2015-2016学年沪科版初二数学下册期末模拟试卷含答案
安徽省马鞍山市2015—2016学年度沪科版八年级下期末素质数学试题含答案

马鞍山市2015—2016学年度第二学期期末素质测试八年级数学试题考生注意:本卷共6页,24小题,满分100分.一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.下列根式中,不是..最简二次根式的是( )(A(B(C(D 【答案】D .考查二次根式的概念,简单题. 2.方程2x x =的解是( ) (A )1x = (B )11x =,20x = (C )0x =(D )11x =-,20x =【答案】B .考查方程解的概念,简单题.3.下列四组线段中(单位:cm ),可以构成直角三角形的是( ) (A )1,2,3 (B )2,3,4 (C )3,4,5(D )4,5,6【答案】C .考查勾股定理逆定理,简单题. 4.只用下列图形不能..进行平面镶嵌的是( ) (A )全等的三角形(B )全等的四边形 (C )全等的正五边形 (D )全等的正六边形【答案】A ,考查平面镶嵌概念,简单题.5.已知关于x 的方程260x kx --=的一个根为2-,则实数k 的值为( ) (A )1 (B )1- (C )2(D )2-【答案】A ,考查韦达定理和方程的解概念,简单题. 6.小强同学投掷30次实心球的成绩如下表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是( ) (A )12m ,11.9m (B )12m ,12.1m (C )12.1m ,11.9m(D )12.1m ,12m【答案】D .考查众数和中位数概念,简单题.7.已知α是一元二次方程210x x --=较大的根,则下面对α的估计正确的是( ) (A )01α<< (B )1 1.5α<< (C )1.52α<< (D )23α<< 【答案】C .考查解一元二次方程和估算,简单题.8.已知四边形ABCD ,有以下四个条件:①AB ∥CD ;②BC ∥AD ;③AB CD =;④ABC ADC ∠=∠.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种【答案】B .考查平行四边形的判定,简单题.9.在ABC △中,9AC =,12BC =,15AB =,则AB 边上的高是( ) (A )365 (B )1225(C )94(D 【答案】A .考查勾股定理逆定理、面积法,简单题.10.如图1,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,并且60DAC ∠=︒,15ADB ∠=︒,点E 是AD 上一动点,延长EO 交BC 于点F 。
【沪科版】八年级数学下期末模拟试卷(含答案)

一、选择题1.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1002.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S 1,S 2分别表示小明、小华两名运动员这次测试成绩的方差,则有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1≥S 2 4.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差5.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <26.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-7.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 8.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限9.下列四个数中,是负数的是( ) A .2-B .2(2)-C .2-D .2(2)-10.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( ) A .AC BD ⊥B .AC BD =C .AC 平分BAD ∠ D .ADB ABD ∠=∠11.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .2012.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 15.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.16.如图,已知直线,点,过点作轴的垂线交直线于点,以为边,向右侧作正方形,延长交直线于点;以为边,向右侧作正方形,延长交直线于点;……;按照这个规律进行下去,点的横坐标为______.(结果用含正整数的代数式表示)17.如图,平行四边形ABCD 中,CE AD ⊥于点E ,点F 为边AB 的中点,连接EF ,CF ,若12AD CD =,38CEF ∠=︒,则AFE ∠=_____________.18.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.19.若3与最简二次根式21a -可以合并,则实数a 的值是 _________.20.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.三、解答题21.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96 九(2)班:90,98,97,98,92 通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定. 22.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次 第2次 第3次 第4次 第5次 第6次 甲 10 9 8 8 10 9 乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环. (1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.23.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)24.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 25.计算:(1)182722+-(2)232632⎛⎫+⨯ ⎪ ⎪⎝⎭26.如图,在四边形ABCD 中,AB =13,BC =5,CD =15,AD =9,对角线AC ⊥BC . (1)求AC 的长;(2)求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.A解析:A【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【详解】根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.【点睛】此题考查方差和折线统计图,解题关键在于掌握方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44, 原数据的3,4,4,5的中位数为4+4=24, 原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5; 新数据3,4,4,4,5的平均数为3+4+4+4+5=45, 新数据3,4,4,4,5的中位数为4, 新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4; ∴添加一个数据4,方差发生变化, 故选D . 【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.5.D解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.6.D解析:D 【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-.【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点, 此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点, 此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-.故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.7.A解析:A 【分析】直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,易知OB=3,利用三角形的面积公式和已知条件求出点A 的坐标,根据待定系数法即可得到该直线l 的解析式. 【详解】解:如图,直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,∵正方形的边长为1, ∴OB=3,∵经过P 点的一条直线l 将这八个正方形分成面积相等的两部分, ∴三角形ABP 面积是8÷2+1=5, ∴12BP•AB=5, ∴AB=2.5, ∴OA=3-2.5=0.5,由此可知直线l 经过(0,0.5),(4,3) 设直线方程为y=kx+b ,则1243b k b ⎧=⎪⎨⎪+=⎩, 解得5812k b ⎧=⎪⎪⎨⎪=⎪⎩.∴直线l 解析式为5182y x =+. 故选:A . 【点睛】本题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作PB ⊥y 轴,作PC ⊥x 轴,根据题意即得到:直角三角形ABP 面积是5,利用三角形的面积公式求出AB 的长.8.D解析:D 【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可. 【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意. 故选:D . 