2013届高三江苏专版数学一轮复习课时作业(52)概率综合问题
高三江苏专版数学一轮复习课时作业(51)概率.pdf

课时作业(五十一) [第51讲 概率] [时间:45分钟 分值:100分] 1.下列事件中是随机事件的个数有________. 连续两次抛掷两枚骰子,两次都出现2点;在地球上,树上掉下的雪梨不抓住就往下掉;某人买彩票中奖;已经有一个女儿,那么第二次生男孩;在标准大气压下,水加热到90会沸腾. 2.抛掷两枚骰子,则两枚骰子点数之和不大于4的概率为________. 3.把一根均匀木棒随机地按任意点折成两段,则“其中一段的长度大于另一段长度的2倍”的概率为________. 4.某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图K51-1,并规定顾客每购买100元的商品,就能获得转动一次转盘的机会.如果转盘停止了,指针正好对准红、黄或绿色区域,顾客分别获得100元、50元或20元的购物券(转盘被分成20个相等的扇形),一顾客购物120元,他得到50元购物券的概率是________. 图K51-1 5.有以下关于满足AB的非空集合A、B的四个命题: 若任取xA,则xB是必然事件; 若xA.则xB是不可能事件; 若任取xB,则xA是随机事件; 若xB,则xA是必然事件. 上述命题中正确的命题是________(把所有正确命题的序号都写上). 6.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________. 7.从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492,496,494,495,498,497,501,502,504,496, 497,503,506,508,507,492,496,500,501,499. 根据样本分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为________. 8.同时掷两枚骰子,所得的点数之和为6的概率是________. 9.设f(x)=x2-2x-3(xR),则在区间[-π,π]上随机取一个数x,使f(x)<0的概率为________. 10.[2011·无锡调研] 某人午休醒来,发觉表停了,他打开收音机想收听电台整点报时,则他等待的时间短于5分钟的概率为________. 11.[2011·南京一模] 在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________. 12.[2011·南通三模] 已知函数f(x)=x2-cosx,x,则满足f(x0)>f的x0的取值范围为________. 13.(8分)某校举行运动会,高二(一)班有男乒乓球运动员4名,女乒乓球运动员3名,现要选一男一女运动员组成混合双打组合代表本班参赛,试列出全部可能结果. 14.(8分)一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)骰子,四个面上标有1、2、3、4这四个数字,抛掷这颗正四面体骰子,观察抛掷后能看到的数字. (1)若抛掷一次,求能看到的三个面上数字之和大于6的概率; (2)若抛掷两次,求两次朝下面上的数字之积大于7的概率; (3)若抛掷两次,以第一次朝下面上的数字为横坐标a,第二次朝下面上的数字为纵坐标b,求点(a,b)落在直线x-y=1下方的概率. 15.(12分)已知点P的坐标为(x,y),|x|≤2,|y|≤2. (1)求当x,yR时,P满足(x-2)2+(y-2)2≤4的概率; (2)求当x,yZ时,P满足(x-2)2+(y-2)2≤4的概率. 16.(12分)[2011·南通模拟] 田忌和齐王赛马是历史上有名的故事. 设齐王的3匹马分别为A、B、C,田忌的3匹马分别为a,b,c,6匹马的奔跑速度由快到慢的顺序依次为:A,a,B,b,C,c. 两人约定:6匹马均需参赛,共赛3场,每场比赛双方各出1匹马,最终至少胜两场者获胜. (1)如果双方均不知道对方的出马顺序,求田忌获胜的概率; (2)颇有心计的田忌赛前派探子到齐王处打探实情,得知齐王第一场必出A马. 那么,田忌应怎样安排马的出场顺序,才能使获胜的概率最大? 课时作业(五十一) 【基础热身】 1.3 [解析] 事件必然发生,是必然事件;事件不可能发生,是不可能事件;三个事件可能发生也可能不发生,是随机事件. 2. [解析] 抛掷两个骰子的基本事件共6×6=36(种),其中两个骰子点数之和不大于4的基本事件有6种,故所求概率为=. 3. [解析] 设木棒AB的三等分点为P,Q,折断点在A,P之间或B,Q之间满足条件,则所求的概率为P=. 4. [解析] 20个区域中有2个黄色区域,由几何概型知识得P(获得50元购物券)=. 【能力提升】 5. [解析] 由子集的定义知、、是真命题. 6. [解析] P(|x|≤1)==. 7.0.25 [解析] 自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为P==0.25. 8. [解析] 同时掷两枚骰子,共产生6×6=36个基本事件,点数之和为6的事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个基本事件,故所求的概率是. 9. [解析] 几何概型,x2-2x-3<0,-1<x0,所以f(x)在内单调递增,此时由f(x0)>f得x0,易证f(x)是偶函数,所以x0也符合题意,综上所述,得解. 13.[解答] 由于男生从4人中任意选取,女生从3人中任意选取,为了得到试验的全部结果,我们设男生为A,B,C,D,女生为a,b,c.我们可以用一个“有序数对”来表示随机选取的结果如(A,a)表示.如下表所示: 女生 结果 男生 abcA(A,a)(A,b)(A,c)B(B,a)(B,b)(B,c)C(C,a)(C,b)(C,c)D(D,a)(D,b)(D,c)由表可知,可能结果总数是12个. 14.[解答] (1)抛掷一次,看到的三个面上的数字共有四种情况,其中三个面上的数字之和小于等于6只有(1,2,3)这一种情形,故所求事件的概率为. (2)抛掷两次,出现的朝下面的数字共有4×4=16(种)情况,其中两次朝下的数字之积大于7的有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种情况,故所求事件的概率为. (3)抛掷两次,出现的朝下面的数字共有4×4=16(种)情况,其中点(a,b)落在直线x-y=1下方共有(3,1),(4,1),(4,2)三种情况,故所求事件的概率为. 15.[解答] (1)如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界). 所求的概率为=. (2)满足x,yZ,且|x|≤2,|y|≤2的点有25个,其中满足x,yZ,且(x-2)2+(y-2)2≤4的点有6个,所以所求的概率为. 16.[解答] 记A与a比赛为(A,a),其他同理. (1)齐王与田忌赛马,有如下6种情况: (A,a),(B,b),(C,c);(A,a),(B,c),(C,b); (A,b),(B,c),(C,a);(A,b),(B,a),(C,c); (A,c),(B,a),(C,b);(A,c),(B,b),(C,a). 其中田忌获胜的只有一种:(A,c),(B,a),(C,b). 故田忌获胜的概率为P=. (2)已知齐王第一场必出上等马A,若田忌第一场必出上等马a或中等马b,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马c. 后两场有两种情形: 若齐王第二场派出中等马B,可能的对阵为:(B,a),(C,b)或(B,b),(C,a). 田忌获胜的概率为. 若齐王第二场派出下等马C,可能的对阵为:(C,a),(B,b)或(C,b),(B,a). 田忌获胜的概率也为. 所以,田忌按c,a,b或c,b,a的顺序出马,才能使自己获胜的概率达到最大为.。
高考数学一轮复习 第11章 概率与统计11.1随机事件及其概率练习(含解析)苏教版

高考数学一轮复习 第11章 概率与统计11.1随机事件及其概率练习(含解析)苏教版一、填空题1.下列说法:①频率反映了事件发生的频繁程度,概率反映了事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率就是事件A 发生的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n 次试验的试验值,而概率是具有确定性的、不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的说法有__________.2.下列事件中,①方程x 2+2x +8=0有两个实根;②某信息台每天的某段时间收到信息咨询的请求次数超过10次;③下周六会下雨.随机事件的个数为__________.3.已知某厂的产品合格率为90%,抽出10件产品检查,则合格产品最可能是__________件.4.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是__________.5.从15个同类产品(其中有12个正品,3个次品)中,任意抽取4个的必然事件是__________.6.在第3,6,16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为__________.7.(2012浙江高考)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是__________. 8.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:①取出“两只红球和一只白球”与“取出一只红球和两只白球”;②“取出两只红球和一只白球”与“取出3只红球”;③“取出3只红球”与“取出的3只球中至少有一只白球”;④“取出3只红球”与“取出3只白球”,其中是对立事件的有__________(只填序号).9.每道选择题有4个选项,其中只有1个选项是正确的,某次考试共有12道选择题.某人说:“每个选项正确的概率是14,若每题都选择第一个选项,则一定有3道题选择的结果是正确的.”这句话对吗?__________.(填“正确”或“错误”)二、解答题10.某市统计的2009~2012年新生婴儿数及其中男婴数(单位:人)见下表:时间 2009年 2010年 2011年 2012年新生婴儿数 21 840 23 070 20 094 19 982男婴数 11 453 12 031 10 297 10 242(1)试计算男婴各年的出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?11.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.12.一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个.若从袋子中随机取出1个球,取到红色球的概率是16. (1)求红色球的个数;(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙大的概率.参考答案一、填空题1.①④⑤2.2 解析:①方程的判别式Δ=22-4×8=-28<0,方程有两个实根是不可能事件;②和③可能发生也可能不发生,是随机事件.3.9 解析:因为产品的合格率为90%,抽出10件产品,则合格产品最可能是10×90%=9(件).这是随机的.4.0.3 解析:1-0.42-0.28=0.3.5.至少含有一个正品6.0.80 解析:令“能上车”记为事件A ,则3路或6路车有一辆路过即事件发生,故P (A )=0.20+0.60=0.80. 7.25 解析:五点中任取两点的不同取法共有10种,而两点之间距离为22的情况有4种,故概率为410=25. 8.③ 解析:从5红5白的10个球中任取3个,其所有结果为:3白,2白1红,1白2红,3红共4种情况,其中取出3球至少有一只白球包括:1白2红,2白1红,3白,故只有③为对立事件.9.错误 解析:解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14,做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证有3道题的结果选择正确,同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确,所以上述说法错误.二、解答题10.解:(1)2009年男婴出生的频率为f n (A )=n A n =11 45321 840≈0.524. 同理可求得2010年,2011年和2012年男婴出生的频率分别约为0.521,0.512,0.513.(2)由以上计算可知,各年男婴出生的频率在0.51~0.53之间,所以该市男婴出生的概率约为0.52.11.解:(1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000. 故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000. 12.解:(1)设红色球有x 个,依题意得x 24=16,解得x =4,∴红色球有4个. (2)记“甲取出的球的编号比乙的大”为事件A ,所有的基本事件有(红1,白1),(红1,蓝2),(红1,蓝3),(白1,红1),(白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,白1),(蓝2,蓝3),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个.事件A包含的基本事件有(蓝2,红1),(蓝2,白1),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共5个,所以,P(A)=5 12 .。
