意横纵坐标的含义;二线,注意斜率的意义;三面,v-t图象中图形与时间轴围成的面积为这段时间内物体通过的位移,研究追及问题最好画出运动轨迹示意图。
3.经检测,火车甲以u甲=20m/s的速度在平直的铁轨上行驶,紧急制动后,需经过200m才能停下。
某次夜间,火车甲以20m/s的速度在平直的铁轨上行驶,突然发现前方仅125m处有一火车乙正以u乙=4m/s的速度同向匀速行驶,司机甲立即制动刹车。
关于能否发生撞车事故,某同学的解答过程是:“设火车甲制动位移为s1=200m所用时间为t,火车乙在这段时间内的位移为s2你认为该同学的结论是否正确?如果正确,请定性说明理由;如果不正确,请说明理由,并求出正确结果【答案】会相撞【解析】不正确,因为火车相撞时,速度不一定为零,紧急制动后,需经过200m才能停下。
高一物理专题复习:追及相遇问题

专题:追及相遇问题现实生活中经常会发生追及(如警察抓匪徒)、相遇或避免碰撞(如两车在同一直线上相向或同向运动时)的问题.我们现在就利用物理学知识探究警察能否抓住匪徒、两车能否相遇或避免相撞.一、追及相遇问题1.追及相遇问题的本质两物体在同一直线上追及、相遇或避免碰撞问题中的本质是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
2.解题关键抓住一个条件、两个关系。
(1)一个条件: 速度相等时临界条件,两物体是相距最远还是最近或是恰好追上。
(2)两个关系:时间关系(特别注意运动时间是否相等;同时出发或一先一后); 位移关系 (特别注意是同一地点出发,或是一前一后)。
3.解题思路①在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.②分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.③解题思路和方法二、常见题型1、A 匀加速追B 匀速:(同时同地出发)①一定能追上;②B A v v =时相距最远,最远距离为x S ∆=;③只相遇一次。
V-t 图像分析【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 m s B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 二次函数极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1)m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s .A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析. (2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)二次函数极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.2.匀速直线运动的A 追赶同方向匀加速直线运动的B假设匀速运动的物体A 追赶同方向前方相距0x 匀加速直线运动的物体B 存在一个能否追上的问题,判断依据:(1)当B A v v =时,如果0x S S B A <-,则追不上,此时两者之间距离最小,最小距离为A B S S x S -+=0min ,0x x <∆(2) 当B A v v =时,如果0x S S B A =-,此时恰好追上,相遇一次,为临界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02 追击相遇问题【专题概述】1. 当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小时,就会涉及追及、相遇或避免碰撞等问题。
2. 追及问题的两类情况(1) 若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
(2) 若后者追不上前者,则当后者的速度与前者速度相等时,两者相距最近。
3.相遇问题的常见情况(1)同向运动的两物体追及即相遇。
(2)相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
4.追及相遇问题中的两个关系和一个条件(1)两个关系:即时间关系和位移关系,这两个关系可通过画草图得到。
(2)一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
5.追及相遇问题常见的情况物体A追物体B,开始时,两个物体相距s。
(1)A追上B时,必有s=且;(2)要使两物体恰好不相撞,必有s=且;(3)若使物体肯定不相撞,则由时,且之后。