【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.9.C解析:C 【分析】先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解. 【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C 、0<,符合题意;D 20=>,不符合题意;故选:C . 【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.10.B解析:B 【分析】根据矩形的性质及正方形的判定进行分析即可. 【详解】 解:四边形ABCD 是矩形,AC BD ⊥,∴矩形ABCD 是正方形;四边形ABCD 是矩形,//AD BC ∴,DAC BCA ∴∠=∠, AC 平分BAD ∠, BAC DAC ∴∠=∠, BAC ACB ∴∠=∠, ∴AB BC =,∴矩形ABCD 是正方形; ADB ABD ∠=∠,∴AB AD =,∴四边形ABCD 是矩形,∴矩形ABCD 是正方形;故选:B .【点睛】本题考查矩形的判定,解题的关键是掌握正方形的判定方法.11.A解析:A 【分析】由矩形的性质和已知条件求出3,BC=10,即可得出答案. 【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD , ∴∠BAC=∠ACD=30°, ∴3,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO , 又∵ABC 的周长比△AOB 的周长长10, ∴AB+AC+BC-(AB +AO +BO )=BC=10, ∴3103 故选:A . 【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC 的长是解题的关键.12.B解析:B 【分析】先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数. 【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x , 则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+,∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,822DE ==; ∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形, 则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ; 如下图所示:点P 共有7个点;故选:B . 【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P 的位置,注意运用数形结合的思想进行解题.二、填空题13.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5 【分析】首先求出10名选手的总成绩,再求出平均分即可. 【详解】解:根据统计图可知, 这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5. 【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差. 【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m ,则2222()()()23a mb mc m S -+-+-==,则数据a +3,b +3,c +3的平均数是m+3,∴方差为:2222(33)(33)(33)3a mb mc m S +--++--++--=222()()()23a mb mc m -+-+-==,故答案为:2. 【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤ 【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得dc->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限, ∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限, ∴c >0,d >0, ∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1, ∴a +b =c +d ,故④正确;⑤∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且dc->-1,c >0, ∴c >d .故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.16.3n-12n-2【分析】先根据一次函数方程求出B1点的坐标再根据B1点的坐标求出A2C1的坐标以此类推总结规律便可求出点Bn的坐标【详解】解:∵A1(20)∴B1(21)由正方形的性质可求A2(30解析:【分析】先根据一次函数方程求出点的坐标,再根据点的坐标求出,的坐标,以此类推总结规律便可求出点的坐标.【详解】解:,,由正方形的性质,可求,,,,,……,点的横坐标为,故答案为.【点睛】本题考查一次函数的图像及性质,点的坐标规律;理解题意,结合一次函数的图像和正方形的性质,探索点的坐标规律是解题的关键.17.24°【分析】延长CF交DA延长线于点G证△BCF≌△AGF得GF=FC由垂直得△FEC是等腰三角形可知△BFC是等腰三角形求出∠GFE和∠GFA即可【详解】解:延长CF交DA延长线于点G∵AG∥B解析:24°【分析】延长CF交DA延长线于点G,证△BCF≌△AGF,得GF=FC,由垂直得△FEC是等腰三角形,12AD CD,可知△BFC是等腰三角形,求出∠GFE和∠GFA即可.【详解】解:延长CF 交DA 延长线于点G , ∵AG ∥BC ,∴∠G=∠BCF ,∠GAF=∠B , ∵AF=FB , ∴△AGF ≌△BCF , ∴GF=CF ,AG=BC , ∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°, ∵38CEF ∠=︒, ∴∠FEG=∠FGE=52°, ∠GFE=76°,∵12AD CD =, ∴BC=BF=AF , ∵AG=BC , ∴AG=AF ,∠G=∠AFG=52°,AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.18.12【分析】连接BD 根据菱形对角线的性质利用勾股定理计算BD 的长根据两平行线的距离相等所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12 【分析】连接BD ,根据菱形对角线的性质,利用勾股定理计算BD 的长,根据两平行线的距离相等,所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB和△ECD的面积和=12×ABCDS菱形=12×12×AC×BD=168=124⨯⨯.故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD的高的和等于点C到直线AB的距离是解题的关键.19.2【分析】最简二次根式与可以合并即被开方数相同然后列出方程解出a 【详解】解:解得:故答案为:2【点睛】本题考查同类二次根式解一元一次方程等知识点掌握两个最简二次根式可以合并即被开方数相同是解题的关键解析:2【分析】21a-与3a.【详解】解:213a-=解得:2a=故答案为:2.【点睛】本题考查同类二次根式,解一元一次方程等知识点,掌握两个最简二次根式可以合并,即被开方数相同是解题的关键.20.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度. 【详解】解:如图,连接AE ,设CE x =,∵点D 是线段AB 的中点,且DE AB ⊥, ∴DE 是AB 的垂直平分线, ∴3AE BE BC CE x ==+=+, ∴在Rt ACE 中,222AE AC CE =+, 即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.三、解答题21.(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定. 【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案. 【详解】(1)九(1)班成绩重新排列为92,94,96,96,97,则中位数a=96,九(2)班成绩的众数为b=98; 故答案为:96,98; (2)S 2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2, S 2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2, ∵S 2(1)班<S 2(2)班,∴九(1)班学生的艺术成绩比较稳定. 【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案. 【详解】(1)甲、乙六次测试成绩的方差分别是:(222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下: ∵两人的平均成绩相等, ∴两人实力相当;∵甲的六次测试成绩的方差比乙小, ∴甲发挥较为稳定,∴推荐甲参加比赛更合适. 故答案为:甲 【点睛】本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键. 23.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg 【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可; 【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量. (2)由表格可知不挂重物时,弹簧的长度为28cm , ∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ; (3)∵重物每增加1kg ,弹簧长度增加2cm , ∴y=2x+28,把y=46代入y=2x+28, 得出:46=2x+28, ∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg . 【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式. 24.(1)3;(2)见解析;(3)60︒或15︒或37.5︒ 【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解. 【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒, ∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒, ∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△, ∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+;(3)解:由题意可得AD=AE ,90EAD ∠=︒, ∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.25.(1;(2)【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)2⎫+⎪⎪⎝⎭2=3+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.26.(1)12;(2)84.【分析】(1)在Rt ABC 中,利用勾股定理即可得;(2)先根据勾股定理的逆定理可得ACD △是直角三角形,再根据四边形ABCD 的面积等于Rt ABC 的面积与Rt ACD △的面积之和即可得.【详解】(1)AC BC ⊥,ABC ∴是直角三角形,13,5AB BC ==,2222213514412AC AB BC AC ∴=-=-==,;(2)15,9,12CD AD AC ===,222AC AD CD ∴+=, ACD ∴是直角三角形,则四边形ABCD 的面积为1122Rt ABC Rt ACD S S AC BC AC AD +=⋅+⋅, 1112512922=⨯⨯+⨯⨯, 84=,即四边形ABCD 的面积为84.【点睛】本题考查了勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.。
沪科版八年级第二学期期末试卷·数学

2015—2016年度第二学期期末试卷八年级数学试题卷(沪科版) 制卷人:陆明宇注意事项: 本卷共8大题,计23小题,满分150分,考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分) 题 号 1 2 3 4 5 6 78910答 案1、若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值不可能是( ) A.0 B.2.5 C.3 D. 52、化简)22(28+-得( ) A.-2 B.22-C.2D.224-3、方程09622=--x x 的二次项系数. 一次项系数. 常数项分别为( ) .A .6;2; 9B .2; -6;-9C .2; -6; 9D .-2; 6;94.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A .菱形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形 5、式子3ax -(a >0)化简的结果是( ) A 、ax x -B 、ax x --C 、ax xD 、ax x -6.关于x 的一元二次方程2(6)860a x x --+=有实数根,则满足条件的正整数a 个数是( ) A .6 B .7 C .8 D .97.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 为( ) A .2B .15-C .110-D .58.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( ) A.94分,96分 B.96分,96分 C.94分,96.4分 D.96分,96.4分9.满足下列条件的三角形中,不是直角三角形的是( )① 三内角之比为1∶2∶3 ② 三边长的平方之比为1∶2∶3③ 三边长之比为3∶4∶5 ④ 三内角之比为3∶4∶5 A .③ B .② C .① D .④姓名: 班级: 学校: 考号:10.关于x 的一元二次方程2()04a ca c x bx -+++=有两个相等的实数根,那么以a 、b 、c 为边的三角形是( )A .以a 为斜边的直角三角形B .以c 为斜边的直角三角形C .以b 为底边的等腰三角形D .以c 为底边的等腰三角形 二、(本题共4小题,每小题5分,满分20分)11、若2<m<8,化简:(2-m)2 -(m-8)2 =____________.12、把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若BF=4,FC=2,则∠DEF 的度数是 .13、已知(a2+b2)(a2+b2-1)=12,则a2+b2=14、如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折叠DE 分别交AB 、AC 于E 、G ,连接GF,下列结论:①∠FGD=112.50②BE=2OG S ⊿AGD =S ⊿OGD④四边形AEFG 是菱形。
沪教版八年级(下)数学期末模拟测试卷集(共三套)和参考答案

八年级(下)数学期末模拟测试卷一姓名一、选择题(本大题共6题,每题2分,满分12分)1.已知直线b x y +=的图像如右图所示, 则下列说法正确的是……………………………… ( )(A)0,0>>b k ; (B) 0,0><b k (C) 0,0<>b k (D) 0,0<<b k2.下列说法不正确的是………………………………… ( ) (A )对角线互相平分的四边形是平行四边形 (B )对角线相等的四边形是矩形 (C )两组对角相等的四边形是平行四边形 (D )三个内角相等的四边形是矩形 3.下列判断中,不正确的是…………………………………………………… ( ) (A)0AB BA +=; (B )如果AB CD =,则AB CD = (C )a b c c b a ++=++ (D )()()a b c a b c ++=++.4.下列事件中,是必然事件的是……………………………………………… ( ) (A )明天是晴天 (B )打开电视,正在播放广告 (C )两个负数的和是正数; (D )三角形三个内角和是180°5.已知平行四边形的边长为14,下列各项数中,能分别作它两条对角线长的是………………( ) (A ) 10与16 (B )12与16 (C )20与22 (D )10与186.下列方程中,有实数根的是 ( ) (A )x x -=+2 (B )111-=-x x x (C ) 12-=-x (D )0164=+x二、填空题(本大题共12题,每题3分,满分36分)7.函数2+=mx y 的函数y 随自变量x 的增大而减小,那么图像经过_______ ___象限.8.已知点A (a,2),B(b,4)在直线12+-=x y 上,则a,b 的大小关系是 a b(选填“>”或”<”或”=”)9.已知一次函数b kx y +=的图像如图所示,则不等式0>+b kx 的解集是 .10.一次函数2+=x y 与反比例函数xy 3=的交点坐标是 .11. 方程2422-=-x x x 的解是 . 12. 用换元法解分式方程21212=---x x x x 时,如果设y xx =-12,那么原方程化为关于y 的整式方程是 .13. 方程81)12(4=-x 的解是 . 14. 计算:→DE + CD +AB +BC = .15. 在矩形ABCD 中,若3||,2==→→BC AB ,那么=+→→||BC AB .16. 在10cm 长的木棒上随意选一处锯断,其中一段木棒长度大于6cm 的概率为 .17.小红上学要过三个红绿灯,如果每个路口遇到红灯和遇到绿灯的可能性相等,则上学过程中全是绿灯的可能性是________.18.在平行四边形ABCD 中,AB=4,BC=3,∠B=60°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后三、解答题(本大题共4题,第19、20题每题5分,第21、22题每题6分,满分22分)19.解方程x x x 23232=-+ 20. 解方程组:⎩⎨⎧=-=-132178422y x y x21.如图,在正方形ABCD 中,AB=2,记→→=a AB ,→→=b AC (1)画向量→→→+=b a OM ; (2)求||→OM22.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率。
【沪科版】初二数学下期末模拟试卷(及答案)(1)