高考数学第一轮复习概率专项练习(含答案)

高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
2013年江苏省高考数学试卷及解析

2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分、请把答案填写在答题卡相印位置上、1、(5分)函数y=3sin(2x +)的最小正周期为、2、(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为、3、(5分)双曲线的两条渐近线方程为、4、(5分)集合{﹣1,0,1}共有个子集、5、(5分)如图是一个算法的流程图,则输出的n的值为、6、(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为、7、(5分)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为、8、(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=、9、(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界)、若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是、10、(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为、11、(5分)已知f(x)是定义在R上的奇函数、当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为、12、(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为、13、(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为、14、(5分)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为、二、解答题:本大题共6小题,共计90分、请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤、15、(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π、(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值、16、(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点、求证:(1)平面EFG∥平面ABC;(2)BC⊥SA、17、(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上、(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围、18、(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径、一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C、现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min、在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C、假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19、(16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和、记b n=,n∈N*,其中c为实数、(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0、20、(16分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数、(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论、[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答、若多做,则按作答的前两题评分、解答时应写出文字说明、证明过程或演算步骤、[选修4-1:几何证明选讲](本小题满分10分)21、(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC、求证:AC=2AD、B、[选修4-2:矩阵与变换](本小题满分10分)22、(10分)已知矩阵A=,B=,求矩阵A﹣1B、C、[选修4-4:坐标系与参数方程](本小题满分0分)23、在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C 的参数方程为(t为参数)、试求直线l和曲线C的普通方程,并求出它们的公共点的坐标、D、[选修4-5:不等式选讲](本小题满分0分)24、已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b、第25题、第26题,每题10分,共计20分、请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤、25、(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点、(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值、26、(10分)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,、记S n=a1+a2+…+a n(n∈N∗)、对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数、2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分、请把答案填写在答题卡相印位置上、1、(5分)函数y=3sin(2x+)的最小正周期为π、分析:将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期、解答:解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π点评:本题给出三角函数表达式,求函数的最小正周期,着重考查了函数y=Asin (ωx+φ)的周期公式的知识,属于基础题、2、(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为5、分析:把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用模的公式计算、解答:解:z=(2﹣i)2=4﹣4i+i2=3﹣4i、所以,|z|==5、故答案为5、点评:本题考查了复数代数形式的混合运算,考查了复数模的求法,是基础题、3、(5分)双曲线的两条渐近线方程为、分析:先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程、解答:解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:点评:本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想4、(5分)集合{﹣1,0,1}共有8个子集、分析:集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集、解答:解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个、故答案为:8、点评:本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M 中有n个元素,则集合M的子集共有2n个、5、(5分)如图是一个算法的流程图,则输出的n的值为5、分析:由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案、解答:解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5、点评:本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行、6、(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三第四次第五次次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为2、分析:直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求、解答:解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,、方差=4、=2、所以乙运动员的成绩较稳定,方差为2、故答案为2、点评:本题考查了方差与标准差,对于一组数据,在平均数相差不大的情况下,方差越小越稳定,考查最基本的知识点,是基础题、7、(5分)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为、分析:求出m取小于等于7的正整数,n取小于等于9的正整数,m取到奇数,n取到奇数的方法种数,直接由古典概型的概率计算公式求解、解答:解:m取小于等于7的正整数,n取小于等于9的正整数,共有7×9=63种取法、m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则m,n都取到奇数的方法种数为4×5=20种、所以m,n都取到奇数的概率为、故答案为、点评:本题考查了古典概型及其概率计算公式,解答的关键是做到对取法种数计算的补充不漏,是基础的计算题、8、(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2= 1:24、分析:由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值、解答:解:因为D,E,分别是AB,AC的中点,所以S△ADE :S△ABC=1:4,又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍、即三棱柱A1B1C1﹣ABC的高是三棱锥F﹣ADE高的2倍、所以V1:V2==1:24、故答案为1:24、点评:本题考查了棱柱和棱锥的体积公式,考查了相似多边形的面积的比等于相似比的平方,是基础的计算题、9、(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界)、若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是[﹣2,] 、分析:利用导数求出抛物线在x=1处的切线方程,画出可行域,找出最优解,则x+2y的取值范围可求、解答:解:由y=x2得,y′=2x,所以y′|x=1=2,则抛物线y=x2在x=1处的切线方程为y=2x﹣1、令z=x+2y,则、画出可行域如图,所以当直线过点(0,﹣1)时,z min=﹣2、过点()时,、故答案为、点评:本题考查了导数的运算,考查了简单的线性规划,解答的关键是把问题转化为线性规划知识解决,是基础题、10、(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为、分析:由题意和向量的运算可得=,结合=λ1+λ2,可得λ1,λ2的值,求和即可、解答:解:由题意结合向量的运算可得=====,又由题意可知若=λ1+λ2,故可得λ1=,λ2=,所以λ1+λ2=故答案为:点评:本题考查平面向量基本定理及其意义,涉及向量的基本运算,属中档题、11、(5分)已知f(x)是定义在R上的奇函数、当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞)、分析:作出x大于0时,f(x)的图象,根据f(x)为定义在R上的奇函数,利用奇函数的图象关于原点对称作出x小于0的图象,所求不等式即为函数y=f(x)图象在y=x上方,利用图形即可求出解集、解答:解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞)、故答案为:(﹣5,0)∪(5,+∞)点评:此题考查了一元二次不等式的解法,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键、12、(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为、分析:根据“d 