【典例精讲】1. 基本追赶问题【典例1】在水平轨道上有两列火车A和B,相距s,A车在后面做初速度为、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同。
要使两车不相撞,求A车的初速度满足什么条件。
【答案】v0< 这是一个关于时间t的一元二次方程,当根的判别式Δ=时,t 无实数解,即两车不相撞,所以要使两车不相撞,A车的初速度应满足的条件是< 解法三:(图像法)利用速度-时间图像求解,先作A、B两车的速度-时间图像,其图像如图乙所示,设经过t时间两车刚好不相撞,则对A车有v A=v=v0-2at对B车有v B=v=at以上两式联立解得t= 经t时间两车发生的位移大小之差,即为原来两车间的距离s,它可用图中的阴影面积表示,由图像可知s== = 所以要使两车不相撞,A车的初速度v0应满足的条件是 v0< 。
2:是否相碰及相碰问题【典例 2】越来越多的私家车变成了人们出行的工具,但交通安全将引起人们的高度重视,超速是引起交通事故的重要原因之一,规定私家车在高速公路上最高时速是120 km/h,为了安全一般在110~60 km/h之间行驶;(1)在高速公路上行驶一定要与前车保持一个安全距离s0,即前车突然停止,后车作出反应进行减速,不会碰到前车的最小距离.如果某人驾车以108 km/h的速度行驶,看到前车由于故障停止,0.5 s后作出减速动作,设汽车刹车加速度是5 m/s2,安全距离是多少?(2)如果该人驾车以108 km/h的速度行驶,同车道前方x0=40 m处有一货车以72 km/h 的速度行驶,在不能改变车道的情况下采取刹车方式避让(加速度仍为5 m/s2),通过计算说明是否会与前车相碰.【答案】(1)s0=105 m (2)不会相碰车的位移为x1,运动时间为t2,货车的位移为x2,则速度相等经历的时间为:t2== s=2 s,则私家车的位移为:x1== m=50 m,对货车:位移为:x2=v1t2=20×2 m=40 m,因为x2+x0>x1,所以不会相碰【典例3】2014年11月22日16时55分,四川省康定县境内发生6.3级地震并引发一处泥石流.一汽车停在小山坡底,突然司机发现山坡上距坡底240 m处的泥石流以8 m/s 的初速度,0.4 m/s2的加速度匀加速倾泻而下,假设泥石流到达坡底后速率不变,在水平地面上做匀速直线运动,司机的反应时间为1 s,汽车启动后以恒定的加速度一直做匀加速直线运动.其过程简化为图所示,求:(1)泥石流到达坡底的时间和速度大小?(2)试通过计算说明:汽车的加速度至少多大才能脱离危险?(结果保留三位有效数字)【答案】(1)t1=20 s,v1=16 m/s (2)a′=0.421 m/s23. 能否追上及最大值的问题【典例4】甲车以3 m/s2的加速度由静止开始做匀加速直线运动.乙车落后2 s在同一地点由静止开始,以6 m/s2的加速度做匀加速直线运动.两车的运动方向相同.求:(1)在乙车追上甲车之前,两车距离的最大值是多少?(2)乙车出发后经多长时间可追上甲车?此时它们离出发点多远?【答案】(1)12 m (2)x1=x2≈70 m【解析】两车距离最大时速度相等,设此时乙车已开动的时间为t,则甲、乙两车的速度分别是多少?v1=3×(t+2)=3t+6【典例5】一列火车从车站出发做匀加速直线运动,加速度为0.5 m/s2,此时恰好有一辆自行车(可视为质点)从火车头旁边驶过,自行车速度v0=8 m/s,火车长l=336 m.(1)火车追上自行车以前落后于自行车的最大距离是多少?(2)火车用多少时间可追上自行车?(3)再过多长时间可超过自行车?【答案】(1)x m=v0t1-at=8×16-×0.5×162=64 m(2)t2== s=32 s(3)t3=24 s代入数据解得:t2== s=32 s(3)追上时火车的速度:v=at2=0.5×32 m/s=16 m/s设再过t3时间超过自行车,则vt3+at-v0t3=l代入数据解得t3=24 s注意①在解决追及、相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式。
最后还要注意对结果的讨论分析。
②分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件。
三总结提升速度小者追速度大者图像说明匀加速追匀速①以前,后面物体与前面物体间距离增大②时,两物体相距最远,为③以后,后面物体与前面物体间距离减小④能追上且只能相遇一匀速追匀减速匀加速追匀减速次速度大者追速度小者图像说明匀减速追匀速开始追赶时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即时刻:①若,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件②若,则不能追上,此时两物体最小距离为③若,则相遇两次,设时刻,两物体第一次相遇,则时刻两物体第二次相遇匀速追匀加速匀减速追匀加速说明: (1)表中的Δx是开始追赶以后,后面物体因速度大而比前面物体多运动的位移;(2)是开始追赶以前两物体之间的距离;(3)(4)是前面物体的速度,是后面物体的速度。