一、选择题1.数据2-,1-,0,1,2的方差是()A.0 B.2C.2 D.42.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是93.某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.25.如图,在矩形ABCD中,3AB=,4BC=,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是()A .B .C .D .6.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .7.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小9.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .1010.下列各式中,正确的是( )A .2(3)9-=B .2(3)3-=-C .93-=-D .93=11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .612.在△ABC 中,BC=a ,AB=c ,AC=b ,则不能作为判定△ABC 是直角三角形的条件是( ). A .∠A=∠B-∠C B .∠A :∠B :∠C=2:5:3 C .a :b :c =7:24:25D .a :b :c =4:5:6二、填空题13.一组数据:3、5、8、x 、6,若这组数据的极差为6,则x 的值为__________. 14.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________. 15.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2正确的是_____.16.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.17.如图所示,在平行四边形ABCD 中2=AD AB ,CE 平分BCD ∠交AD 边于点E ,且4AE =,则AB 的长为______.18.已知222233+=,333388+=,44441515+=,…,77a a b b +=(a、b 均为实数)则=a __________,=b __________.19.如图在矩形ABCD 中,对角线,AC BD 相交于点O ,若30,2ACB AB ︒∠==,则BD 的长为_______.20.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.三、解答题21.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表 班级平均数(分)中位数(分)众数(分)九(1)8585九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x名,801班师生景区游览的门票总费用为y元,请用x的代数式表示y.(2)若师生门票总费用y不超过858元,问至少有几名学生.,连接AE,交边24.已知:如图,在ABCD中,延长DC至点E,使得DC CEBC于点F.连接AC,BE.(1)求证:四边形ABEC是平行四边形.(2)若2AFC D ∠=∠,求证:四边形ABEC 是矩形.25.计算:26.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算平均数,再计算方差.方差的定义一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n (x 1+x 2+…+x n ),则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 【详解】解:平均数x =15(-2-1+0+1+2)=0, 则方差S 2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2. 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n(x 1+x 2+…+x n ),则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据3.A解析:A 【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项. 【详解】∵数据的极差为16800,较大, ∴平均数不能反映数据的集中趋势, ∴普通员工最关注的数据是中位数及众数, 故选A . 【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.4.D解析:D 【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差. 【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-=故选D 【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解.【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D . 【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.6.A解析:A 【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断. 【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限. 故选:A . 【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.7.B解析:B 【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案. 【详解】 解:根据题意,则∵00x x -≥⎧⎪-≠,解得:0x <,∴20x >0x>-,∴20y x=+>, ∴点(,)P x y 一定在第二象限; 故选:B . 【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.8.A解析:A 【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答. 【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+, ∴直线y kx b =+的解析式为2(2)123y x x =+-=+, ∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确; 当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误; ∵k=2>0,∴y 随x 的增大而增大,故D 错误, 故选:A . 【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.9.C解析:C 【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可. 【详解】解:∵D 、E 分别是AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴DE=12BC=6, ∵DE=3DF , ∴EF=4,∵∠AFC=90°,E 是AC 的中点, ∴AC=2EF=8, 故选:C . 【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10.D解析:D 【分析】根据二次根式的性质逐项判断即可. 【详解】解:A 、2(3=,故本选项错误;B 3=,故本选项错误;CD 3=,故本选项正确. 故选:D . 【点睛】a =,2(0)a a =≥.11.A解析:A 【分析】由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形, ∴OA =OC =6,OB =OD ,AC ⊥BD , ∴AC =12, ∵DH ⊥AB , ∴∠BHD =90°, ∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8, ∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 12.D解析:D 【分析】根据三角形的内角和定理,勾股定理的逆定理依次判断. 【详解】A 、∵∠A=∠B-∠C ,∴∠A+∠C =∠B ,得到∠B=90︒,即△ABC 是直角三角形; B 、设∠A=2x ,∠B=5x ,∠C=3x ,故235180x x x ++=︒,解得x=18︒, ∴∠B=5x=90︒,即△ABC 是直角三角形; C 、设a=7x ,则b=24x ,c=25x , ∵222(7)(24)(25)x x x +=, ∴222+=a b c , ∴△ABC 是直角三角形;D 、设a=4x ,b=5x ,c=6x , ∵222(4)(5)(6)x x x +≠, ∴222a b c +≠, ∴△ABC 不是直角三角形; 故选:D . 【点睛】此题考查三角形的内角和定理,勾股定理的逆定理,掌握直角三角形根据边或角判定的方法是解题的关键.二、填空题13.2或9【解析】【分析】根据极差的定义先分两种情况进行讨论当x 最大时或最小时分别进行求解即可【详解】∵数据358x6的极差是6∴当x 最大时:x ﹣3=6解得:x=9;当x 最小时8﹣x=6解得:x=2∴x解析:2或 9 【解析】 【分析】根据极差的定义先分两种情况进行讨论,当x 最大时或最小时分别进行求解即可. 【详解】∵数据3、5、8、x 、6的极差是6,∴当x 最大时:x ﹣3=6,解得:x =9; 当x 最小时,8﹣x =6,解得:x =2,∴x 的值为2或9. 故答案为:2或9. 【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.14.3【分析】首先根据这组数据的总和等于各个数据之和或等于这组数据的平均数乘以这组数据的个数列出方程得出x的值再根据众数的概念这组数据中出现次数最多的是3从而得出答案【详解】解:1+3+2+7+x+2+解析:3【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.15.①【分析】根据一次函数的图象和性质即可判断出k和a的取值范围;由图象的交点横坐标即可得到③的结论【详解】解:①y1=kx+b的图象过一二四象限则k<0;故此选项正确;②y2=x+a的图象过一三四象限解析:①【分析】根据一次函数的图象和性质即可判断出k和a的取值范围;由图象的交点横坐标即可得到③的结论.【详解】解:①y1=kx+b的图象过一、二、四象限,则k<0;故此选项正确;②y2=x+a的图象过一、三、四象限,则a<0;故此选项错误;③由于两函数图象交点横坐标为3,则当x<3时,y1>y2;故此选项错误.故答案为:①.【点睛】此题考查一次函数图象,一次函数图象的性质,一次函数图象与系数的符号关系,根据一次函数交点判定函数值的大小,熟记一次函数的性质是解题的关键.16.y=3x+3【分析】根据平行直线的解析式求出k值再把点的坐标代入解析式求出b值即可【详解】y=-x-1当y=0时x=-1∴线y=-x-1交x轴于点(-10)∵y=kx+b的图象平行于直线y=3x+2解析:y=3x+3【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值即可.