2=”结合椭圆的半焦距,短半轴,长半轴构成直角三角形,再由等面积法可得d1=,从而得到a与b的关系,可求得,从而求出离心率、解答:解:如图,准线l:x=,d2=,由面积法得:d1=,若d 2=,则,整理得a2﹣ab﹣=0,两边同除以a2,得+()﹣=0,解得、∴e==、故答案为:、点评:本题主要考查椭圆的几何性质,即通过半焦距,短半轴,长半轴构成的直角三角形来考查其离心率,还涉及了等面积法、13、(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或、分析:设点P,利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值、解答:解:设点P,则|PA|===,令,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=,解得a=、综上可知:a=﹣1或、故答案为﹣1或、点评:本题综合考查了两点间的距离公式、基本不等式的性质、二次函数的单调性等基础知识和基本技能,考查了分类讨论的思想方法、推理能力和计算能力、14、(5分)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为12、分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案、解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6、记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=、由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12、故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题、二、解答题:本大题共6小题,共计90分、请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤、15、(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π、(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值、分析:(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值、解答:解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣cosβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0、所以、即;(2)由得,①2+②2得:、因为0<β<α<π,所以0<α﹣β<π、所以,,代入②得:、因为、所以、所以,、点评:本题考查了平面向量的数量积运算,考查了向量的模,考查了同角三角函数的基本关系式和两角和与差的三角函数,解答的关键是注意角的范围,是基础的运算题、16、(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点、求证:(1)平面EFG∥平面ABC;(2)BC⊥SA、分析:(1)根据等腰三角形的“三线合一”,证出F为SB的中点、从而得到△SAB 和△SAC中,EF∥AB且EG∥AC,利用线面平行的判定定理,证出EF∥平面ABC 且EG∥平面ABC、因为EF、EG是平面EFG内的相交直线,所以平面EFG∥平面ABC;(2)由面面垂直的性质定理证出AF⊥平面SBC,从而得到AF⊥BC、结合AF、AB是平面SAB内的相交直线且AB⊥BC,可得BC⊥平面SAB,从而证出BC⊥SA、解答:解:(1)∵△ASB中,SA=AB且AF⊥SB,∴F为SB的中点、∵E、G分别为SA、SC的中点,∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC、∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC,同理可得EG∥平面ABC又∵EF、EG是平面EFG内的相交直线,∴平面EFG∥平面ABC;(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面ASB,AF⊥SB、∴AF⊥平面SBC、又∵BC⊂平面SBC,∴AF⊥BC、∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB、又∵SA⊂平面SAB,∴BC⊥SA、点评:本题在三棱锥中证明面面平行和线线垂直,着重考查了直线与平面平行、平面与平面平行的判定定理,直线与平面垂直的判定与性质等知识,属于中档题、17、(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上、(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围、分析:(1)先求出圆心坐标,可得圆的方程,再设出切线方程,利用点到直线的距离公式,即可求得切线方程;(2)设出点C,M的坐标,利用|MA|=2|MO|,寻找坐标之间的关系,进一步将问题转化为圆与圆的位置关系,即可得出结论、解答:解:(1)由题设,圆心C在y=x﹣3上,也在直线y=2x﹣4上,2a﹣4=a﹣3,∴a=1,∴C(1,﹣2)、∴⊙C:(x﹣1)2+(y+2)2=1,由题,当斜率存在时,过A点切线方程可设为y=kx+3,即kx﹣y+3=0,则=1,解得:k=﹣,…(4分)又当斜率不存在时,也与圆相切,∴所求切线为x=0或y=﹣x+3,即x=0或12x+5y﹣15=0;(2)设点M(x,y),由|MA|=2|MO|,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤、点评:此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题、18、(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径、一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C、现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min、在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C、假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?分析:(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(3)设乙步行的速度为v m/min,从而求出v的取值范围、解答:解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m、所以索道AB的长为1040m、(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客距离最短、(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C、设乙步行的速度为v m/min,由题意得﹣3≤≤3,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内、点评:此题考查了余弦定理,锐角三角函数定义,以及勾股定理,利用了分类讨论及数形结合的思想,属于解直角三角形题型、19、(16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和、记b n=,n∈N*,其中c为实数、(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0、分析:(1)写出等差数列的通项公式,前n项和公式,由b1,b2,b4成等比数列得到首项和公差的关系,代入前n项和公式得到S n,在前n项和公式中取n=nk 可证结论;(2)把S n代入中整理得到b n=,由等差数列的通项公式是a n=An+B的形式,说明,由此可得到c=0、解答:证明:(1)若c=0,则a n=a1+(n﹣1)d,,、当b1,b2,b4成等比数列时,则,即:,得:d2=2ad,又d≠0,故d=2a、因此:,,、故:(k,n∈N*)、(2)==、①若{b n}是等差数列,则{b n}的通项公式是b n=A n+B型、观察①式后一项,分子幂低于分母幂,故有:,即,而,故c=0、经检验,当c=0时{b n}是等差数列、点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,考查了学生的运算能力,解答此题的关键是理解并掌握非常数等差数列的通项公式是关于n的一次函数,此题是中档题、20、(16分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数、(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论、分析:(1)求导数,利用f(x)在(1,+∞)上是单调减函数,转化为﹣a≤0在(1,+∞)上恒成立,利用g(x)在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a的范围,再分类讨论,确定f(x)的单调性,从而可得f(x)的零点个数、解答:解:(1)求导数可得f′(x)=﹣a∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,∴a≥,x∈(1,+∞)、∴a≥1、令g′(x)=e x﹣a=0,得x=lna、当x<lna时,g′(x)<0;当x>lna时,g′(x)>0、又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e、故a的取值范围为:a>e、(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=e x﹣a>0,解得a<e x,即x>lna,因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<、结合上述两种情况,有、①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a﹣ae a=a(1﹣e a)<0,f(1)=﹣a>0,且函数f (x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点、另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点、③当0<a≤时,令f′(x)=﹣a=0,解得x=、当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1、(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的图象不间断,所以f(x)在()上存在零点、另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点、下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0、为此,我们要证明:当x>e时,e x>x2、设h(x)=e x﹣x2,则h′(x)=e x﹣2x,再设l(x)=h′(x)=e x﹣2x,则l′(x)=e x﹣2、当x>1时,l′(x)=e x﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;故当x>2时,h′(x)=e x﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0,即当x>e 时,e