【提升专练】1.(多选)甲、乙两车某时刻由同一地点,沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移-时间图像,即x-t图像如图所示,甲图像过O点的切线与AB平行,过C点的切线与OA平行,则下列说法中正确的是( )A.在两车相遇前,t1时刻两车相距最远B.t3时刻甲车在乙车的前方C.0~t2时间内甲车的瞬时速度始终大于乙车的瞬时速度D.甲车的初速度等于乙车在t3时刻的速度【答案】AD【解析】图像的纵坐标表示物体所在的位置,由图可知t1时刻两车相距最远,故A正确;t3时刻两车的位移相同,两车处在同一位置,故B错误;图线(或图线切线)的斜率表示速度,由图可知,t1时刻以后甲车瞬时速度小于乙车瞬时速度,甲车的初速度等于乙车在t3时刻的速度,故C错误,D正确。
2.甲、乙两辆汽车沿同一方向做直线运动,两车在某一时刻刚好经过同一位置,此时甲的速度为5 m/s,乙的速度为10 m/s,甲车的加速度大小恒为1.2 m/s2。
以此时作为计时起点,它们的速度随时间变化的关系如图所示,根据以上条件可知( )A.乙车做加速度先增大后减小的变加速运动B.在前4 s的时间内,甲车运动位移为29.6 mC.在t=4 s时,甲车追上乙车D.在t=10 s时,乙车又回到起始位置【答案】B【解析】v-t图线的斜率表示物体的加速度,由图可知,乙的加速度先减小后反向增大,再减小,故A错误;在前4 s的时间内,甲车运动位移为x=v0t+at2=5×4 m+×1.2×16 m=29.6 m,故B正确;在t=4 s时,两车的速度相同,但0~4 s内两车的位移不同,则两车没有相遇,故C错误;在前10 s内,乙车一直做变加速直线运动,速度一直沿同一方向,故t=10 s时乙车没有回到起始位置,故D错误。
3.如图所示为甲、乙两物体从同一位置出发沿同一方向做直线运动的v-t图像,其中t2=2t1,则下列判断正确的是( )A.甲的加速度比乙的大B.t1时刻甲、乙两物体相遇C.t2时刻甲、乙两物体相遇D.0~t1时间内,甲、乙两物体之间的距离逐渐减小【答案】C4.如图所示为甲、乙两个物体在同一条直线上运动的v-t 图像,t=0时两物体相距3s0,在t=1 s时两物体相遇,则下列说法正确的是 ( )A.t=0时,甲物体在前,乙物体在后B.t=2 s时,两物体相距最远C.t=3 s时,两物体再次相遇D.t=4 s时,甲物体在乙物体后2s0处【答案】C【解析】因t=1 s时两物体相遇,且0~1 s内甲的速度始终比乙大,则可知t=0时,甲物体在后,乙物体在前,A错误;1 s 末两物体相遇,由对称性可知1~3 s内甲、乙的位移相同,因此3 s末两物体再次相遇,C正确;由对称性可知4 s末,甲物体在乙物体后3s0处,此后甲、乙间距离不断增大,因此两者间距最大值无法获得,B、D错误。
5.A、B两质点同时、同地沿同一直线运动,其v-t图像分别如图中a、b所示,t1时刻图线b的切线与图线a平行,在0~t2时间内,下列说法正确的是( )A.质点A一直做匀加速直线运动B.t1时刻两质点的加速度相等,相距最远C.t2时刻两质点速度相等,相距最远D.t2时刻两质点速度相等,A恰好追上B【答案】C6.甲、乙两车在某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移-时间图像如图所示,则下列说法正确的是 ( )A.甲做匀加速直线运动,乙做变加速直线运动B.t1时刻乙车从后面追上甲车C.t1时刻两车的速度刚好相等D.0到t1时间内,乙车的平均速度小于甲车的平均速度【答案】B【解析】因位移图线的斜率表示速度,故甲车做匀速直线运动,乙车做变速直线运动,A 项错;两图线有交点,表明两车在同一时刻到达同一位置,即相遇,则由图可知t1时刻乙从后面追上甲,B项正确;在t1时刻,乙图线切线斜率(速度)大于甲图线斜率(速度),C项错;0~t1时间内,两车初、末位置相同,即位移相同,故两车平均速度相同,D项错。
7.甲、乙两车在公路上沿同一方向做直线运动,在t=0时刻,乙车在甲车前方50 m处,它们的v-t图像如图所示,下列对两车运动情况的描述正确的是 ( )A.在第30 s末,甲、乙两车相距100 mB.甲车先做匀速运动再做反向匀减速运动C.在第20 s末,甲、乙两车的加速度大小相等D.在整个运动过程中,甲、乙两车可以相遇两次【答案】D8.两个质点A、B放在同一水平面上,由静止开始从同一位置沿相同方向同时开始做直线运动,其运动的v-t图像如图所示。