【详解】y=-x-1,当y=0时,x=-1,∴线y=-x-1交x轴于点(-1,0),∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵函数y=kx+b(k≠0)的与直线y=-x-1交x轴于同一点,∴函数y=kx+b(k≠0)经过点(-1,0),∴-3+b=0,∴b=3,∴函数的表达式是y=3x+3,故答案为:y=3x+3.【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k值相等是解题的关键.17.4【分析】根据平行四边形性质得出AB=DCAD∥BC推出∠DEC=∠BCE求出∠DEC=∠DCE推出DE=DC=AB得出AD=2DE即可求出AB的长【详解】解:∵四边形ABCD是平行四边形∴AB=D解析:4【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE,即可求出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=4,∴DC=AB=DE=4,故答案为:4.【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用;熟练掌握平行四边形的性质,证出DE=AE=DC是解决问题的关键.18.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48 【分析】利用已知条件,找出规律,写出结果即可. 【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=, 故答案为:7,48 【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.19.4【分析】根据30度所对的直角边等于斜边的一半求出AC=4利用矩形的性质得到BD=AC=4即可【详解】在矩形中∵四边形是矩形故答案为:4【点睛】此题考查矩形的性质直角三角形30度角的性质熟记各性质是解析:4 【分析】根据30度所对的直角边等于斜边的一半求出AC=4,利用矩形的性质得到BD=AC=4即可. 【详解】在矩形ABCD 中,90ABC ︒∠=,30,2ACB AB ︒∠==,2224AC AB ∴==⨯=,∵四边形ABCD 是矩形,4BD AC ∴==. 故答案为:4. 【点睛】此题考查矩形的性质,直角三角形30度角的性质,熟记各性质是解题的关键.20.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详 解析:2【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP △为等腰直角三角形,再根据等腰直角三角形的性质求解即可. 【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R , 所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小, 连接12,PO P O ,则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角, 所以,22121222PP OP OP ===,即PQR .. 【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.三、解答题21.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:()()()2222121x x x nn S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.22.(1)40;(2)30元,50元;(3)50500元. 【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费. 【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元)因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元. 【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)y=12x+810;(2)至少有41名学生 【分析】(1)根据总费用=老师费用+学生费用列出关系式即可; (2)根据总费用不超过858元列出不等式,求解即可解答. 【详解】(1)根据题意得:y=30x+30×0.6×(45﹣x )=12x+810, 故总费用y=12x+810; (2)由题意得:12x+810≤858, 解得:x≤4, 则45﹣x≥41, 故至少有41名学生. 【点睛】本题考查了一次函数的应用、一元一次不等式的应用,理解题意,正确列出函数关系式是解答的关键.24.(1)见解析;(2)见解析【分析】(1)根据题意可得到//AB CE ,从而再证明AB CE =即可得出结论;(2)结合(1)的结论可以得到//BC AD ,BCE D ∠=∠,再根据2AFC D ∠=∠推出FEC FCE ∠=∠,从而得到FC FE =即可得出结论. 【详解】(1)∵四边形ABCD 是平行四边形, ∴//AB CD ,AB CD =,即//AB CE , ∵DC CE =, ∴AB CE =,∴四边形ABEC 是平行四边形;(2)∵四边形ABCD 是平行四边形, ∴//BC AD ,BCE D ∠=∠, ∵四边形ABEC 是平行四边形, 又∵AFC FEC BCE ∠=∠+∠,∴当2AFC D ∠=∠时,则有FEC FCE ∠=∠, ∴FC FE =,AE BC =, ∴四边形ABEC 是矩形. 【点睛】本题考查平行四边形的性质与判定,矩形的判定,熟练掌握基本的性质定理以及判定方法是解题关键.25 【分析】先根据二次根式的除法法则运算,然后化简后合并即可计算; 【详解】2==2. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可;在二次根式的混合运算中,如果能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往可以事半功倍;26.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长. 【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-, ∴a-b=1或a-b=-1(舍去); (2)222568a b a b ++=+2225680a b a b ++--= 22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0, ∴a=3,b=4,当a 与b 都是直角边时,5=,∴Rt △ABC 的周长=3+4+5=12;当a 为直角边,b 为斜边时,=,∴Rt △ABC 的周长=7 【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.。
【沪科版】初二数学下期末模拟试卷(含答案)

一、选择题1.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变3.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9B .8.5,8C .8,8D .8,94.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375 350 375 350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁5.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm6.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<7.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个8.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案9.下列计算中,正确的是( ) A 235+=B 235=C .2(23)=12 D 633= 10.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cm B .6cm 或10cm C .12cm 或12cm D .12cm 或14cm 11.下列结论中,菱形具有而矩形不一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行12.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =-二、填空题13.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.14.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.15.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)16.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.17.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.18.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.19.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭_________.20.如图,在ABC 中,5AB AC ==,8BC =,D 是线段BC 上的动点(不含端点B 、C ),若线段AD 的长是正整数,则点D 的个数共有______个.三、解答题21.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲 a 7 7 1.2 乙7b8c(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.22.下表是随机抽取的某公司部分员工的月收入资料. 