x>x2当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在[,]上的图象不间断,所以f(x)在(,)上存在零点、又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点、综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2、点评:此题考查的是可导函数的单调性与其导数的关系,考查分类讨论的数学思想,考查学生分析解决问题的能力,难度较大、[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答、若多做,则按作答的前两题评分、解答时应写出文字说明、证明过程或演算步骤、[选修4-1:几何证明选讲](本小题满分10分)21、(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC、求证:AC=2AD、分析:证明Rt△ADO∽Rt△ACB,可得,结合BC=2OC=2OD,即可证明结论、解答:证明:连接OD、因为AB和BC分别与圆O相切于点D,C,所以ADO=∠ACB=90°又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,所以,因为BC=2OC=2OD、所以AC=2AD、点评:本题考查圆的切线,考查三角形相似的判定与性质,比较基础、B、[选修4-2:矩阵与变换](本小题满分10分)22、(10分)已知矩阵A=,B=,求矩阵A﹣1B、分析:设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论、解答:解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==、点评:本题考查逆矩阵、矩阵的乘法,考查运算求解能力,属于基础题、C、[选修4-4:坐标系与参数方程](本小题满分0分)23、在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数)、试求直线l和曲线C的普通方程,并求出它们的公共点的坐标、分析:运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标、解答:解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0、曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),、点评:本题主要考查了参数方程与普通方程的互化、直线与抛物线的位置关系等基础知识,考查了转化能力,属于基础题、D、[选修4-5:不等式选讲](本小题满分0分)24、已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b、分析:直接利用作差法,然后分析证明即可、解答:证明:2a3﹣b3﹣2ab2+a2b=2a(a2﹣b2)+b(a2﹣b2)=(a﹣b)(a+b)(2a+b),∵a≥b>0,∴a﹣b≥0,a+b>0,2a+b>0,从而:(a﹣b)(a+b)(2a+b)≥0,∴2a3﹣b3≥2ab2﹣a2b、点评:本题考查不等式的证明,作差法的应用,考查逻辑推理能力、第25题、第26题,每题10分,共计20分、请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤、25、(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点、(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值、分析:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值、(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值、解答:解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为、(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==、∴平面ADC1与ABA1所成二面角的正弦值为、点评:本题考查两条异面直线所成角的余弦值的求法,考查平面与平面所成角的正弦值的求法,解题时要注意向量法的合理运用、26、(10分)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,、记S n=a1+a2+…+a n(n∈N∗)、对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数、分析:(1)由数列{a n}的定义,可得前11项,进而得到前11项和,再由定义集合P l,即可得到元素个数;=﹣i(2i+1)(i∈N*)、再结合定义,运用等差(2)运用数学归纳法证明S i(2i+1)数列的求和公式,即可得到所求、解答:解:(1)由数列{a n}的定义得a1=1,a2=﹣2,a3=﹣2,a4=3,a5=3,a6=3,a7=﹣4,a8=﹣4,a9=﹣4,a10=﹣4,a11=5,所以S1=1,S2=﹣1,S3=﹣3,S4=0,S5=3,S6=6,S7=2,S8=﹣2,S9=﹣6,S10=﹣10,S11=﹣5,从而S1=a1,S4=0•a4,S5=a5,S6=2a6,S11=﹣a11,所以集合P11中元素的个数为5;(2)先证:S i(2i+1)=﹣i(2i+1)(i∈N*)、事实上,①当i=1时,S i(2i+1)=S3=﹣3,﹣i(2i+1)=﹣3,故原等式成立;②假设i=m时成立,即S m(2m+1)=﹣m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2﹣(2m+2)2=﹣m(2m+1)﹣4m﹣3=﹣(2m2+5m+3)=﹣(m+1)(2m+3)、综合①②可得S i(2i+1)=﹣i(2i+1)、于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=﹣i(2i+1)+(2i+1)2=(2i+1)(i+1)、由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j=S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数、又S(i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)﹣j(2i+2)=(2i+1)(i+1)﹣j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i﹣1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j又2000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1008点评:本题考查集合、数列的概念和运算、计数原理等基础知识,考查探究能力,以及运用数学归纳法的推理论证能力,有一定的难度。
高三数学概率综合试题

高三数学概率综合试题1.随机变量η的分布列如下:x=;P(η>3)=;③P(1<η≤4)=.【答案】①0②0.45③0.45【解析】由概率分布的性质可得:0.2+x+0.35+0.1+0.15+0.2=1,解得:x=0.显然P(η>3)=P(η=4)+P(η=5)+P(η=6)=0.1+0.15+0.2=0.45.P(1<η≤4)=P(η=2)+P(η=3)+P(η=4)=0+0.35+0.1=0.45.2.某次考试中,从甲,乙两个班各抽取10名学生的成绩进行统计分析,两班10名学生成绩的茎叶图如图所示,成绩不小于90分为及格.(1)从每班抽取的学生中各抽取一人,求至少有一个及格的概率;(2)从甲班10人中取两人,乙班10人中取一人,三人中及格人数记为X,求X的分布列和数学期望.【答案】(1)(2)【解析】(1)由茎叶图可知甲班有4人及格,乙班5人及格.事件“从两班10名学生中各抽取一人,至少有一人及格”记作A,则P(A)=1-=1-=.(2)X取值为0,1,2,3.P(X=0)==,P(X=1)=+=,P(X=2)=+=,P(X=3)==.所以X的分布列为X0123因此E(X)=0×+1×+2×+3×=.3.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为,设,则.【答案】【解析】,连续取3次球,它的取法共有,,其中有3种,有12种,有12种,因此它们的概率分别为,故.【考点】概率与统计.4.袋中标号为1,2,3,4的四只球,四人从中各取一只,其中甲不取1号球,乙不取2号球,丙不取3号球,丁不取4号球的概率为()A.B.C.D.【答案】B.【解析】不妨设甲取2号球.若乙取1号,则丙4丁3;若乙3,则丙4丁1;若乙4,则丙丁3.共3种情况.类似的,甲取3或4号球,各有3种情况,故共9种,而基本事件的总数为,故所求的概率为故选B.本题是一个错位排列模型.【考点】求错位排列的概率.5.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】(Ⅰ)输出y 的值为1的概率为;输出y 的值为2的概率为;输出y 的值为3的概率为(II )乙同学所编程序符合算法要求的可能性大【解析】(I )当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=;∴输出y 的值为1的概率为;输出y 的值为2的概率为;输出y 的值为3的概率为; (II )当n=2100时,甲、乙所编程序各自输出y 的值为i (i=1,2,3)的频率如下:6. 袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球. (I )若从袋中一次摸出2个小球,求恰为异色球的概率;(II )若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数 都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E . 【答案】(1)(2)随机变量的分布列为:【解析】解: (Ⅰ)摸出的2个小球为异色球的种数为 2分从8个球中摸出2个小球的种数为 4分故所求概率为 5 分(Ⅱ)符合条件的摸法包括以下三种:一种是有1个红球,1个黑球,1个白球,共有种 6分一种是有2个红球,1个其它颜色球,共有种, 7分一种是所摸得的3小球均为红球,共有种不同摸法,故符合条件的不同摸法共有40种. 9分由题意知,随机变量的取值为1,2,3.其分布列为:13分【考点】排列组合与分布列点评:主要是考查了分布列和排列组合的运用,属于基础题。
13年江苏高考数学一轮复习教案课时训练答案第一章第4课时 (1)

§1.4 集合与常用逻辑用语的综合应用1.在解题过程中,加深对集合之间的关系与集合运算等概念的理解.2.正确理解命题及其关系、逻辑联结词与量词等概念,进一步认识集合语言与逻辑语言之间的关系.3.在集合运算过程中,要借助数轴、直角坐标系、V enn 图等将有关集合直观地表示出来,注意集合与方程、函数、不等式、三角函数、几何等知识的密切联系与综合运用.[难点正本 疑点清源]1.集合中的“交”、“并”、“补”与逻辑联结词“且”、“或”、“非”有共同之处,在解题时,可以进行相互转化.2.集合运算可以考虑数形结合、借助数轴、V enn 图.1.集合A ={x |1+x 2<5x -3,x ∈Z }的子集的个数是_________________________________.2.命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题为____________________.3.设集合A ={3,2a +1},集合B ={a ,b },若A ∩B ={2},则a =________,b =________.4.“a >0且b >0”是“b a +a b≥2”成立的____________条件. 5.已知集合P 是平面直角坐标系xOy 中的点集,若∀C (a ,b )∈P ,∃r >0,使{(x ,y )|(x -a )2+(y -b )2<r }⊆P ,则称P 为“开集”.给出下列三个集合:①{(x ,y )|x -y >0};②{(x ,y )|x ≥0};③{(x ,y )|x 2+y 2≤1},其中是开集的是________.(填写序号)题型一 集合问题例1 已知集合A ={x |y = 1-2x +1x +1},B ={x |[x -(a +1)][x -(a +4)]<0},分别根据下列条件,求实数a 的取值范围.(1)A ∩B =A ; (2)A ∩B ≠∅.探究提高 在将A ,B 具体化后,宜结合图形(本例为数轴)分析集合间的关系;对题(2)还可以进行反面思考:若A ∩B =∅,则a +1≥0或a +4≤-1,即a ≥-1或a ≤-5,从而得到A ∩B ≠∅时,a 的取值范围是(-5,-1).已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},当A ∪B =B时,求实数a 的取值组成的集合P .题型二 充分条件、必要条件问题例2 已知p :x 2-4x -32≤0;q :[x -(1-m )][x -(1+m )]≤0 (m >0).若“非p ”是“非q ”成立的必要但不充分条件,求m 的取值范围.探究提高 求得P ,Q 后,也可得到“非p ”:P 0=(-∞,-4)∪(8,+∞),“非q ”:Q 0=(-∞,1-m )∪(1+m ,+∞).于是由“非p ”是“非q ”成立的必要但不充分条件,知Q 0P 0.已知数列{a n }满足a n +a n +1=2n +1 (n ∈N *),求证:数列{a n }为等差数列的充要条件是a 1=1.题型三 有关逻辑联结词的问题例3 已知a >12且a ≠1,条件p :函数f (x )=log (2a -1)x 在其定义域上是减函数,条件q :函数g (x )=x +|x -a |-2的定义域为R .如果“p 或q ”为真,试求a 的取值范围.探究提高 (1)首先求出p 真、q 真的条件,即a 的范围.(2)由“p 或q ”为真,判断出p 、q 的真假.已知a >0,命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0.若命题“p 或q ”是假命题,求a 的取值范围.2.对命题否定不当致误试题:(14分)已知p :|3x -4|>2,q :1x 2-x -2>0,r :(x -a )·(x -a -1)<0. (1)綈p 是綈q 的什么条件?(2)若綈r 是綈p 的必要非充分条件,求实数a 的取值范围.学生解答展示审题视角 (1)可以求出p 、q 的不等式的解集,再对p 、q 否定,即求出它们对应不等式的解集的补集,也可以直接对不等式否定,但注意对分式不等式否定时,注意分母为零的情况.(2)綈r 是綈p 的必要非充分条件等价于綈p ⇒綈r 且綈rD ⇒/綈p .规范解答解 (1)p :|3x -4|>2,∴3x -4>2或3x -4<-2,∴x >2或x <23,∴綈p :23≤x ≤2. [2分] q :1x 2-x -2>0,即x 2-x -2>0, 令x 2-x -2=0,得x 1=-1,x 2=2.∴x 2-x -2>0的解集为{x |x <-1或x >2}. [4分] ∴綈q :{x |-1≤x ≤2},∴綈p 是綈q 的充分不必要条件. [6分](2)r :(x -a )(x -a -1)<0,∴a <x <a +1.∴綈r :x ≤a 或x ≥a +1.∵綈r 是綈p 的必要非充分条件. [8分] ∴綈p ⇒綈r 且綈rD ⇒/綈p , [10分]∴2≤a 或a +1≤23,∴a ≥2或a ≤-13. [12分] ∴a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥2或a ≤-13. [14分] 批阅笔记 (1)对q :1x 2-x -2>0的否定应为:1x 2-x -2≤0或x 2-x -2=0.为避免出错,可以先求q :1x 2-x -2>0的解集,再否定. (2)在由綈p ⇒綈r 时,应特别注意分析是否能取等号.这是考生比较易出错的地方.要特 别注意验证等号能否成立.方法与技巧1.有的“p 或q ”与“p 且q ”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p 或q ”还是“p 且q ”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.逻辑联结词中,较难理解含义的是“或”,应从以下两个方面来理解概念:(1)逻辑联结词中的“或”与集合中的“或”含义的一致性.(2)结合实例,剖析生活中的“或”与逻辑联结词中的“或”之间的区别.生活中的“或”一般指“或此或彼只必具其一,但不可兼而有之”,而逻辑联结词中的“或”具有“或此或彼或兼有”三种情形.失误与防范1.p ∨q 为真命题,只需p 、q 有一个为真即可,p ∧q 为真命题,必须p 、q 同时为真.2.p 或q 的否定为:非p 且非q ;p 且q 的否定为:非p 或非q .3.对一个命题进行否定时,要注意命题所含的量词,是否省略了量词,否定时将存在量词变为全称量词,将全称量词变为存在量词,同时也要否定命题的结论.课时规范训练(时间:60分钟)A 组 专项基础训练题组一、填空题1.已知集合P ={y |y =x 2+4x +6,x ∈R },M ={y |y =2x +2x,x >0},则P ∩M =________. 2.已知集合A ={x |2x ≥2},B =(a ,+∞),当A ⊇B 时,实数a 的取值范围是[c ,+∞),则c =________.3.命题“∃x ∈R ,e x =x -1”的否定是___________________________________________.4.“x 2-4x <0”成立的一个充分而不必要条件是___________________________________.5.已知集合A ={x |a <x ≤a +1},B ={x |x ≥1},全集I =R ,则当A ∩(∁I B )=A 时,实数a 的取值范围是__________.6.命题“对一切非零实数x ,总有x +1x≥2”的否定是__________________________. 7.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的____________条件.二、解答题8.已知命题p :存在一个实数x ,使ax 2+ax +1<0.当a ∈A 时,非p 为真命题,求集合A .B 组 专项能力提升题组一、填空题1.已知集合A =⎩⎨⎧⎭⎬⎫x |⎝⎛⎭⎫12x >14,B ={x |log 2(x -1)<2},则A ∩B =________. 2.已知集合A ={x |x 2-x ≤0,x ∈R },设函数f (x )=2-x +a (x ∈A )的值域为B ,若B ⊆A ,则实数a 的取值范围是____________.3.定义AD B =⎩⎨⎧⎭⎬⎫z |z =xy +x y ,x ∈A ,y ∈B .设集合A ={0,2},B ={1,2},C ={1},则集合(AD B )D C 的所有元素之和为________.4.已知命题P :∀b ∈[0,+∞),f (x )=x 2+bx +c 在[0,+∞)上为增函数;命题Q :∃x 0∈Z ,使log 2x 0≥0.给出下列结论:①綈P ∨綈Q 为真;②綈P ∧綈Q 为真;③P ∨綈Q 为真;④P ∧綈Q 为真.其中正确的为________.(填写序号)5.已知全集U =R ,集合A ={x |x 2-3x +2≤0},若B ∪(∁U A )=R ,B ∩(∁U A )={x |0<x <1或2<x <3},则集合B =________.6.命题“∀x ∈R ,tan(-x )=tan x ”的否定是______________________.二、解答题7.设有两个命题:①“关于x 的不等式x 2+(a -1)x +a 2>0的解集是R ”;②“函数f (x )=(2a 2+a +1)x 是R 上的减函数”.若命题①和②中至少有一个是真命题,求实数a 的取值范围.8.已知函数f(x)=x2+|x-a|,证明:函数f(x)是偶函数的充要条件是a=0.答案基础自测1.4 2.若x 2+x -m =0没有实根,则m ≤03.0 2 4.充分不必要 5.①题型分类·深度剖析例1 解 由1-2x +1x +1≥0,得-x x +1≥0,即x x +1≤0, 解得-1<x ≤0,故A =(-1,0],B =(a +1,a +4).(1)A ∩B =A ,即A ⊆B ,故⎩⎪⎨⎪⎧a +1≤-1,a +4>0,得-4<a ≤-2,故a 的取值范围是(-4,-2]. (2)若A ∩B ≠∅,则⎩⎪⎨⎪⎧a +4>-1,a +1<0,得-5<a <-1,故a 的取值范围是(-5,-1).变式训练1 解 由A ∪B =B 知A ⊆B .又A ={-4,0},故此时必有B ={-4,0},即-4,0为方程x 2+2(a +1)x +a 2-1=0的两根, 于是⎩⎪⎨⎪⎧-4+0=-2(a +1),(-4)×0=a 2-1,得a =1. 即P ={1}.例2 解 p :-4≤x ≤8,从而p 为真时x 的取值范围是集合P =[-4,8].同理可得,q 为真时x 的取值范围是集合Q =[1-m,1+m ].因为“非p ”是“非q ”成立的必要但不充分条件,所以“若非q ,则非p ”是真命题,但“若非p ,则非q ”是假命题,即“若p ,则q ”为真,“若q ,则p ”为假,故P Q ,从而⎩⎪⎨⎪⎧1-m ≤-4,1+m ≥8,且不等式组中两个等号不能同时成立,由此解得m ≥7,即m 的取值范围是[7,+∞).变式训练2 证明 (1)必要性 若数列{a n }为等差数列,则a 1,a 2,a 3也成等差数列,∴2a 2=a 1+a 3.又a 2=3-a 1,a 3=5-a 2=2+a 1,从而,2(3-a 1)=a 1+(2+a 1),∴a 1=1.(2)充分性 由a 1=1,得a 2=3-a 1=2.因为(a n +1+a n +2)-(a n +a n +1)=[2(n +1)+1]-(2n +1)=2,即a n +2-a n =2,所以数列{a 2k -1}是首项为1、公差为2的等差数列,数列{a 2k }是首项为2、公差为2的等差数列,从而a 2k -1=1+2(k -1)=2k -1,a 2k =2+2(k -1)=2k ,故a n =n ,进而a n +1-a n =1,∴{a n }为等差数列.故数列{a n }为等差数列的充要条件是a 1=1.例3 解 若p 为真,则0<2a -1<1,得12<a <1. 若q 为真,则x +|x -a |-2≥0对∀x ∈R 恒成立.记f (x )=x +|x -a |-2,则f (x )=⎩⎪⎨⎪⎧2x -a -2, x ≥a ,a -2, x <a ,∴f (x )的最小值为a -2,故q 为真即为a -2≥0,即a ≥2.∵“p 或q ”为真,∴p 真或q 真.∴a 的取值范围为12<a <1或a ≥2. 变式训练3 解 方程a 2x 2+ax -2=0,即(ax +2)(ax -1)=0,∴x =-2a 或x =1a. 不等式x 2+2ax +2a ≤0只有一个实数解,即Δ=(2a )2-8a =0,∵a >0,∴a =2.∵“p 或q ”为假命题,∴“p 假且q 假”, ∴⎩⎨⎧ ⎪⎪⎪⎪-2a >1,⎪⎪⎪⎪1a >1,a ≠2,解得0<a <1,即a 的取值范围是(0,1).课时规范训练A 组 1.[4,+∞) 2.123.∀x ∈R ,e x ≠x -1 4.0<x <1(或其他正确答案) 5.(-∞,0) 6.存在一个非零实数x ,使x +1x<2 7.充分不必要 8.解 非p 为真,即“∀x ∈R ,ax 2+ax +1≥0”为真.若a =0,则1≥0成立,即a =0时非p 为真;若a ≠0,则非p 为真⇔⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0⇔0<a ≤4.综上知,所求集合A =[0,4].B 组1.(1,2) 2.⎣⎡⎦⎤-12,0 3.18 4.③ 5.(0,3) 6.∃x ∈R ,tan(-x )≠tan x7.解 设命题①为假,则(a -1)2-4a 2≥0⇔-1≤a ≤13. 再设命题②为假,则2a 2+a +1≤0或2a 2+a +1≥1⇔a ≤-12或a ≥0. 若①②同时为假,则-1≤a ≤-12或0≤a ≤13. 从而,①②中至少有一个为真时,a 的取值范围是a <-1或-12<a <0或a >13. 8.证明 ①充分性 若a =0,则f (x )=x 2+|x |,所以f (-x )=(-x )2+|-x |=x 2+|x |=f (x ),故f (x )是偶函数.②必要性 若函数f (x )是偶函数,则f (-x )=f (x )对一切实数x 都成立,从而f (-1)=f (1),即1+|-1-a |=1+|1-a |,|1+a |=|1-a |,故(1+a )2=(1-a )2,所以a =0.故函数f (x )是偶函数的充要条件是a =0.。
2013届高三江苏专版数学一轮复习课时作业(50)统计