月收入/元 45000 18000 10000 5500 5000 3400 3000 2000 人数111361112(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.23.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.24.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 25.按要求解答下列试题:(1)计算:()2310.12523322⎛⎫-+---+- ⎪⎝⎭(2)计算:22232()()x x y xy y x x y x y ⎡⎤---÷⎣⎦ (3)解方程:4(x +3)2-81=0.26.Rt △ABC 中,∠ACB =90°,AC =3,AB =5.(1)如图1,点E 在边BC 上,且∠AEC =2∠B .①在图1中用尺规作图作出点E ,并连结AE (保留作图痕迹,不写作法与证明过程); ②求CE 的长.(2)如图2,点D 为斜边上的动点,连接CD ,当△ACD 是以AC 为底的等腰三角形时,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.2.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.3.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环). 故选:C . 【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.4.C解析:C 【分析】先比较平均数,平均数相同时选择方差更小的参加. 【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛, 又因为丙的方差小于甲的方差, 所以丙的成绩更具有稳定性, 所以应该选择丙参赛. 故选:C. 【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.5.C解析:C 【分析】过点E 作EH BC ⊥,由三角形面积公式求出EH=AB=6,由图2可知当14x =时,点P 与点D 重合,则12AD =,可得出答案. 【详解】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⋅=⨯⨯=,解得:EH=AB=6, ∴BE=10×1=10,228BH AE BE AB ==-=,由图2可知:当14x =时,点P 与点D 重合,4ED ∴=,8412BC AD ∴==+=,矩形的面积=12672⨯=. 故选:C . 【点睛】本题考查动点问题的函数图象,三角形的面积等知识,从图像中得出当10x =,14x =时,点P 的位置,熟练掌握数形结合思想方法是解题的关键.6.C解析:C 【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围.【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7, 则7=1+t ,解得t=6.当直线y=-x+b 过点N (5,6)时,得6=-5+b ,解得:b=11, 则11=1+t ,解得t=10.故若点M ,N 位于l 的异侧,t 的取值范围是:6<t <10. 故选:C . 【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l 经过点M 、点N 时的t 值是解题关键.7.B解析:B 【分析】首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果; 【详解】一次函数的图象与直线112y x =-平行,设此直线为12y x b =+,过点(-1,-5),∴把此点代入,得152b -=-+,解得92b, ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-).由直线的解析式可知,只要x 是奇数时,y 即为整数, 而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个. 故选:B . 【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;8.B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.9.C解析:C【分析】根据二次根式加法法则、乘法法则、除法法则依次计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式==C、原式12=,符合题意;D、原式.故选:C.【点评】此题考查了二次根式的乘除法,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.10.D解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C、∵AC=12cm,BD=12cm,∴OA=6cm,OB=6cm,∴OA+OB=12cm=12cm,不能组成三角形,故不符合;D、∵AC=12cm,BD=14cm,∴OA=6cm,OB=7cm,∴OA+OB=13cm>12cm,能组成三角形,故符合;故选D.【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.11.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.12.A解析:A【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论.【详解】Rt △ABC 中,∵AB 2+AC 2=BC 2∴S 2=222111*********ABC AB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BCS π∆+-+=S 1.故选A .【点睛】 本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键.二、填空题13.4【分析】首先根据其平均数为5求得a 的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4【分析】首先根据其平均数为5求得a 的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s 2=15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4. 故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 14.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17, 则该小组组员年龄的中位数为12(15+16)=15.5岁, 故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键. 15.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 16.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.17.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB再以E为圆心EA为半径作圆与正方形的交点即为满足条件的P点分类讨论即可【详解】如图所示在正方形ABCD中∠AEB=105°∵点P在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB,再以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,分类讨论即可.【详解】如图所示,在正方形ABCD中,∠AEB=105°,∵点P在正方形的边上,且AE=EP,∴可以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,①当P在AD上时,如图,AE=EP1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP1=60°,△EAP1为等边三角形,∴此时∠AEP1=60°;②当P在CD上时,如图,AE=EP2,AE=EP3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.18.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD ,根据菱形对角线的性质,利用勾股定理计算BD 的长,根据两平行线的距离相等,所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=12×6=3, ∵AB =5,由勾股定理得:224AB OA -=,∴BD=2OB=8,∵AB ∥CD , ∴△EAB 和△ECD 的高的和等于点C 到直线AB 的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键. 19.【分析】根据负整数指数幂定义绝对值的性质二次根式的除法计算法则依次计算再计算加减法即可【详解】解:原式==故答案为:【点睛】此题考查计算能力正确掌握负整数指数幂定义绝对值的性质二次根式的除法计算法则 解析:243+【分析】根据负整数指数幂定义,绝对值的性质,二次根式的除法计算法则依次计算,再计算加减法即可.【详解】解:原式=42333-+243++.故答案为:243【点睛】此题考查计算能力,正确掌握负整数指数幂定义,绝对值的性质,二次根式的除法计算法则是解题的关键.20.3【分析】首先过A作AE⊥BC当D与E重合时AD最短首先利用等腰三角形的性质可得BE=EC进而可得BE的长利用勾股定理计算出AE长然后可得AD 的取值范围进而可得答案【详解】解:过A作AE⊥BC∵AB解析:3【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【详解】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=1BC=4,2∴22-,54∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故答案为:3.