课时作业(五十) [第50讲 统计][时间:45分钟 分值:100分]基础热身1.假设吉利公司生产的“远景”“金刚”“自由舰”三种型号的轿车产量分别是1 600辆、6 000辆和2 000辆.为了检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取________.2.为了了解某地区高三学生身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图,如图K50-1.根据图可得这100名学生中体重在[56.5,64.5)的学生人数是________.图K50-13.图K50-2是2012年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数分别为________.798 4 5 6 4 79 3图K50-24.已知x 、y则线性回归方程y ^=a +bx 所表示的直线必经过点________.能力提升5.下列说法中:(1)使用抽签法,每个个体被抽中的机会相等;(2)使用系统抽样从容量为N 的总体中抽取容量为n 的样本,确定分段间隔k 时,若N n不是整数,则需随机地从总体中剔除几个个体;(3)使用系统抽样从容量为1 000的总体中抽取容量为10的样本,需要先将1 000个个体分成10组,再从每一组随机抽取1个个体;(4)无论采取怎样的抽样方法,必须尽可能保证样本的代表性.不正确...的是________. 6.[2011·南通一模] 某校对全校1 200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了85人,则该校的男生数是________人.7.[2011·江苏卷] 某老师从星期一到星期五收到的信件数分别是10,6,8,5,6,则该组数据的方差s 2=________.8.图K50-3是某小组学生在一次数学测验中的得分茎叶图,则该组男生的平均得分与女生的平均得分之差是________.图K50-39.[2011·常州期末] 某学校为了了解学生每周在校用餐的开销情况,抽出了一个容量为500的学生样本,已知他们的开销都不低于20元且不超过60元,样本的频率分布直方图如图K50-4所示,则其中支出在[50,60]元的同学有________人.10.[2011·广东卷] 某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.11.[2011·苏北四市三调] 在某个容量为300的样本的频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形面积和的15,则中间一组的频数为________.12.[2012·扬州调研] 图K50-5是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1________.13.(8分)甲、乙二人参加某项体育项目训练,近期的五次测试成绩得分情况如图K50-6:(1)分别求出两人得分的平均数与方差;(2)根据图K50-6和(1)中的计算结果,对两人的训练成绩作出评价.图K50-614.(8分)从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],图K50-7是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.图K50-715.(12分)某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445 ,445,451,454;品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415 ,416,422,430.(1)画出茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.16.(12分)[2011·安徽卷] 某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y=bx+a;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.课时作业(五十)【基础热身】1.8辆 30辆 10辆 [解析] 抽取的比例为k =489 600=1200,“远景”抽取量为 1 600×1200=8,“金刚”抽取量为6 000×1200=30,“自由舰”抽取量为2 000×1200=10. 2.40 [解析] 由图形知体重在[56.5,64.5]间的频率为(0.03+0.05+0.05+0.07)×2=0.4,所以体重在[56.5,64.5)间的学生数等于0.4×100=40.3.84 85 4.(1.5,5) [解析] 求出x =1.5,y =5,所以过定点(1.5,5).【能力提升】5.(3) [解析] 从容量为1 000的总体中抽取容量为10的样本,需要先将1 000个个体分成10组,每组从1到100随机进行编号,再从第一组随机抽取1个号码;再从其他各组抽取相同的号码.6.690 [解析] 该校的男生数是1 200×⎝⎛⎭⎫1-85200=690. 7.3.2 [解析] 因为x =10+6+8+5+65=7,所以s 2=15(9+1+1+4+1)=3.2. 8.1.5 [解析] 男生的所有成绩的个位上数字之和为47,所以男生的总成绩为47+90×3+80×2+70×2+60×2+50×1=787,因此男生的平均成绩为78.7,同理得女生的平均成绩为77.2,所以男生的平均成绩与女生的平均成绩之差是1.5.9.150 [解析] 支出在[50,60]元的学生频率为1-(0.036+0.024+0.01)×10=0.3,所以支出[50,60]元的同学有500×0.3=150人.10.185 [解析] 因为儿子身高与父亲身高有关,所以设儿子身高为Y ,父亲身高为X ,根据数据列表:得回归系数:b =1,a =3于是儿子身高与父亲身高的关系式为:Y =X +3,当X =182时,该老师的孙子身高为185 cm.11.50 [解析] 设中间一组的面积为x ,则其他8个小长方形面积和为5x ,所以6x =1,所以x =16,故中间一组的频数为300×16=50. 12.40 [解析] 学生体重在[65,70),[70,75]的频率分别为0.037 5×5=0.187 5,0.012 5×5=0.062 5,故体重为[55,60)的频率是26×(1-0.187 5-0.062 5)=0.25, 设抽取的人数为x ,则10x=0.25,则x =40. 13.[解答] (1)由图可以得出两人五次测试的成绩分别为:甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13, x 乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙,可知乙的成绩比较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.14.[解答] (1)由频率分布直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18,所以这所学校高三男生身高在180 cm 以上(含180 cm)的人数为800×0.18=144(人).(2)由频率分布直方图得第八组频率为0.008×5=0.04,设第六组人数为m ,则第七组人数为9-2-m =7-m ,又m +2=2(7-m ),所以m =4, 即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,频率分布直方图如下:(3)由(2)知身高在[180,185]内的人数为4人,设为a ,b ,c ,d .身高在[190,195]的人数为2人,设为A ,B .若x ,y ∈[180,185]时,有ab ,ac ,ad ,bc ,bd ,cd 共六种情况.若x ,y ∈[190,195]时,有AB 共一种情况.若x ,y 分别在[180,185],[190,195]内时,有aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB 共8种情况,所以基本事件的总数为6+8+1=15(种),事件|x -y |≤5所包含的基本事件个数有6+1=7(种),故P (|x -y |≤5)=715. 15.[思路] (1)按照茎叶图的作法、对照数据解决;(2)根据茎叶图的特点写结论;(3)根据样本数据的平均值和方差作结论,但我们只是对“A 与B 的亩产量及其稳定性进行比较”,写出比较优劣的结论即可.[解答] (1)茎叶图如图所示:(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.(3)通过计算,可以发现品种A 的平均每亩产量约为411.1千克,品种B 的平均亩产量为397.8千克.由此可知,品种A 的平均亩产量比品种B 的平均亩产量高.但通过观察茎叶图可知品种A 的亩产量不够稳定,而品种B 的亩产量比较集中在平均产量附近.[点评] 用茎叶图表示数据时,不会损失原始信息,所有的数据信息都可以从茎叶图中得到.因此,可以根据样本数据中的“叶”的分布估计总体分布,但样本数据较多时茎叶图就显得不太方便了.当把数据制成茎叶图后,这组数据中的每一个数据都反映在这个图中,这些数据的分布情况也反映在这个图中,当两组数据的平均水平和稳定性有比较大的差异时,我们也可以从这个图上对两组数据的平均数和方差作出定性的大小判断.16.[思路] 本题考查回归分析的基本思想及其初步应用,回归直线的意义和求法,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力.[解答] (1)由所给数据看出,年需求量与年份之间是近似直线上升.下面来配回归直线方程,为此对数据预处理如下:x =0,y =3.2,b =(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a =y -b x =3.2.由上述计算结果,知所求回归直线方程为y ^-257=b (x -2006)+a =6.5(x -2006)+3.2,即y ^=6.5(x -2006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为6.5(2012-2006)+260.2=6.5×6+260.2=299.2(万吨)≈300(万吨).。
2013江苏省高考高三一轮数学复习专题材料专题08 概率统计

专题8 概率统计苏州市吴县中学张文海【课标要求】1.课程目标(1)通过概率学习,使学生在具体情景中了解随机事件发生的不确定性及频率的稳定性,了解概率的某些基本性质和简单的概率模型.(2)通过统计学习,使学生了解抽样的操作步骤、统计分析的基本流程、变量的相关性分析、线性回归的基本方法;使学生了解用样本估计总体及其特征的思想.2.复习要求(1)随机抽样在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法.(2)用样本估计总体①在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.②理解样本数据平均值和方差的意义和作用,学会计算平均值、方差和标准差.(3)变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.②经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(4)概率①理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率②理解几何概型的概率计算公式,了解测度的简单含义,并能运用其解决一些简单的几何概型的概率计算问题;③了解两个互斥事件概率的加法公式,了解对立事件概率之和为1的结论并会计算.3.复习建议(1)概率、统计部分除了“总体特征数的估计”和“古典概型”是B级要求外,其余均为A级要求.(2)概率在160分卷中主要以古典概型和几何概型为主兼顾互斥事件、对立事件等公式的运用.由于没有计数原理的支撑,概率很难再出现解答题,在利用等可能事件的概率公式计算概率时,计数的方法局限于枚举法.几何概型的计算应抓住其直观性较强的特点.(3)概率复习应着重基础知识和基本概念,理解概率计算的基本思想,注意书写的完整性和规范性,尤其要关注几何概型(以二维为主).(4)统计与统计案例的教学课时不少,又是应用能力考查的重要载体,所以统计问题只在小题中出现的状况有可能改变,09年山东和广州高考卷中,在解答题中都出现了统计的内容.这样文理合卷的解答题中少了概率,多了统计,这也是一种平衡.(5)在附加卷中依然要注意考查概率的知识,复习时应重视数学思想方法的渗透.应注意培养学生善于从普通语言中捕捉信息、将普通语言转化为数学语言的能力,使学生能以数学语言为工具进行数学思维与数学交流. 【典型例题】例1(填空题)(1)投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni)(n-mi)为实数的 概率为________.解析:因为22()()2()m ni n mi mn n m i +-=+-为实数,所以22n m =故m n =则可以取1、2⋅⋅⋅6,共6种可能,所以61666P ==⨯. (2)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为_______.解析: 从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2. (3)在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域,E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 .解析:214416P ππ⨯==⨯.(4)在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到21之间的概率为_____.解析:当10cos 2x <<时,在区间[,]22ππ-上,只有23x ππ-<<-或32x ππ<<,根据几何概型的计算方法,这个概率值是13.(5)已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运 动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员每次投篮命中的概率约为___________.解析:由随机数可估算出每次投篮命中的概率242605p ≈=. (6)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采 用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高 三学生的人数为_______.解析: 高三学生的人数为200500502000n =⨯=. (7)地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50 位老人进行调查,下表是这50位老人睡眠时间的频率分布表: 在上述统计数分析中一部分计算见算法流程图,则输出的S 的值为_____________.解析:由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08 6.42=⨯+⨯+⨯+⨯+⨯=(8)已知总体的各个体的值依次为2,3,3,7,a ,b ,12,137,183,20,且总体的中位数为105.若要使该总体的方差最小,则a 、b 的取值分别是_________.解析: 根据总体方差的定义知,只需且必须10.5,10.5a b ==时,方差最小. (9)一般来说,一个人脚越长,他的身高就越高.现对10名成年人的脚长x 与身 高y 进行测量,得如下数据(单位:cm):画出散点图后,发现散点在一条直线附近,经计算得到数据:24.5,171.5,x y ==1010211()()577.5,()82.5ii i i i xx y y x x ==--=-=∑∑.某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长265cm,请你估计案发嫌疑人的身高为 cm .解析:据线性回归方程的系数公式121()()7()nii i nii xx y y b xx ==--==-∑∑,171.5724.50a y bx =-=-⨯=,所以7726.5185.5x y ==⨯=L.(10)假设有两个分类变量X 和Y ,它们的值域分别为1212{,},{,}x x y y ,其中22⨯列 联表如右;对于以下数据:①5,4,3,2a b c d ====②5,3,4,2a b c d ====;③2,3,4,5a b c d ====;④2,3,5,4a b c d ====,对同一样本能说明X 和Y 有关的可能性最大一组为解析:利用22()()()()()n ad bc a b c d a c b d χ-=++++,由题设数据,只要使2χ最大即可,∴填④. 例2已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,求事件A 发生的概率. 解:由⎩⎨⎧≤-≤3)1(12)2(f f ,可得⎩⎨⎧≥-≤+282c b c b ,知满足事件A 的区域的面积为:=⨯⨯-⨯⨯-=4221222116)(a S 10,而满足所有条件的区域Ω的面积16)(=ΩS 从而得851610)()()(==Ω=S a S A P . 例3某校共有学生2000名,各年级男、女生人数如表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是019.(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名; (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.解:(1)0.192000x= ∴ 380x =.(2)初三年级人数为2000-(373+377+380+370)=500y z +=,用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯=名. (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(,)y z ;由(2)知500y z +=,且,y z N ∈,共有基本事件11个.即(245,255),(246,254),(255,245)事件A 包含5个基本事件(251,249),(252,248),(253,247),(245,246),(255,245). 所以女生比男生多的概率为5()11P A =. 例4(2009山东卷文)汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型有标准型两辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,将该样本看成一个总 体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:94,86,92,96,87,93,90,82,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过05的概率.解:(1)设该厂这个月共生产轿车n 辆,由题意得:5010100300n =+, 所以2000n =,则2000(100300)150450600400z =-+---=.(2)设所抽样本中有a 辆舒适型轿车,由题意:40010005a=,得2a =,因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用12,A A 表示2辆舒适型轿车,用123,,B B B 表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:12(,)A A ,11(,),A B 12(,),A B 13(,),A B 21(,),A B22(,),A B 23(,),A B 12(,),B B 13(,),B B 23(,),B B 共10个,事件E 包含的基本事件有:12(,)A A ,11(,),A B 12(,),A B 13(,),A B 21(,),A B 22(,),A B 23(,)A B 共7个,故7()10P E =,即所求概率为710. (3)样本平均数1(9.48.69.29.68.79.39.08.2)98x =+++++++=,设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过05”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有:94,86,92,87,93,90,共6个,所以63()84P D ==,即所求概率为34. 例5在半径为1的圆围上随机取三点,,A B C ,求ABC ∆为锐角三角形的概率. 解:设ABC ∆为锐角三角形的事件为Z如图,设 ,AmB x AnC y ==则020202x y x y πππ<<⎧⎪<<⎨⎪<+<⎩, 作出(),x y 的区域D如右图,若ABC ∆为锐角三角形则作出(),x y 的区域d 如右图影阴部分,所以ABC ∆为锐角三角形的概率1()4d D S P Z S ==. 例6在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据, 将数据分组如右表:(1)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(2)估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少? (3)统计方法中,同一组数据常用该组区间的中点值(如区间[1.301.34),的中点值是 1.32)作为代表.据此,估计纤度的期望.002x y x y ππππ<<⎧⎪<<⎨⎪<+<⎩解:(2)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=, 纤度小于140的概率约为10.040.250.300.442++⨯=. (3)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02⨯+⨯+⨯+⨯+⨯+⨯ 1.4088= 【新题备选】1.已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是___________.解:共有4×4=16条抛物线,这些抛物线中任意抽取两条共有16151202⨯=种, ∵'y ax b =+,∴它们在与直线1x =交点处的切线相互平行的抛物线符合a b +相等.当5a b +=时,有1种;即2341+=+当7a b +=时,有3种;当9a b +=时,有6种; 当11a b +=时,有3种;当13a b +=时,有1种.∴13631712060P ++++==.样本数据2.已知集合{}4,2,0,1,3,5A =--,在平面直角坐标系中,点(,)M x y 的坐标,x A y A∈∈计算:(1)点M 正好在第二象限的概率;(2)点M 不在x 轴上的概率; (3)点M 正好落在区域006x y x y >⎧⎪>⎨⎪+≤⎩内的概率.解:满足条件的M 点共有6636⨯=个(1)正好在第二象限的点有(4,1)-,(4,3)-,(4,5)-,(2,1)-,(2,3)-,(2,5)-, 故点M 正好在第二象限的概率161366P ==. (2)在x 轴上的点有(4,0)-,(2,0)-,(0,0),(1,0),(3,0),(5,0), 故点M 不在x 轴上的概率2651366P =-=.(3)在所给区域内的点有()1,1,()1,3,()1,5,()3,1,()3,3,()5,1 故点M 在所给区域上的概率361366P == 答:略. 3.设有一个4⨯4网格,其各个最小的正方形的边长为4cm ,现用直径为2cm 的硬币 投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点(1)求硬币落下后完全在最大的正方形内的概率; (2)求硬币落下后与网格线没有公共点的概率.解:考虑圆心的运动情况.(1)因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;此时总面积为:16×16+4×16×1+π×12=320+π;完全落在最大的正方形内时,圆心的位置在14为边长的正方形内,其面积为:14×14=196;故硬币落下后完全在最大的正方形内的概率为:196320P π=+;(2)每个小正方形内与网格线没有公共点的部分是正中心的边长为2的正方形的内部,一共有16个小正方形,总面积有:16×22=64;故硬币落下后与网格线没有公共点的概率为:64320P π=+.答略4.若连续掷三次骰子,分别得到的点数为,,a b c 作为三角形三条边的长度,求能组成三角形的概率.解:基本事件有666216⨯⨯=种.三边相等有6种;二边相等有21363⨯= 种;三边不等有7642⨯=.∴组成三角形的概率为663423721672++=.【专题训练】一、填空题1.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验产 品的质量.现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆.2.抛掷一枚质地均匀的硬币2次,出现一次正面一次反面的概率为 . 3.某暗盒中有大小相同的小球,一红两白,甲、乙依次从中各摸出一个(甲摸出后 放回),则甲、乙摸到的球颜色不同的概率为 .4.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则 事件“x A B ∈⋂”的概率是 .5.在袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外 完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 __.6.如图6是两名篮球运动员在10场比赛中得分的茎叶图,从图中可以看出 的水平更高.7.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的 数量产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图7,则这20名工人中一天生产该产品数量在[)55,75的人数是_______.13562567862102362245848乙甲图6 图78.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为2s =_______.9.已知一组数据73737321+⋅⋅⋅++n x x x ,,,的平均数为22,标准差为36,数据n x x x ,,,⋅⋅⋅21的平均数与标准差分别为 , .10.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、 2 和3,现任取出3面,它们的颜色与号码均不相同的概率是 .11.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可 以构成三角形的概率是 .12.一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子抛掷 三次,观察向上的点数,则三次点数之和等于16的概率为 .13.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你 父亲离家去工作的时间在早上7:00~8:00之间,则你父亲在离家前能得到报纸的概率是 .14.在区间[0,1]上任意取两个实数a ,b ,则函数31()2f x x ax =+在区间[-1,1] 上有且仅有一个零点的概率为 . 二、解答题15.