【点睛】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.三、解答题21.(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c 的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1)5162748291712421a ⨯+⨯+⨯+⨯+⨯==++++, 将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数787.52b +==, ∵乙射击的次数是10次, ∴2222222(37)(47)(67)2(77)3(87)(97)(107)c ⎡⎤=-+-+-+⨯-+⨯-+-+-⎣⎦=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.22.(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;【详解】解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++(元)中位数:这组数据共有26个,第13 、14个数据分别为3400,3000, 所以样本的中位数为:3400300032002+=(元) (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.由题意可知,样本中的26名员工,只有3位员工的收入在6150以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点睛】本题考查的知识点是平均数与中位数,掌握平均数与中位数的求法是解此题的关键. 23.(1)34k =;(2)点P 的坐标为(-4,3);(3)点M 的坐标为(-18,0),7(,0)4-,(2,0)或(8,0). 【分析】(1)由点B 的坐标,利用一次函数图象上点的坐标特征可求出k 值;(2)利用一次函数图象上点的坐标特征求出点C 的坐标,设点P 的坐标为3(,6)4+x x ,由S △PAC =S △BOC -S △BAP -S △AOC 结合△PAC 的面积为3,可得出关于x 的一元一次方程,解之即可得出点P 的坐标;(3)利用勾股定理求出BC 的长度,分CB=CM ,BC=BM ,MB=MC 三种情况考虑:①当CB=CM 时,由OM 1=OB=8可得出点M 1的坐标;②当BC=BM 时,由BM 2=BM 3=BC=10结合点B 的坐标可得出点M 2,M 3的坐标;③当MB=MC 时,设OM=t ,则M 4B=M 4C=8-t ,利用勾股定理可得出关于t 的一元一次方程,解之即可得出点M 4的坐标.综上,此题得解.【详解】解:(1)∵直线l :y=kx+6过点B (-8,0),∴0=-8k+6,∴k 3.4= (2)当x=0时,3664y x =+= ∴点C 的坐标为(0,6).设点P 的坐标为3(,6)4+x x ∴S △PAC =S △BOC -S △BAP -S △AOC , 1131862(6)66,2242=⨯⨯-⨯+-⨯⨯x 33,4=-=x ∴x=-4,3634=+=y x ∴点P 的坐标为(-4,3).(3)在Rt △BOC 中,OB=8,OC=6,2210.=+=BC OB OC分三种情况考虑(如图2所示):①当CB=CM时,OM1=OB=8,∴点M1的坐标为(8,0);②当BC=BM时,BM2=BM3=BC=10,∵点B的坐标为(-8,0),∴点M2的坐标为(2,0),点M3的坐标为(-18,0);③当MB=MC时,设OM=t,则M4B=M4C=8-t,∴CM42=OM42+OC2,即(8-t)2=t2+62,解得:7,4 =t∴点M4的坐标为7(,0)4-综上所述:在x轴上存在一点M,使得△BCM为等腰三角形,点M的坐标为(-18,0),7(,0)4-,(2,0)或(8,0).【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式、等腰三角形的性质以及勾股定理,解题的关键是分类讨论的数学思想.24.(1)见解析;(2)BC<AC【分析】(1)画射线BD,以B为端点取BC=a,过点C作BD的垂线,再以点B为圆心,c为半径画弧,与该垂线交于点A即可;(2)根据直角三角形的性质得到AB,利用勾股定理求出AC,再比较大小即可.【详解】解:(1)如图,△ABC即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴AC=22107-=51,∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.25.(1)14-;(2)21+xy x x y --;(3)1152x =-,232x = 【分析】 (1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(3)利用平方根的概念解方程.【详解】解:(1)(2310.12523322⎛⎫--+ ⎪⎝⎭ =10.523234--+- =14- (2)22232()()x x y xy y x x y x y ⎡⎤---÷⎣⎦=222322(+)x x y xy x y x y x y --÷=3223422(+)x y x y x y x y x y --÷=21+xy x x y --(3)4(x +3)2-81=04(x+3)2=81(x+3)2=81 4x+3=9 2±115 2x=-,23 2x=【点睛】本题考查实数的混合运算,二次根式的混合运算,整式的混合运算及利用平方根的概念解方程,掌握相关计算法则和运算顺序正确计算是解题关键.26.(1)①见解析;②78CE=;(2)2.5【分析】(1)①作出AB的垂直平分线交BC于点E,则可得结论;②由勾股定理求得BC=4,设CE=x,则BE=AE=4-x,依据勾股定理列出方程求解即可;(2)求得BD=CD=AD=2.5即可.【详解】解:(1)①如图,作∠BAE=∠B,②可求得BC=4∵∠AEC=∠B+∠BAE,又∵∠AEC=2∠B,∴∠BAE=∠B ,∴BE=AE,.设CE=x,则BE=AE=4-x,在Rt△AEC中,222CE AC AE+=,∴2223(4)x x+=-,∴78x=,∴78CE=(2)AC为底时,如图2所示,此时AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD=BD=2.5.【点睛】本题考查了线段垂直平分线的性质、勾股定理以及等腰三角形的性质等知识,熟练掌握相关知识是解答此题的关键.。
沪科版八年级数学下册期末测试卷经典)

安徽省六安市 2015-2016学年度第二学期期末质量检测卷八年级数学试题(满分:150分 时间120分钟)一、选择题(每题4分,共40分) 1、下列计算正确的是( )A=-2 B、22-=(C 、(-3)2=-3 D=2、化简二次根式3)5(2⨯-得 ( ) A .35- B .35 C .35± D .303、方程x x 22530--=根的情况是( )A 、方程有两个不相等的实根B 、方程有两个相等的实根C 、方程没有实根D 、无法判断4、以下列各组线段的长为边,能够组成直角三角形的是( ) A 、6 810 B 、15 31 39 C 、12 35 37 D 、12 18 325、使代数有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠46、某型号的手机连续两次降价,每台售价由原来的1185元降到580元,设平均每次的降价的百分率x ,则列出的方程正确的是( ) A 、(x)258011185+= B 、(x)211851580+= C 、(x)258011185-= D 、(x)211851580-=7、正方形具有而菱形不一定具有性质的是( ) A 、对角线互相平分 B 、对角线相等 C 、对角线平分一组对角 D 、对角线互相垂直8、在R ∆t ABC 中,已知直角边长a=1,b=3那么斜边的长为 ( ) A 、2 B 、4C 、2D 、109、若方程ax bx c (a )200++=≠,满足a b c 0++=,则方程必有一根为( ) A 、0 B 、1 C 、1- D 1±10、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如右上图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在25~30次的频率是( ) A 、0.4 B 、0.3 C 、0.2 D 、0.1 二、填空题(每题5分,共20分) 11、比较大小:12、如图,以Rt ABC 的三边向外作正方形,其面积分别为S ,S ,S 123且S ,S 1248== 则S 3=13、一元二次方程x x +-=23670的两根为x ,x 12,则x x +=12 ,x x =12 14是同类二次根式,那么b= 三、解答题15、解方程(每题8分,共16分)(1)2(3)2(3)0x x x -+-=; (2)2410x x -+=(用配方法)16、先化简,在求值(本题10分)已知x 、y 是实数,且满足y=x —6 +6—x +1试求9x —2y 的值第10题 频数分布图学校: 班级: 姓名: 考号:43--x xAC四、(本大题共2小题,每题12分,满分24分)17、已知:如图5,□ABCD中,AB=5cm,AD=3cm,AE平分∠BAD交DC于E。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第二学期初二数学期末模拟试卷(完卷时间:90分钟,满分:100分)一、选择题(每小题3分,共18分)1.二元二次方程2220x xy y --=可以化为两个二元一次方程,下列表示正确的是( )(A )020x y x y +=⎧⎨-=⎩; (B )020x y x y -=⎧⎨+=⎩;(C )0x y +=或20x y -=; (D )0x y -=或20x y +=.2.下列函数中,在其定义域内y 随x 的增大而增大的是………………………………( )(A )62x y =-+; (B )62x y =+; (C )2y x =-; (D )2y x=.3.下列图形中,是轴对称图形,但不是中心对称图形的是……………………………( )(A )矩形; (B )菱形; (C )平行四边形; (D )等腰梯形 4.如图,DE 是△ABC 的中位线,下面的结论中错误的是……( )(A )AB DE 21=; (B )AB ∥DE ; (C )2BC CE =; (D )2AC DE =5. 下列事件属于必然事件的是…………………………………( ) (A )10只鸟关在3个笼子里,至少有1个笼子里关的鸟超过3只;(B )某种彩票的中奖概率为1001,购买100张彩票一定中奖;(C )将10克浓度为3%的盐水和10克浓度为7%的盐水混合得20克浓度为10%的盐水;(D )夹在两条互相平行的直线之间的线段相等.6.下列命题中,真命题的是………………………………………………………………( ) (A )对角线互相垂直平分的四边形是正方形;(B )对角线互相垂直的四边形是菱形; (C )对角线互相平分的四边形是平行四边形;(D )对角线相等的四边形是矩形. 二、填空题(每小题2分,共24分)7.在实数范围内,二项方程4160x -=的解是 . 8.如果一个n 边形的每一个内角都是160,那么n = .9.已知函数112y x =+,当1y ≤-时,x 的取值范围是____________. 10.化简:MN MP NP -+=.11.已知平行四边形一组对角的和等于270°,那么在这个平行四边形中较小的一个内角等于 度.12.直线2y mx =-和6y nx =-相交于x 轴上同一点,则mn的值为 _______________. 13.在1~4这四个数中,任取两个不相等的数组成一个分数(分母不为1),则分子和分母互素的分数的概率为____________.14.如果顺次联结四边形ABCD 各边中点所得的四边形是矩形,那么对角线AC BD 与需满足的条件是_____________.15.如图,在梯形ABCD 中,AB ∥CD ,∠ABC =︒90,如果AB =5,BC =4,CD =3,那么第4题图ED CBA 学校___________________________ 班级_________________ 姓名___________________ 学号___________________……………………密……………………封……………………线……………………内……………………请……………………勿……………………答………………题……………………DC B A AD =____________.16.如图,菱形ABCD 中,︒=∠130A ,M 在BD 上,MC MB =.则=MCD ∠ _17.如图,已知正方形ABCD ,点E 在边DC 上,3=DE ,1=EC .联结AE ,点F 在射线AB 上,且满足AE CF =,则A 、F 两点的距离为 .15题图18.如图所示梯形A B C D 中,AB ∥DC ,5AB =,11DC =.图(1)中11A B 是联结两腰中点的线段.易知,11=8A B .图(2)中11A B 、22A B 是联结两腰三等分点且平行于底边的线段,可求得1122+A B A B 的值....照此规律下去,图(3)中11A B 、22A B ...1010A B 是联结两腰十一等分点且平行于底边的线段.则11+A B 22+A B (1010)+A B 的值为__________.三.解答题(19-20题各5分,21-22题各6分,23-24题各8分,共38分)19.解方程:x x =++1052 20. 解方程组:222449x xy x xy y ⎧+=⎪⎨++=⎪⎩21.已知:如图,AE ∥BF ,AC 平分∠BAD ,交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,联结CD .求证:四边形ABCD 是菱形.A16题图 B DM 17题图FO E D C B A 第21题图22.如图,在平面直角坐标系中,O 为原点,点A 、B 、C 的坐标分别为(2,0)、(-1,3)、(-2,-2). (1)在图中作向量+; (2)在图中作向量-;(3)填空:||||AB BC CA ++=.24.一个不透明的口袋里装有2个红球和1个白球,它们除颜色外其他都相同.(1)摸出一个球放回袋中,搅匀后再摸一个球.求前后都摸到红球的概率(用树形图法说明).(2)若在上述口袋中再放入若干个形状完全一样的黄球,使放入黄球后摸到一个红球(只摸1次)的概率为51,求放入黄球的个数.25.某学校准备用2400元购买一批学习用品作为奖品奖励优秀学生,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,现学校决定用这些钱购买甲、乙两种学习用品,且使乙种学习用品的件十是甲种学习用品的件数的2倍,问:这两种学习用品的单价分别是多少元?应分别购买多少件?第22题图四、综合题(每题10分,共20分)26.周六上午8:00小明从家出发,乘车1小时到郊外某地参加社会实践活动。
在该地参观2.2小时后,因家有急事,他立即按原路以4千米/小时的平均速度步行返回,同时爸爸开车从家出发沿同一线路接他,在离家28千米处与小明相遇。
接到后车速保持不变,立即按原路返回。
设小明离开家的时间为x 小时,小明离家的路程y (千米)与x (小时)的函数关系如图所示。
(1)小明去该地乘车的平均速度是 千米/小时,爸爸开车的平均速度应是 千米/小时; (2)求线段CD 所表示的函数关系式;(3)问小明能否在12:00前回家,若能,请说明理由;若不能,请算出12:00时他离家的路程。
27.如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(4,0),60AOC ∠=,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以1个单位长度/秒的速度运动。
设直线l 与菱形OABC 的两边分别交于点M 、N (点M 在点N 的上方) (1)求A 、B 两点的坐标;(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(06t ≤≤),试求S 与t 的函数关系式;(3)在(2)的条件下,t 为何值时,△OMN 的面积最大?最大面积是多少?…………密……………………封……………………线……………………内……………………请……………………勿……………………答………………题……………………(小时)2015-2016学年第二学期初二数学期末模拟试卷 参考答案一、选择题(每小题3分,共18分)1、C2、B3、D4、D5、A6、C 二、填空题(每小题2分,共24分)7、122,2x x ==- 8、18 9、4x ≥ 10、0 11、4512、1313、7914、AC BD ⊥ 15、、10517、1或7 18、80三、解答题(19-20题各5分,21-22题各6分,23-24题各8分,共38分) 19、解:10x =- 平方得 24(5)20100x x x +=-+化为224800x x -+=…………(2分) 解得 124,20x x ==…………(1分) 经检验,4x =为增根,舍……(1分) ∴原方程的根为20x =…………(1分) 20、解:由①得 0x =或0x y += 由②得 23x y +=或23x y +=-0000,,,23232323x x x y x y x y x y x y x y ==+=+=⎧⎧⎧⎧∴⎨⎨⎨⎨+=+=-+=+=-⎩⎩⎩⎩ 分别解得 11032x y =⎧⎪⎨=⎪⎩,11032x y =⎧⎪⎨=⎪⎩11032x y =⎧⎪⎨=⎪⎩11032x y =⎧⎪⎨=⎪⎩……(4分)(结论略) …(1分) 21、证明:先通过=AD BC 且AD ∥BC 证得ABCD ,再通过AB BC =证得ABCD 为菱形(过程略,6分,其他证法酌情给分)22、解:(1)2分,图略 (2)2分,图略 (3)2分) 23、解:(1)由树形图知 9n =,4k = …………(图2分)设“前后摸到的都是红球”为事件A 4()9P A ∴=…(2分) (2)设放入x 个黄球. 记“摸到1个红球”为事件B.21()215P B x ∴==++ …(2分) 7x ∴=……(1分)∴放入黄球7个.24、解:设甲种单价为x 元,则乙种单价为(2)x +元.240024002002x x ∴-=+……(3分) 解得124,6x x ==-……(1分) 0x > ,6x ∴=-舍……(1分)∴甲单价4元,乙单价6元. ……(1分) 设甲买了y 件,则乙买了2y 件. 4122400y y ∴+= 150y ∴=…(1分) ∴甲买了150件,乙买了300件.(1分) 四、综合题(每题10分,共20分)25、解:(1)30,56(每空2分,共4分)(2)CD 段:28S km =,56/V km h =,0.5t h ∴= (4.2,0)D ∴……(2分)设CD 段解析式y kx b =+ (3.7,28),(4.2,0)分别代入,得3.7284.20k b k b +=⎧⎨+=⎩ 解得56235.2k b =-⎧⎨=⎩56235.2y x ∴=-+…………(2分) (3)(4.2,0)D 8 4.212.21∴+=>∴不能在12点前回家(1分) 12点时,即当4x =时,代入56235.2y x =-+,得11.2y =∴12点时小明离家距离为11.2km .…………………………………………(1分)26、解:(1) 菱形OABC ,(4,0)C 4O A A B O C ∴===作AD OC ⊥于D 60AOC ∠=122O D O A ∴==,AD =A B ∴……………………………………………………(2分)(2)①当02t ≤≤时,ON t =,MN =21122OMN S ON MN t ∴=⋅=⋅=………………………………(2分)②当24t <≤时,ON t =,MN =1122OMN S ON MN t ∴=⋅=⋅⋅ ………………………………(2分)③当46t <≤时,记l 与x轴交于P4C P t ∴=-,(4)P N t =-4)MN t ∴=-=211)222OMNS OP MN t∴=⋅=⋅⋅=- ……………(2分)综上,22,02,24,46t St t ≤≤=<≤⎪<≤⎪⎩(3)当02t ≤≤时,0S ≤≤当24t <≤时,S <≤ 当46t <≤时,2269)(3)2222S t t t =--++=--+∴当4t =时,S = 综上,当4t =时,O M N S 最大,且最大面积为2分)。