某热水瓶胆生产厂生产的10件产品中,有8件一级品,2件二级品,一级品和二 级品在外观上没有区别.从这10件产品中任意抽检2件,计算:(1)2件都是一级品的概率; (2)至少有一件二级品的概率.16.为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;(2)填充频率分布表的空格(将答案直接填在表格内) ,并作出频率分布直方图; (3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的约多少人? 17.袋中有1个白球,2个黄球,问(1)从中一次性地随机摸出2个球,都是黄球的概率是多少?(2)先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率是多少? (3)先从中摸出一球,将它放回口袋中后,再摸一次,两次都是黄球的概率是多少? 18.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成 苗的概率分别为06,05,移栽后成活的概率分别为07,09.(1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率. 19.已知关于x 的一元二次函数.14)(2+-=bx ax x f(1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一 个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(2)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求函数),1[)(+∞=在区间x f y 上是增函数的概率.20.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对 他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.数据()(),1,2,,i i x y i n = 的线性回归方程为ˆˆˆybx a =+ 参考公式:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑【专题训练参考答案】1.16、30、102.123.944.165.3106.乙7.138.259.5,12 10.114 11.0.75 12.13613.78 14.78 解析1:()a x x f +='223,∵0>a ,∴()x f 在[]1,1-上为增函数.()()⎪⎪⎩⎪⎪⎨⎧≥+-≥++<<<<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-+≤---<<<<⇒⎪⎪⎩⎪⎪⎨⎧≥≤-<<<<012201221010021021101001011010b a b a b a b a b a b a f f b a ,作出图象易知78P =. 解析2:函数31()2f x x ax b =+-在区间[1,1]-上有且仅有一个零点,所以(1)(1)0f f -<,即221()2b a <+,也就是12b a <+,故,a b 满足0101102a b a b ⎧⎪≤≤⎪≤≤⎨⎪⎪-+>⎩图中阴影部分的面积为1111712228S =-⨯⨯= 所以,函数31()2f x x ax b =+-在区间[1,1]-上有且仅 有一个零点的概率为178S P S == 15解:(1)设2件都是一级品为事件A .从10件产品中抽取2件,共有45个基本事件, 且都是等可能的.而事件A 的结果(即包含的基本事件数)有28种, ∴2件都是一级品的概率为P(A)=2845. (2)设至少有一件二级品为事件B ,则B 是两个互斥事件“抽取的2件产品中包含了一件一级品,一件二级品(记为B 1)”与“抽取的2件产品均为二级品(记为B 2)”的和.而P(B 1)=1645,P(B 2)=145, ∴P(B)=P(B 1+B 2)=P(B 1)+ P(B 2)=16117454545+=.∴至少有一件二级品的概率为1745. 16解: (1)编号为016; (2)(3)在被抽到的学生中获二奖的人数是9+7=16人,占样本的比例是160.3250=,即获二等奖的概率约为32%,所以获二等奖的人数估计为800×32%=256人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(五十二) [第52讲 概率综合问题][时间:45分钟 分值:100分]1.从装有5只红球、5只白球的袋中任意取出3只球,有事件:(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”;(2)“取出2只红球和1只白球”与“取出3只红球”;(3) “取出3只红球”与“取出3只球中至少有1只白球”;(4) “取出3只红球”与“取出3只白球”.其中是对立事件的有________.2.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是________.3.某饭店有11张餐桌.据统计,在就餐时间,在4张或4张以下餐桌上有顾客的概率为0.20 ,在5至8张餐桌上有顾客的概率为0.35;在9至11张餐桌上有顾客的概率为0.30,则顾客到饭店后因没有餐桌而到别的饭店就餐的概率为________.4.把红,黑,白,蓝四张纸牌随机地分给甲,乙,丙,丁四个人,每人分得一张,事件“甲分得红牌”和事件“乙分得红牌”是________.(填“不是互斥事件”或“互斥但非对立事件”或“对立事件”) 5.甲、乙2人下棋,下成和棋的概率是,乙获胜的概率是,则甲不胜的概率是________.图K52-16.如图K52-1,圆形靶子被分成面积相等的三部分,并分别染上红色、黄色、蓝色.两人分别向靶子上投射一支飞镖,假设一定中靶,且投中靶面上任一点都是等可能的,则两人所投中区域的颜色不同的概率是________.7.已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.8.甲、乙两人将参加某项测试,他们能达标的概率分别是0.8、0.7,则两人都达标的概率是________,两人中至少有一人达标的概率是________.9.黄种人群中各种血型的人所占的比如下表所示:血型A B AB O该血型的人所2829835占的比(%)已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,任找一个人,其血可以输给小明的概率是________.10.[2011·南通二模] 把一个体积为27 cm3的正方体木块表面涂上红漆,然后锯成体积为1 cm3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为________.11.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n 上”为事件C n(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能值为________.12.[2011·江西卷] 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.13.(8分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?14.(8分)[2011·东莞一模] 某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图K52-2).(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2 h,乙每天连续学习3 h,求22时甲、乙都在学习的概率.图K52-215.(12分)[2011·南通三模] 某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组[230,235)80.16第二组[235,240)①0.24第三组[240,245)15②第四组[245,250)100.20第五组[250,255]50.10合 50 1.00计(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.16.(12分)某商场有奖销售中,购满100元商品得1张奖券,多购多得,每1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C.求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.课时作业(五十二)【基础热身】1.③ [解析] 由定义可得互斥事件是①②③④,其中“取出3只红球”不发生,则“取出3个球中至少有一个白球”必然发生,因此是对立事件.2.两次都不中靶 [解析] “连续射击2次”包含的基本事件有“(+,+),(+,-),(-,+),(-,-)”(“+”表示“中靶”,“-”表示“没有中靶”),“至少一次中靶”与“两次都不中靶”不可能同时发生,所以“至少有一次中靶”的互斥事件是“两次都不中靶”.3.0.15 [解析] 所求的概率为P=1-0.20-0.35+0.30=0.15.4.互斥但非对立事件 [解析] “甲分得红牌”不发生,事件“乙分得红牌”不一定发生,有可能丙或丁分得红牌.【能力提升】5. [解析] 甲不胜包含和棋和乙胜,所以所求的概率为P=+=.6. [解析] 两人分别向靶子上投射一支飞镖,有9种不同的结果,颜色相同的情况有3种,则颜色相同的概率为=,所以颜色不同的概率为P =1-=.7.0.25 [解析] 通过阅读可知20组随机数中,只有191,271,932,812,393为恰好有两次命中,据此可知20组中占了5组,故其概率是0.25.8.0.56 0.94 [解析] 两人均达标为0.8×0.7=0.56,两人都不达标的概率为(1-0.8)×(1-0.7)=0.06,所以两人中至少有一人达标为1-0.06=0.94.9.0.64 [解析] 对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的加法公式,有P(B ′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.10. [解析] 因“至少有一面涂有红漆”的对立事件是“每面都没有红漆”,只有中心一块如此,所以,所求概率为P=1-=.11.3和4 [解析] 总事件数为6.只要求出当n=2,3,4,5时的基本事件个数即可.当n=2时,落在直线x+y=2上的点为(1,1);当n=3时,落在直线x+y=3上的点为(1,2)、(2,1);当n=4时,落在直线x+y=4上的点为(1,3)、(2,2);当n=5时,落在直线x+y=5上的点为(2,3).显然,当n=3,4时,事件C n的概率最大为.12. [解析] 设A={小波周末去看电影},B={小波周末去打篮球},C={小波周末在家看书},D={小波周末不在家看书},如图所示,则P(D)=1-P(C)=1-=.13.[解答] 从袋中任取一球,记事件“得到红球”、“得到黑球”、“得到黄球”、“得到绿球”分别为A、B、C、D,则有P(B+C)=P(B)+P(C)=;P(C+D)=P(C)+P(D)=;又P(A)=,P(A)+P(B)+P(C)+P(D)=1,解得P(B)=,P(C)=,P(D)=.即得到黑球、得到黄球、得到绿球的概率分别是、、.14.[解答] (1)平均学习时间为=1.8小时.(2)20×=4.(3)设甲开始学习的时刻为x,乙开始学习的时刻为y,试验的全部结果所构成的区域为Ω={(x,y)|18≤x≤21,18≤y≤20},面积SΩ=2×3=6.事件A表示“22时甲、乙正在学习”,所构成的区域为A={(x,y)|20≤x≤21,19≤y≤20},面积为S A=1×1=1,这是一个几何概型,所以P(A)==.[点评] 根据以上的解法,我们把此类问题的解决总结为以下四步:(1)构设变量.从问题情景中,发现哪两个量是随机的,从而构设为变量x、y.(2)集合表示.用(x,y)表示每次试验结果,则可用相应的集合分别表示出试验全部结果Ω和事件A所包含试验结果.一般来说,两个集合都是几个二元一次不等式的交集.(3)作出区域.把以上集合所表示的平面区域作出来,先作不等式对应的直线,然后取一特殊点验证哪侧是符合条件的区域.计算求解.根据几何概型的公式,易从平面图形中两个面积的比求得.15.[解答] (1)①②位置的数据分别为12、0.3;(2)第三、四、五组参加考核人数分别为3、2、1;(3)设上述6人为abcdef(其中第四组的两人分别为d,e),则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef},共有15种.记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种.所以P(A)==,故2人中至少有1名是第四组的概率为.16.[解答] (1)P(A)=,P(B)==,P(C)==.(2)∵A、B、C两两互斥,∴P(A+B+C)=P(A)+P(B)+P(C)==.(3)P()=1-P(A+B)=1-=.。